
Reasoning about consistency
choices in distributed systems

Hongseok Yang
University of Oxford

Joint work with Alexey Gotsman (IMDEA, Spain), Carla Ferreira
(U Nova Lisboa), Mahsa Najafzadeh, Marc Shapiro (INRIA)

Global-scale Internet service

Geo-replicated databases

• Every data centre stores a complete replica of data

• Purpose: Minimising latency. Fault tolerance.

Geo-replicated databases

• Every data centre stores a complete replica of data

• Purpose: Minimising latency. Fault tolerance.

Geo-replicated databases

✘

• Every data centre stores a complete replica of data

• Purpose: Minimising latency. Fault tolerance.

Weakly consistent DBs

✘

First update. Propagate later.

{(A,4)}

{(A,4)}

{(A,4)}

Weakly consistent DBs
cart.rem(A,2)
cart.read() : {A}

✘{(A,4)}

{(A,4)}

{(A,2)}

First update. Propagate later.

Weakly consistent DBs
cart.rem(A,2)
cart.read() : {A}

✘{(A,4)}

{(A,4)}

{(A,2)}

First update. Propagate later.

Weakly consistent DBs
cart.rem(A,2)
cart.read() : {A}

✘{(A,4)}

{(A,2)}

{(A,2)}

First update. Propagate later.

Weakly consistent DBs
cart.rem(A,2)
cart.count(A): 4

✘{(A,4)}

{(A,2)}

{(A,2)}

Issue 1: Anomalies

First update. Propagate later.

Weakly consistent DBs
cart.rem(A,2)
cart.count(A): 4

✘{(A,0)}

{(A,2)}

{(A,2)}

Issue 2: Conflicting updates

cart.remAll(A)

First update. Propagate later.

Weakly consistent DBs
cart.rem(A,2)
cart.count(A): 4

✘{(A,0)}

{(A,2)}

{(A,2)}

cart.remAll(A)

remAll(A)

rem(A,2)

First update. Propagate later.

Issue 2: Conflicting updates

How to develop correct programs running on
top of weakly consistent distributed databases?

How to develop correct programs running on
top of weakly consistent distributed databases?

1. Strengthen consistency selectively.
2. Use rely-guarantee reasoning.

How to develop correct programs running on
top of weakly consistent distributed databases?

1. Strengthen consistency selectively.
2. Prove the correctness of a program.

Simple bank account

class account {
 // invariant: amount >= 0
 var amount = 0

 def query() = { return amount }

 def inc() = {
 amount = amount+1; return true
 }

 def dec() = {
 if (amount > 0) {
 amount = amount-1; return true
 }
 else { return false }
 }
}

Distributed bank account

class account {
 // invariant: amount >= 0
 var[dis] amount = 0

 def query() = { return (amount, (a)=>a) }

 def inc() = {
 amount = amount+1; return (true, (a)=>a+1)
 }

 def dec() = {
 if (amount > 0) {
 amount = amount-1; return (true, (a)=>a-1)
 }
 else { return (false, (a)=>a) }
 }
}

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a—

a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++

a—

a— skip

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a— a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a— a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a— a—

How to write correct prog.?

1. Strengthen consistency selectively.
2. Prove the correctness of a program.

Causal consistency

• Message delivery preserves the dependency
of events.

Axiom: HB is transitive.

dec()

query()

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a— a—

a++

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

dec()

query()

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a— a—

a++

Not causally consistent.

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

use causality

class account {
 // invariant: amount >= 0
 var[dis] amount = 0

 def query() = { return (amount, (a)=>a) }

 def inc() = {
 amount = amount+1; return (true, (a)=>a+1)
 }

 def dec() = {
 if (amount > 0) {
 amount = amount-1; return (true, (a)=>a-1)
 }
 else { return (false, (a)=>a) }
 }
}

Token system

• (T, 💔) where 💔 is a symmetric rel. on T.

• Examples:

1. T = {lock}, 💔 = {(lock,lock)}

2. T = {rd,wr}, 💔 = {(rd,wr), (wr,wr), (wr,rd)}

On-demand consistency
using a token system (T, 💔)

• Each operation acquires a set of tokens.

• Operations with conflicting tokens cannot
be run concurrently.

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a— a—

a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a— a—

{lock}

{lock}{}

{}

T = {lock}
💔 = {(lock, lock)}

a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a— a—

{lock}

{lock}{}

{}

T = {lock}
💔 = {(lock, lock)}

a—

dec()

query()

[Q] What cannot be the result of query()?
(a) 0 (b) -1 (c) -2 (d) all possible

Bob
in UK

Alice
in Korea

inc() dec()

Carol
in USA

a++

a++ a— a—

{lock}

{lock}{}

{}

T = {lock}
💔 = {(lock, lock)}

a—

skip

use causality

class account {
 // invariant: amount >= 0
 var[dis] amount = 0
 use-token-system({lock},{(lock,lock)})

 def query() with {} =
 { return (amount, (a)=>a) }

 def inc() with {} = {
 amount = amount+1; return (true, (a)=>a+1)
 }

 def dec() with {lock} = {
 if (amount > 0) {
 amount = amount-1; return (true, (a)=>a-1)
 }
 else { return (false, (a)=>a) }
 }
}

How to write correct prog.?

1. Strengthen consistency selectively.
2. Prove the correctness of a program.

Our proof rule

• Based on rely-guarantee.

• Incorporates guarantees from causal and
on-demand consistency.

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .
. . .

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .
. . .

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .
. . .

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .
. . .

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .

T⊥ = {𝝉 | ∄𝝉’∈T. (𝝉, 𝝉ʹ) ∈ 💔}

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .

I = { σ | 0 ≤ σ }
G0 = {(σ, σ’) | σ ≤ σ’}
G1(lock) = {(σ, σ’) | 0 ≤ σ’ ≤ σ}

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .

I = { σ | 0 ≤ σ }
G0 = {(σ, σ’) | σ ≤ σ’}
G1(lock) = {(σ, σ’) | 0 ≤ σ’ ≤ σ}

dec()

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .
{}

{lock}

I = { σ | 0 ≤ σ }
G0 = {(σ, σ’) | σ ≤ σ’}
G1(lock) = {(σ, σ’) | 0 ≤ σ’ ≤ σ}

dec()

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .

I = { σ | 0 ≤ σ }
G0 = {(σ, σ’) | σ ≤ σ’}
G1(lock) = {(σ, σ’) | 0 ≤ σ’ ≤ σ}

dec()

{}

{lock}

G*0

G0 ∪ G1(lock)

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .

I = { σ | 0 ≤ σ }
G0 = {(σ, σ’) | σ ≤ σ’}
G1(lock) = {(σ, σ’) | 0 ≤ σ’ ≤ σ}

dec()

{}

{lock}

G*0

G0 ∪ G1(lock)

To prove that I is an invariant

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

. . .

. . .

I = { σ | 0 ≤ σ }
G0 = {(σ, σ’) | σ ≤ σ’}
G1(lock) = {(σ, σ’) | 0 ≤ σ’ ≤ σ}

dec()

{}

{lock}

G*0

G0 ∪ G1(lock)if 0 < σ then σ’-1 else σ’

What if no on-demand
consistency?

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

What if no on-demand
consistency?

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

G*

G

What if no causality?

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

G*

G

What if no causality?

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �
init

2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0
. (� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
)

=) (�

0
,F

e↵

o

(�)(�

0
)) 2 G0 [G(F

tok

o

(�))

Exec(T ,F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =

(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T

G(⌧) and
T

?
= {⌧ | ⌧ 2 Token ^ ¬9⌧

0
2 T. ⌧ ./ ⌧

0
}. We denote by R

⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)

denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �

init

(condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F

e↵

o

(�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r

0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�

0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �

0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�

0
. (�,�

0
2 I =) F

e↵

o

(�)(�

0
) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �

0 is a tall order. In the bank account
example, both � = 100 and �

0
= 0 satisfy the integrity invari-

ant (5). Then F

e↵

withdraw(100)(�)(�
0
) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [25]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �

0 of another replica r

0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o

(�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o

(�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �

0 of r

0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F

tok

o

(�))

?
).

Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �

init

satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�

0
) | 0 �

0
< �};

G0 = {(�,�

0
) | 0 � �

0
}.

(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�

0 satisfying the premiss of S3:

� 2 I ^ (�,�

0
) 2 (G0 [G((F

tok

o

(�))

?
))

⇤
.

Since F

tok

o

(�) = {⌧}, we have that (F

tok

o

(�))

?
= ;. Thus,

(�,�

0
) 2 G

⇤
0. This and � 2 I imply that

0 � �

0
. (13)

If � < a, then F

e↵

o

(�)(�

0
) = �

0. Furthermore, �0
� 0 by

(13). Thus, (�0
,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
) 2 G0, which implies the

conclusion of S3.
If � � a, then F

e↵

o

(�)(�

0
) = �

0
� a. Since � �

0, by (13) we
have �

0
� a. Thus, (�0

,F

e↵

o

(�)(�

0
)) = (�

0
,�

0
� a) 2 G({⌧}),

which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧

c

such that ⌧
c

./ ⌧

c

, but ⌧
c

6./ ⌧

c

0 for another account
c

0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-

6

σ’ ∈ I

Feff(σ)(σ’) ∈ Io

