
Higher-Order Horn Clauses
and

Higher-Order Model Checking

Some Work in Progress

Martin Lester

University of Oxford

Luke Ong Steven Ramsay

I. Motivation

sum(n:int) =
c := 0
while (n > 0) do

c := c + n
n := n – 1

assert (c >= n)

repeat (f: int -> int) (s: int) (n: int) : int =
if n <= 0 then s else f (repeat f s (n-1))

succ (u:int) = u + 1

assert (repeat succ 0 n >= n)

II. Higher-Order Horn Clauses

Fix a (first-order), sorted assertion/constraint language:

Consider higher-sorts:

Assume countably many variables Vars x,y,z… of each sort

Atomic formulas:

General formulas built in the usual way, with quantification at all relational sorts.

Terms s,t,u… are built from Sig and Vars using application.

Fix a family of sets Aɩ in which to interpret each Sig sort ɩ.

Interpret general formulas s inside in the standard model over (Aɩ)ɩ :

e.g.

iff

Higher-Order Constrained Horn Clause Problem:

Fix a distinguished subset of relational variables, RelVars:

Fix a set of horn clauses H over RelVars (the free variables of H are in RelVars):

Determine if, for all models A of Th, there is some valuation α of RelVars such that:

()

In quantifier free linear arithmetic interpreted by …

P

The (safety) model checking problem for higher-order recursion schemes:

In the quantifier free language of an 2-state automaton, interpreted by the theory of :

P

III. Symbolic Models of Higher-Type

Syntax:

iff

Semantics:

implies

fand

f

f

iff

Syntax: Semantics:

iff

For all R, if:

and

then the following is provable:

iff iff

For all models A of Th:

iff()

Syntax: Semantics:

Soundness:

and

implies, for all A:Th and θ:Δ :

implies for all A:Th, there is a valuation α:

implies

implies

Writing for :

and

implies()
and

and

Find

such that

P

IV. Algorithms

• Dependent (refinement) type inference for functional programs
• Bakst, Jhala, Kawaguchi, Rondon, Seidel, Vazou…
• Hashimoto, Kobayashi, Sato, Terauchi, Unno…

• Reduction to first-order horn clauses via a dependent type system
• Jhala, Majumdar and Rybalchencko CAV’11

• Extension of technology from HORS model checking
• TRecS/Lazy Annotation (Revisited) crossover

unsat

unsat

unsat

/Interpolant()

= = Interpolant (… / …)

Functional programs

Higher-order horn clauses

Higher-order recursion schemes

• Higher-order constraint problems
• Technology transfer from HORS model checking to HOHC satisfiability
• Higher-order co-horn clauses (type inference)

End

