
Analyzing JavaScript Web Applications

in the Wild (Mostly) Statically

Sukyoung Ryu

Programming Language Research Group

KAIST

September 22, 2015

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 1/63



My First Programming Language: C

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 2/63



In Graduate School: SML

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 3/63



In Graduate School: OCaml

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 4/63



At Harvard: C

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 5/63



At Sun Microsystems: Java/Scala

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 6/63



At Sun Microsystems: Java/Scala

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 7/63



JavaScript

Traditional scripting language

ECMAScript language specification

Java-style syntax, prototype-based, functions as values

Dynamically typed language
“Any type can be converted to any other reasonable type”

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 8/63



Issues with JavaScript

No module system

No user-defined types

Unintuitive type conversions
“A scripting language should never throw an exception
[the script should just continue]” (Rob Pike, Google)

Dynamic updates of webpage contents via HTML/DOM
(Document Object Model) interface

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 9/63



JavaScript Web Applications Everywhere

JavaScript web application: Samsung Smart TV

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 10/63



JavaScript Web Applications Everywhere

JavaScript web application: Tizen Platform

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 11/63



Analyzing JavaScript

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 12/63



Analyzing JavaScript

Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE:
Formal specification and implementation of a scalable analysis framework for EC-
MAScript (FOOL’12)

Seonghoon Kang and Sukyoung Ryu. Formal specification of a JavaScript module
system (OOPSLA’12)

Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the with statement in
JavaScript: Removing with statements in JavaScript applications (DLS’13)

WaiTing Cheung, Sukyoung Ryu, and Sunghun Kim. Development nature matters:
An empirical study of code clones in JavaScript applications (EMSE’15)

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 13/63



Analyzing JavaScript Web Applications

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 14/63



Analyzing JavaScript Web Applications

Changhee Park and Sukyoung Ryu. Scalable and precise static analysis of
JavaScript applications via loop-sensitivity (ECOOP’15)

Changhee Park, Sooncheol Won, Joonho Jin, and Sukyoung Ryu. Static analysis of
JavaScript web applications in the wild via practical DOM modeling (ASE’15)

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 15/63



Analyzing JavaScript Web Applications in the
Wild

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 16/63



Analyzing JavaScript Web Applications in the
Wild

SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEWAPI: Web
API misuse detector for web applications (FSE’14)

Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. Practically tunable
static analysis framework for large-scale JavaScript applications (ASE’15)

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 17/63



Analyzing JavaScript Web Applications in the
Wild (Mostly) Statically

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 18/63



Analyzing JavaScript

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 19/63



Analyzing JavaScript Web Applications

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 20/63



Analyzing JavaScript Web Applications in the
Wild

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 21/63



Analyzing JavaScript Web Applications in the
Wild (Mostly) Statically

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 22/63



SAFEWAPI: SAFE for Web Apps with Web APIs

Web APIs specified in Web IDL

Automatic modeling of platform-generated objects

Automatic modeling of API functions

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 23/63



SAFEWAPI: SAFE for Web Apps with Web APIs

Web APIs specified in Web IDL

Automatic modeling of platform-generated objects

Automatic modeling of API functions

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 23/63



Analyzing JavaScript Web Applications in the
Wild FSE’14

Model platform APIs written in IDLs including Web IDL

by automatic modeling from Web APIs

to analyze real-world web applications interacting with
platform libraries

function successCB(calendars) {

calendars[0].foo;

}

var bar = "EVEN";

webapis.calendar.getCalendars(

bar, successCB);

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 24/63



How?

Compare API function requirements and analysis results

Exception handling

Number of arguments

Types of arguments

Callback function calls

. . .

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 25/63



How?—Types

JavaScript values vs Web IDL types

JavaScript types
Undefined, Null, Boolean, String, Number, Object

Web IDL types
interface, dictionary, enumeration, union, user-defined
types, . . .

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 26/63



How?—Types

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 27/63



How?—Functions

Mockup values and call flows

Return values from API functions

Argument values for callback functions

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 28/63



How?—Functions: Abstract Type Values

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 29/63



How?—Functions: Callback Flows

Callback function calls with abstract type values returning
abstract type values

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 30/63



Implementation

Automatic extraction of APIs from API specifications

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 31/63



Implementation

Automatic modeling of types in APIs into the analysis heap

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 32/63



Implementation

Automatic modeling of callback function calls

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 33/63



Implementation

Automatic detection of API misuses

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 34/63



Analyzing JavaScript Web Applications in the
Wild (Mostly) Statically

http://safe.kaist.ac.kr

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 35/63



Analyis of Android Hybrid Applications

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 36/63



Many Applications for Multiple Platforms

Many mobile platforms out there.

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 37/63



Many Applications for Multiple Platforms

Many mobile platforms out there.

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 38/63



Many Applications for Multiple Platforms

To support multiple platforms with native applications,

need to implement one application per platform;

need to repeat application development multiple times.

Web applications cannot use device features.

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 39/63



Hybrid Applications for Multiple Platforms

Hybrid applications could be one solution.

Both HTML5 code (HTML, CSS, and JavaScript) and
native device features, such as a camera or accelerometer.

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 40/63



Hybrid Applications in Android

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 41/63



Hybrid Applications in Android

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 42/63



Hybrid Applications in Android

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 43/63



Hybrid Applications for Multiple Platforms

Among 1,402,894 (1,186,488 free) Android applications from
PlayDrone1, we downloaded and decompiled

151 Android applications

56 (out of 151) hybrid applications

47 (out of 56) using addJavascriptInterface

13 (out of 56) using Apache Cordova

1“A Measurement Study of Google Play” Nicolas Viennot, Edward Garcia, and
Jason Nieh.
http://www.cs.columbia.edu/~nieh/pubs/sigmetrics2014_playdrone.pdf

https://github.com/nviennot/playdrone

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 44/63

http://www.cs.columbia.edu/~nieh/pubs/sigmetrics2014_playdrone.pdf
https://github.com/nviennot/playdrone


Problems with Hybrid Applications

One malware for multiple platforms!

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 45/63



Problems with Hybrid Applications in Android

One malware for multiple platforms!

Silent misbehaviors due to API misuse

Use of void results from Java methods in JS
Passing values of incompatible types between Java & JS
Wrong number of arguments to Java methods from JS

Private data leakage between Java & JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 46/63



Problems with Hybrid Applications in Android

One malware for multiple platforms!

Silent misbehaviors due to API misuse

Use of void results from Java methods in JS
Passing values of incompatible types between Java & JS
Wrong number of arguments to Java methods from JS

Private data leakage between Java & JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 47/63



Problems with Hybrid Applications in Android

One malware for multiple platforms!

Silent misbehaviors due to API misuse

Use of void results from Java methods in JS
Passing values of incompatible types between Java & JS
Wrong number of arguments to Java methods from JS

Private data leakage between Java & JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 48/63



Use of void from Java in JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 49/63



Incompatible Types between Java & JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 50/63



Wrong Number of Args between Java & JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 51/63



Private Data Leakage between Java & JS

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 52/63



Analyis of Android Hybrid Applications

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 53/63



Analysis of Android Applications

Impl. Inter-App Inter-Comp Views Lifecycle

Droidel2 WALA 3 3
SCanDroid WALA 3 3
FlowDroid Soot 3
DroidSafe Soot 3 3 3
GATOR Soot 3 3 3

SmartDroid hybrid 3 3
ComDroid 3

Epicc Soot 3 3
Apposcopy Soot 3

ScanDal, CHEX, LeakMiner, AndroidLeaks, · · ·
TaintDroid, CopperDroid, Aurasium, DroidScope, · · ·

2“Droidel: A General Approach to Android Framework Modeling” Sam
Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang.
https://www.cs.colorado.edu/%7Esabl4745/papers/droidel.pdf

https://github.com/cuplv/droidel

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 54/63

https://www.cs.colorado.edu/%7Esabl4745/papers/droidel.pdf
https://github.com/cuplv/droidel


Analysis of Android Hybrid Applications

Implicit inter-language control flows

Different types, values, and semantics in 2 languages

Lack of documentation

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 55/63



Analysis of Android Hybrid Applications

Implicit inter-language control flows

Android semantics by Droidel and other tools
Hybrid semantics by modeling inter-language flows

Different types, values, and semantics in 2 languages

WALA’s cross language support
Pointer-based analysis for Java & field-based for JS

Lack of documentation

Web docs, blogs, Dalvik VM code, and experiments

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 56/63



Implicit Inter-Language Control Flows

Android Java ⇒ JavaScript

WebView.loadUrl("javascript:request();")

WebView.loadUrl is usually for loading a given URL.

When the prefix of a string argument of
WebView.loadUrl is “javascript:”, it acts like the
eval function.

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 57/63



Implicit Inter-Language Control Flows

JavaScript ⇒ Android Java

WebViewClient.shouldOverrideUrlLoading

WebChromeClient.onJsPrompt

WebView.addJavascriptInterface

(from hybrid applications developed in the Cordova framework)

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 58/63



Type Compatibility (by Experiments)

JavaScript ⇒ Android Java: function argument types

int float String boolean Object Array

Null 7(null) 7(null) 7(null) 7(null) 7(null) 7(null)
Undefined 7 7 7("undefined") 7 7 7
Number 3 3 3(type conversion) 7(false) 7(null) 7(null)
Boolean 7(0) 7(0) 3(type conversion) 3 7(null) 7(null)
String 7(0) 7(0) 3 7(false) 7(null) 7(null)
Object 7(0) 7(0) 7("undefined") 7(false) 7(null) 7(null)
Array 7(0) 7(0) 7("undefined") 7(false) 7(null) <

< = 3 if the Array element type is one of primitive types;
null if the Array element type is Object;
0 if the Array element type is int or float;
false if the Array element type is boolean; or
"undefined" if the Array element type is String.

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 59/63



Type Compatibility (by Experiments)

Android Java ⇒ JavaScript: function return types

int float String boolean Object Array

JavaScript 3 3(inexact) 3 3 7({}) 7(undefined)

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 60/63



HybriDroid

Soundy analysis framework for Android hybrid applications

Support for partial but most implicit inter-language flows
backed by APIs, blogs, and Dalvik VM source code

Support for partial but most type compatibility
backed by experiments with trials & errors

Implementation on top of WALA

https://github.com/SunghoLee/WALA/tree/master/HybriDroid/src/kr/

ac/kaist/hybridroid/callgraph

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 61/63

https://github.com/SunghoLee/WALA/tree/master/HybriDroid/src/kr/ac/kaist/hybridroid/callgraph
https://github.com/SunghoLee/WALA/tree/master/HybriDroid/src/kr/ac/kaist/hybridroid/callgraph


HybriDroid

First tool to analyze Android hybrid applications

Prototype implementation of detecting API misuse and
private data leakage

Work in progress

Experiments with real-world hybrid applications
Support for more Android specific semantics

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 62/63



Questions ?

Sukyoung Ryu
sryu.cs@kaist.ac.kr

Sukyoung Ryu — Analyzing JavaScript Web Applications in the Wild (Mostly) Statically 63/63


