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In The Beginning...

Theorem
The downward closures of languages defined by higher-

order recursion schemes are computable.

Proof: Igor’s talk.

Question: what can we do with the result?



Tools



Several Tools

Being able to construct a downward closure gives us several tools

Can decide finiteness of a language.

Can compute the downward closure of the Parikh Image.

Can decide the diagonal problem.

Separability by piecewise testable languages.



The Diagonal Problem

Theorem [Zetzsche, 2015]
If a class of languages C can be synchronised with regular

languages, then
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Theorem [Zetzsche, 2015]
If a class of languages C can be synchronised with regular

languages, then

Downward closures are computable iff

The Diagonal Problem is decidable.

The Diagonal Problem:

Given a language L ∈ C and a set of characters {a1, . . . , an}

For all k is there a word in L containing,

more than k a1s, more than k a2s, and so on
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Example
The language L = {a$b, aa$bb, aaa$bbb, . . .}

Satisfies the diagonal problem for {a, b}

For k = 3, take aaa$bbb

For every k, take ak$bk.

Note: no word in L contains an infinite number of as and bs.

Does not satisfy the diagonal problem for {$}

All words in L only contain one $

Fails for k = 2

Gives us a kind of unboundedness check.



Separability by Piecewise Testable Languages

A piecewise testable language is a finite boolean combination of reg-

ular expressions of the form

Σ∗a1Σ
∗ · · ·Σ∗anΣ∗

That is, only the order of a1, . . . , an is important.



Separability by Piecewise Testable Languages

Separability asks

Given languages L1 and L2,

Does there exist piecewise testable R such that

L1 ⊆ R, and

R ∩ L2 = ∅.

L1

L2

R



Decidability of Piecewise Testability

Theorem [Czerwinski et al ]
If the downwards closure of L1 and L2 are computable

separability by piecewise testable languages is decidable,

and

such an R can be constructed.

This gives us

A “well-behaved” over-approximation of L1,

that is refined enough to avoid hitting L2.

(we could then get a similar approximation of L2.)



Applications



Example Applications

Can be applied to analysis of concurrent systems.

Simple / vague idea.

To start thinking...

Parameterised Asynchronous Shared-Memory Systems

Concrete result [La Torre et al ]

Asynchronous Atomic Methods

(in the style of Viswanation et al)



Lunch Protocols

Food?

Sandwich?

Let’s Go!

Let AV be a regular automaton specifying valid protocol runs.

They go to lunch if there is a run in

L
( )

∩ L
( )

∩ L(AV )

(Both execute a valid run of the protocol.)



Lunch Protocols

Food?

Sandwich?

Let’s Go!

If and are Turing machines

Can’t even tell if there’s a run in L
( )

.

If and are pushdown automata

Can test L
( )

but not L
( )

∩ L
( )

.
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Lunch Protocols

Food?

Sandwich?

Let’s Go!

If and are regular we can test L
( )

∩ L
( )

∩ L(AV )

The downward closure of and are regular!

The intersection with AV may eliminate “faulty” runs caused by

deleting characters.
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Parameterized Asynchronous Shared-Memory

Suppose a model where we have

A master process.

Any number of identical slave processes.

A global shared-memory.

Processes can read and write to the memory.

But cannot read and write atomically.



Parameterized Asynchronous Shared-Memory

Suppose a model where we have

Theorem [La Torre et al, 2015]
Reachability is decidable whenever

Can synchronise all processes with regular automata.

Reachability of the slave is decidable.

The downward closure of the master can be computed.



Intuition

We can see some intuition behind the result as follows:

Each process’s view of the global store can be its downward closure.

Observation:

if a slave writes a symbol

an arbitrary number of slaves can also write it

at any point in the future

Only “precious” resource are master writes.

but we only need the downward closure of the master

Boils down to a number of reachability checks on the client com-

bined with the master.



Asynchronous Atomic Methods

Suppose we have a system with

A set of processes P1, . . . , Pn

A global control state from a finite set

Processes may spawn further processes

E.g. a run of P1 may spawn P3 and two copies of P7.

When a process terminates, another spawned process is scheduled

Only communication is by control state after termination.

History:

Pushdown systems [Sen & Viswanathan]

Generic systems [Chadha & Viswanation]



Runs with Asynchronous Atomic Methods

A configuration is

(q, P,M)

where

q is the global control state

P is the state of the currently exectuting process

M is a multiset of waiting processes



Transitions of The System

A transition

(q, P,M) −→ (q′, P ′,M ′)

updates the control state and the running process

P may add new elements to M



Transitions of The System

A transition

(q, P,M) −→ (q′, P ′,M ′)

updates the control state and the running process

P may add new elements to M

If the process has terminated

(q,⊥,M) −→ (q, P,M − P )

A P ∈ M is chosen non-deterministically to run next



Deciding Reachability of a Control State

Can model as a vector addition system (almost)

(q, P, c1, . . . , cn)

q is the control state

P as before (hence not a real VASS)

ci counts the number of Pi waiting to run



Deciding Reachability of a Control State

Can model as

(q, P, c1, . . . , cn)

Key Observation:

If we only care if some q can be reached, then

non-deterministically forgetting scheduled processes does not af-

fect analysis.

P can be approximated by its downward closure

Since this is regular, the entire system is a VASS

We can decide coverability of a VASS.



Bounded Synchronisation and Thread Spawning

Atig et al give the following model

Allow context switches.

Current P suspends to let another P ′ run

P is rescheduled at most k times

for some a priori fixed k

P pushdown systems

Reachability is decidable

Atig et al’s proof relies on downward closures

Can we generalise P to any process for which we have the down-

ward closure?



Do We Need to Compute the Downward Closure?

Chadha and Viswanathan give a generic algorithm for certain “well-

behaved” systems of the form

(q, P, c1, . . . , cn)

This includes asynchronous atomic method calls

Their algorithm is by repeated approximation

Broadly speaking, only membership of the downward closure is

required

I’m glossing over a lot of details here...

Hence we can ask if our algorithms really need to compute the down-

ward closure, or merely test it.



When is the Downward Closure Not Enough

Take our asynchronous atomic methods system

(q, P,M)

Fairness question [Majumdar]: are all processes eventually run?

Taking the downward closure “forgets processes”

It’s easy to be fair if we can forget inconvenient processes...

Replacing P with its downward closure is too inaccurate.
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Conclusions

Downward closure results have given us new tools for reasoning about

HORS

Downward closure, separability, Parikh image (approx)

How can we apply them?

We covered two applications

Parameterised asynchronous shared-memory

Asynchronous method calls


