
A semantics for
context-oriented programming
languages with multiple layer

activation mechanisms

Tomoyuki Aotani†

joint work with

Tetsuo Kamina‡ and Hidehiko Masuhara†

† Tokyo Institute of Technology
‡ Ritsumeikan University

1 of 25



Context-oriented programming

An approach to software modularity

• Modularizing context-dependent behavioral variations

2 of 25



Contexts and behavior:
saving the buffer content

> jedit &

3 of 25



Contexts and behavior:
saving the buffer content

One empty buffer with no associated file

3 of 25



Contexts and behavior:
saving the buffer content

When we save the buffer,

3 of 25



Contexts and behavior:
saving the buffer content

When we save the buffer,
a dialog pops up and asks to specify the file

3 of 25



Contexts and behavior:
saving the buffer content

Once we specified the file,
we are not asked to specify the file to save the buffer any more

3 of 25



Contexts and behavior:
saving the buffer content

Untitledstart Titled

edit

save

save, edit

Untitled

void save(){

/*ask the file name and*/
/*save the content to the file*/

}

Titled

void save(){

/*save the content to the file*/
}

4 of 25



Contexts and behavior:
closing the application

Savedstart Modified

save

edit

edit

save

Saved

void close(){

/*close the app.*/
}

Modified

void close(){

/*save the content to the file*/
/*and close the app.*/

} 5 of 25



Context-oriented programming
language

Context-oriented programming languages provide

• Layers

group partial methods and each has one binary state
that is either active or inactive

• Partial method

in layer L for method m, namely L.m, defines
the variation of the behaivor of m in the context represented
by L

• Layer activation mechanism

(de)activates layers at runtime

6 of 25



Context-oriented programming
language

Context-oriented programming languages provide

• Layers group partial methods and each has one binary state
that is either active or inactive

• Partial method

in layer L for method m, namely L.m, defines
the variation of the behaivor of m in the context represented
by L

• Layer activation mechanism

(de)activates layers at runtime

6 of 25



Context-oriented programming
language

Context-oriented programming languages provide

• Layers group partial methods and each has one binary state
that is either active or inactive

• Partial method in layer L for method m, namely L.m, defines
the variation of the behaivor of m in the context represented
by L

• Layer activation mechanism

(de)activates layers at runtime

6 of 25



Context-oriented programming
language

Context-oriented programming languages provide

• Layers group partial methods and each has one binary state
that is either active or inactive

• Partial method in layer L for method m, namely L.m, defines
the variation of the behaivor of m in the context represented
by L

• Layer activation mechanism (de)activates layers at runtime

6 of 25



Layers and partial methods

class Buffer{

File f;

void save(){

/*save to f*/
}

}

layer Untitled{

void Buffer.save(){

/*ask the file name and*/
/*save the content to the file*/

}

}

Layer

Partial method

call Buffer.save
within context L

if Untitled 6∈ L

(Untitled is not active)

if Untitled ∈ L

(Untitled is active)

7 of 25



Layers and partial methods

class Buffer{

File f;

void save(){

/*save to f*/
}

}

layer Untitled{

void Buffer.save(){

/*ask the file name and*/
/*save the content to the file*/

}

}

Layer

Partial method

call Buffer.save
within context L

if Untitled 6∈ L

(Untitled is not active)

if Untitled ∈ L

(Untitled is active)

7 of 25



Layers and partial methods

class Buffer{

File f;

void save(){

/*save to f*/
}

}

layer Untitled{

void Buffer.save(){

/*ask the file name and*/
/*save the content to the file*/

}

}

Layer

Partial method

call Buffer.save
within context L

if Untitled 6∈ L

(Untitled is not active)

if Untitled ∈ L

(Untitled is active)

7 of 25



Layers and partial methods

class Buffer{

File f;

void save(){

/*save to f*/
}

}

layer Untitled{

void Buffer.save(){

/*ask the file name and*/
/*save the content to the file*/

}

}

Layer

Partial method

call Buffer.save
within context L

if Untitled 6∈ L

(Untitled is not active)

if Untitled ∈ L

(Untitled is active)

7 of 25



Layers and partial methods

class Buffer{

File f;

void save(){

/*save to f*/
}

}

layer Untitled{

void Buffer.save(){

/*ask the file name and*/
/*save the content to the file*/

}

}

Layer

Partial method

call Buffer.save
within context L

if Untitled 6∈ L

(Untitled is not active)

if Untitled ∈ L

(Untitled is active)

7 of 25



Layer activation mechanisms

• Block: (ContextJ [Appeltauer09], JCop [Appeltauer10])

• Imperative: (Subjective-C [González10])

• Per-object: (EventCJ [Kamina11], ContextErlang [Salvaneschi12])

• Implicit/reactive: (PyContext [von Löwis07], Flute [Bainomugisha12])

8 of 25



Example: block activation

with(L){S;} ensures that layer L is active during execution of S

void main(){

Buffer b=new Buffer();

with(Untitled){

b.save(); //→Untitled.Buffer.save
} // because L = [Untitled]
b.save(); //→Buffer.save because L = ∅

}

9 of 25



Example: imperative activation

activate(L) activates layer L until deactivate(L) is executed

void main(){

Buffer b=new Buffer();

activate(Untitled);

b.save(); //→Untitled.Buffer.save
} //because L = [Untitled]

10 of 25



Dynamic layer precedence
If layer L1 is activated more recently than layer L2, then L1 is more
effective than L2

Example
Assume that class Buffer has two layers Untitled and Modified

that define partial method save

void main(...){

Buffer b=new Buffer();

with(Untitled){ //[] 7→ [Untitled]
with(Modified){ //[Untitled] 7→ [Modified, Untitled]
b.save(); //→Modified.Buffer.save

} //[Modified, Untitled] 7→ [Untitled]
} //[Untitled] 7→ []

}

11 of 25



Dynamic layer precedence

If layer L1 is activated more recently than layer L2, then L1 is more
effective than L2

Example
Assume that class Buffer has two layers Untitled and Modified

that define partial method save

void main(){

Buffer b=new Buffer();

activate(Untitled); //[] 7→ [Untitled]
activate(Modified); //[Untitled] 7→ [Modified, Untitled]
b.save(); //→Modified.Buffer.save

11 of 25



Activating active layers

When an active layer is activated, it just moves to the head of the
context L. In other words, every layer can appear at most once in
the context.

void main(){

Buffer c=new Buffer();

activate(Untitled); //[] 7→ [Untitled]
activate(Modified); //[Untitled] 7→ [Mod., Untitled]
activate(Untitled); //[Mod., Untitled] 7→ [Untitled, Mod.]
b.save(); //→Untitled.Buffer.save

12 of 25



Activating active layers

When an active layer is activated, it just moves to the head of the
context L. In other words, every layer can appear at most once in
the context.

void main(){

Buffer b=new Buffer();

with(Untitled){ //[] 7→ [Untitled]
with(Modified){ //[Untitled] 7→ [Mod., Untitled]
with(Untitled){ //[Mod., Untitled] 7→ [Untitled, Mod.]

b.save(); //→Untitled.Buffer.save
} //[Untitled, Mod.] 7→ [Mod., Untitled]
b.save(); //→Modified.Buffer.save

}

}

12 of 25



Qestion: mixed activation

void main(){

Buffer b=new Buffer();

with(Untitled){

activate(Untitled);

}

b.save(); //→Buffer.save? Or Untitled.Buffer.save?
}

13 of 25



Qestion: mixed activation

void main(){

Buffer b=new Buffer();

activate(Untitled);

activate(Modified);

with(Untitled){

b.save();//→Untitled.Buffer.save? Modified.Buffer.save?
with(Modified){

activate(Modified);

}

}

b.save(); //→Untitled.Buffer.save? Modified.Buffer.save?
}

13 of 25



Our choice

void main(){

Buffer b=new Buffer();

with(Untitled){

activate(Untitled);

}

b.save(); //→Untitled.Buffer.save because
} //there is no deactivate after activate

14 of 25



Our choice

void main(){

Buffer b=new Buffer();

activate(Untitled);

activate(Modified);

with(Untitled){

b.save();//→Untitled.Buffer.save (most recently activated)
with(Modified){

activate(Modified);

}

}

b.save(); //→Modified.Buffer.save (most recently activated)
}

14 of 25



Our approach:
distributivity-based semantics[Uustalu’05]

• Computations depending on active layers are structured with a
comonad

• Computations that (de)activate layers imperatively are
structured with a monad

• Mixing block and imperative activation can be easily achieved
via a distributive law of the comonad over the monad

15 of 25



Terms and values
data Tm = V Var (Variable)

| S Sym (Function symbol)
| L Var [(Layer, Tm)] (Abstraction)
| Tm :@ Tm (Application)
| A Layer (Imperative activation)
| D Layer (Imperative deactivation)
| With Layer Tm (Block activation)
| Without Layer Tm (Block deactivation)
| Tm :@@ Tm (Proceeding application)

type Val d t = d (Val d t) → t (Val d t)

The type parameters d and t are functors
• d a: the type of values with two lists of active layers
• t a: the type of computations performing imperative layer
(de)activation

16 of 25



Terms and values
data Tm = V Var (Variable)

| S Sym (Function symbol)
| L Var [(Layer, Tm)] (Abstraction)
| Tm :@ Tm (Application)
| A Layer (Imperative activation)
| D Layer (Imperative deactivation)
| With Layer Tm (Block activation)
| Without Layer Tm (Block deactivation)
| Tm :@@ Tm (Proceeding application)

type Val d t = d (Val d t) → t (Val d t)

Moreover,
• (d, extract, =�) is a comonad
• (t, return, �=) is a monad
• there is a distributive law of the comonad over the monad

16 of 25



Terms and values

We first show the comonadic semantics of the following subset of
our language (imperative activation is omitted)

data Tm = V Var (Variable)
| S Sym (Function symbol)
| L Var [(Layer, Tm)] (Abstraction)
| Tm :@ Tm (Application)
| A Layer (Imperative activation)
| D Layer (Imperative deactivation)
| With Layer Tm (Block activation)
| Without Layer Tm (Block deactivation)
| Tm :@@ Tm (Proceeding application)

type Val d = d (Val d) → Val d

16 of 25



Comonad for COP
Comonads are represented as instances of the following type class:

class Comonad d where

extract :: d a → a

(=�) :: d a → (d a → b) → d b

LS is the functor of our comonad:

data LS a = LS a [Layer] [Layer]

and we can define the comonad:

instance Comonad LS where

extract (LS x _ _) = x

x@(LS _ lsP lsF) =� f = LS (f x) lsP lsF

Specifically, we have to check the three coherence conditions, but
it is easy and trivial (our comonad is an environment comonad)

17 of 25



Comonadic interpretation

Comonadic semantics is given by the following function

type Val d = d (Val d) → Val d

type Env d = [(Var, Val d)] -- list of variable-value pairs
class Comonad d ⇒ ComonadEv d where

ev :: Tm → d (Env d) → Val d

But for simplicity, we define ev as follows

ev :: Tm → LS (Env LS) → Val LS

18 of 25



Comonadic interpretation

Comonadic semantics is given by the following function

type Val d = d (Val d) → Val d

type Env d = [(Var, Val d)] -- list of variable-value pairs
ev :: Tm → LS (Env LS) → Val LS

With and Without just change the full list of active layers

ev (With ly t) (LS env lsP lsF) =
ev t (LS env lsP (ly : removeL ly lsF))

ev (Without ly t) (LS env lsP lsF) =
ev t (LS env lsP (removeL ly lsF))

where removeL ly lst removes ly from lst if exists

18 of 25



Comonadic interpretation
Comonadic semantics is given by the following function

type Val d = d (Val d) → Val d

type Env d = [(Var, Val d)] -- list of variable-value pairs
ev :: Tm → LS (Env LS) → Val LS

To interpret applications, we need to wrap the argument value with
the context. We use =� for this purpose.

ev (f :@ a) denv = let f’ = ev f denv

a’ = denv =� ev a

in calling f’ a’

calling copies the full list of active layers to the partial list of
active layers

calling :: (LS a → a) → LS a → a

calling f (LS x lsP lsF) = f (LS x lsF lsF)
18 of 25



Comonadic interpretation

Comonadic semantics is given by the following function

type Val d = d (Val d) → Val d

type Env d = [(Var, Val d)] -- list of variable-value pairs
ev :: Tm → LS (Env LS) → Val LS

Proceeding applications are interpreted in the same way to
applications, but the partial list of active layers are reduced

ev (f :@@ a) denv = let f’ = ev f denv

a’ = denv =� ev a

in proceeding f’ a’

proceeding :: (LS a → a) → LS a → a

proceeding f (LS x lsP lsF) = f (LS x (tail lsP) lsF)

18 of 25



Comonadic interpretation

Comonadic semantics is given by the following function

type Val d = d (Val d) → Val d

type Env d = [(Var, Val d)] -- list of variable-value pairs
ev :: Tm → LS (Env LS) → Val LS

Abstractions are interpreted as comonadic functions, which select
the body term w.r.t. the context of the argument cv

ev (L x body) denv = f where

f :: LS (Val LS) → Val LS

f cv = ev (dispatch cv body) (cmap repair (czip cv denv))

repair (a, env) = update x a env

}

18 of 25



Distributivity-based interpretation

Now lets think an interpretation of the full language

data Tm = V Var (Variable)
| S Sym (Function symbol)
| L Var [(Layer, Tm)] (Abstraction)
| Tm :@ Tm (Application)
| A Layer (Imperative activation)
| D Layer (Imperative deactivation)
| With Layer Tm (Block activation)
| Without Layer Tm (Block deactivation)
| Tm :@@ Tm (Proceeding application)

type Val d t = d (Val d t) → t (Val d t)

19 of 25



Monad for COP
Monads are represented as instances of the following type class:

class Monad t where

return :: a → t a

(�=) :: t a → (a → t b) → t b

AE is the functor of our monad:

data Ev = Acti | Deacti

type Eff = [(Layer, Ev)]

data AE a = AE a Eff

and the monad for COP is defined as:

instance Monad AE where

return x = AE x []

(AE x eff)�= f = let (AE y eff’) = f x

in AE y (merge eff’ eff)

20 of 25



Distributive law of the comonad
over the monad

The Distributive laws of comonads over monads[Brookes92, Power02] allow
us to put the effects represented by monads to the contexts
represented by comonads

In Haskell, the distributive combination is implemented as follows:

class (Comonad d, Monad t) ⇒ Dist d t where

dist :: d (t a) → t (d a)

For example, for our case:

instance Dist LS AE where

dist (LS (AE v eff) lsP lsF) =
AE (LS v lsP (eApp eff lsF)) eff

where eApp applies the effect to the list of active layers
21 of 25



Distributivity-based interpretation

Distributivity-based interprentation is given by

type Val d t = d (Val d t) → t (Val d t)

type Env d t = [(Var, Val d t)] -- list of variable-value pairs
ev :: Tm → LS (Env LS AE) → AE (Val LS AE)

Imperative activation and deactivation just generate layer
activation and deactivation events respectively

ev (A ly) denv = AE u [(ly, Acti)]

ev (D ly) denv = AE u [(ly, Deacti)]

where u is some function, e.g.,

u x = return (extract x)

22 of 25



Distributivity-based interpretation

Distributivity-based interprentation is given by

type Val d t = d (Val d t) → t (Val d t)

type Env d t = [(Var, Val d t)] -- list of variable-value pairs
ev :: Tm → LS (Env LS AE) → AE (Val LS AE)

Another interesting case is applications

ev (f :@ a) denv =
do f’ ← ev f denv

a’ ← dist (denv =� ev a)

calling f’ a’

This does not work because the effects of imperative activation
during the evaluation of f is ignored by the evaluation of a

22 of 25



Distributivity-based interpretation

Distributivity-based interprentation is given by

type Val d t = d (Val d t) → t (Val d t)

type Env d t = [(Var, Val d t)] -- list of variable-value pairs
ev :: Tm → LS (Env LS AE) → AE (Val LS AE)

One way to propagate the effect of imperative activation in f is to
use the distributive law not only at the evaluation of a but also f

ev (f :@ a) denv =
do f’ ← dist (denv =� ev f)

x’ ← dist (czip f’ denv =� snd ◦ extract =� ev a)

calling (extract f’) x’

f’ has the full list of active layers that reflect the imperative
activation during the evaluation of f

22 of 25



Related work

Formal studies on COP languages [Clarke09, Igarashi11, Igarashi12, Kamina14, Inoue15]

• Only one activation mechanism is considered, or the two
activation are managed separately

• Most of the studies are focused on “type safety”

Distributivity-based semantics for dataflow programming [Uustalu05]

• Our work is largely inspired by the work

23 of 25



Conclusions and future work

We showed

• Comonadic interpretation for the COP languages that support
only block activation

• Distributivity-based interprentation for the languages that
support both block and imperative activation

Future work includes

• Concurrent context changes

• Type system, verification

• Re-implementing ServalCJ[Kamina15] compiler based on the
semantics

24 of 25



Thank you

void main(){

Buffer b=new Buffer();

activate(Untitled);

activate(Modified);

with(Untitled){

b.save();//→Untitled.Buffer.save? Modified.Buffer.save?
with(Modified){

activate(Modified);

}

}

b.save(); //→Untitled.Buffer.save? Modified.Buffer.save?
}

25 of 25


