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Goal:

  Support for behavioral variations  depending on  
  the dynamic context of execution

Example: Mobile email app

Context-Oriented Programming (COP)
Language [Costanza, Hirshfeld DLS05]
[Hirschfeld, Costanza, Nierstrasz JOT08]

When network is fast
inline images are shown

When network is slow
no images are shown
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Common COP language features
● Layer

● A unit of behavioral variations, consisting of 
partial method definitions for multiple classes

● (Loose) correspondence to contexts
● A unit of cross-cutting modularity

● Dynamic layer activation
● To change the behavior of a set of objects at 

the same time
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Dynamic Layer Activation in COP
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Dynamic Layer Activation in COP
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● Layer activation 
changes behavior of 
objects that have been 
already instantiated

● Partial methods can call 
the original behavior by 
proceed()
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This Talk
● Quick tour on JCop [Appeltauer+], a specific 

implementation of COP on top of Java
● With a more concrete example
● (Comparison with AOP using pointcut/advice)

● Foundations for COPL
● (Operational) Semantics
● Type System
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Example: Telecom simulation
(adapted from AOP example)

● Class Conn to represent connection between 
two Customers
● complete() when a connection has been 

established
● drop() when the customers are disconnected

● Behavioral variations to consider
● Recording the lengths of conversations
● Billing
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Base Program
class Conn { // Connection
  Conn(Customer a, Customer b) { … }
  void complete() { … } 
  void drop() { … }
    // details are not important ...
}

Conn simulate() {
  Customer robert = …, hidehiko = …;
  Conn c = new Conn(robert, hidehiko);
                 // Robert calls Hidehiko
  c.complete();  // Hidehiko accepts
  c.drop();      // and hangs up
  return c;
}
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Layer for Measuring Time
layer Timing {
  Timer timer = …;
  void Conn.complete(){ proceed(); timer.start();}
  void Conn.drop(){ timer.stop(); proceed(); }
  int Conn.getTime() { return timer.getTime(); }
}

● The two methods in Conn are modified by 
partial method definitions to operate the timer 
● The original behavior is represented by proceed()

● getTime() is newly introduced
● but also called “partial” method
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Layer Activation with with

● with block to activate a layer
● Activation is effective even in methods 

invoked inside the block
● A layer instance has to be created

● Layer instances are also first-class objects

with (new Timing()) {  // layer activation!
  Conn c = simulate();
  System.out.println(c.getTime());
}
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Layer for Billing
layer Billing {
  void Conn.drop() { proceed(); charge(); }
  void Conn.charge() { … getTime(); … }
}

with (new Timing()) {
  with (new Billing()) {
    Connection c = simulate();
} }

● Recently activated layer has priority
● drop() will stop the timer, hang the call, and 

charge
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Not in this example, but...
● One layer can contain partial methods 

belonging to different classes
● c.f. Mixin layers [Smaragdakis&Batory 98]

● super() is also supported
● Layer inheritance/subtyping
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Layer Inheritance/Subtyping
● Implementation of different billing policies, 

switched by run-time conditions
abstract layer AbsBilling {
  void Conn.drop();
  void Conn.charge();
}
layer Billing1 extends AbsBilling { … } 
layer Billing2 extends AbsBilling { … } 

AbsBilling b =
  some_cond ? new Billing1():new Billing2();

with(b) { … }
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Very rough Comparison with PA-
style AOP

COP AOP
Unit of behavior partial meth. advice

Oblivious? No Yes

Join points Meth. exec. Many kinds

Pointcut cflow +
execution

Many kinds
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Some Foundational Questions
● What is the semantics of method invocations?

● What happens when the same layer is activated 
more than once?

● How do proceed, super, and with interact with 
each other?

● How can types prevent NoSuchMethodError?
● Object interface can change dynamically!
● Only overriding partial methods can proceed
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This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations for COPL

● (Operational) Semantics
● Type System
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A core calculus of COP: ContextFJ
[Hirschfeld, I., Masuhara FOAL11]

ContextFJ = Featherweight Java [I.,Pierce,Wadler'99]

 + partial methods

 + proceed(), super()

 + with expressions

 - layers are global and second-class

 - no layer inheritance
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ContextFJ<:
[I., Inoue APLAS'15]

ContextFJ<: = Featherweight Java

 + partial methods

 + proceed(), super()

 + with expressions

+ first-class layers (w/o fields)

+ layer inheritance

+ layer subtyping
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Syntax (1/2)

T ::= C | L                                                    types
CL ::= class C < D { ~T ~f; ~M }               classes
LA ::= layer L < L { ~PM; }                          layers
M ::= T m(~T ~x){ return e; }                  methods
PM ::= T C.m(~T ~x){ return e; }    partial meth.
e ::= x | e.f | e.m(~e) | new T(~e)      expressions
    |   with e e                               layer activation
    |   proceed(~e)                              proceed call
    |   super.m(~e)                                  super call

“~” for 
sequences
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Syntax (2/2)

ContextFJ program: (CT, LT, e)

● Class table: CT(C) = CL

● Layer table: LT(L) = LA

● Main expression: e
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C1

C2

C3

L2L1
C1

C2

C3

C1

C2

C3

Semantics of 
Method Dispatch
w/o Layer Inheritance

with (new L1()) {
  with (new L2()) {
    c3.m(…);
} }
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Semantics with Layer Inheritance
● “3D” dispatching
● Each layer can be thought of as the result of 

(possibly overriding) composition of 
superlayers

L1

L2

C      D
E      F

C      D
E      F

C     D

E     F
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Lookup function: mbody

mbody(m,C,~L1,~L2) = ~x.e in D, ~L3

● “Body of method m in C is e with params ~x”
● ~L2 is the list of activated layers
● C, ~L1 denote the currently focused position

● Acting like a cursor
● D, ~L3 denote where ~x.e is found
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Reduction: ~L ├ e → e'

● “e reduces to e' under activated layers ~L”
● Instances from the same layer are not really 

distinguished (because there are no states)
● e.g,

● Timing├ new Conn(...).drop()
→  new Conn(...).timer.stop(); proceed()

● Timing; Billing├ new Conn(...).drop()
 → proceed(); charge()

– … actually, proceed is replaced at this point (see next 
slides)
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Reduction rule for layer activation
remove(L,~L) = ~L'    ~L';L ├ e → e'

~L ├ with L e → with L e'

● The body e is reduced under the context 
where L is added
● Activated layer L always comes at the top

– Even when it's already been activated

Timing ├ 
   with Billing (new Conn(...).drop())
  → with Billing (proceed(); charge())
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Run-time expression to deal with
proceed and super

e ::= … | new C<D,~L1,~L2>(~v)

● Essentially new C(~v).m(~e)

● Annotation <D,~L1,~L2> remembers
● where method lookup starts next time (D, ~L1)

● what layers have been activated (~L2)

Timing; Billing├ new Conn(...).drop() → 
 new Conn<Conn,Timing,(Timing;Billing)>
   (...).drop();
 charge()
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Reduction Rules
for Method Invocation

~L├ new C(~v)<C,~L,~L>.m(~w) → e'

~L├ new C(~v).m(~w) → e' 

mbody(m, D, ~L1, ~L2) = ~x.e in E, (~L3;L)
class E < F 

~L4├ new C(~v)<D,~L1,~L2>.m(~w) → 
    [                 / this,
                       / ~x,
                                                  / proceed,
                                                  / super       ]  e

     new C(~v)
     ~w            
     new C<E, ~L3, ~L2>(~v).m
     new C<F, ~L2, ~L2>(~v)    
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Reduction Rules
for Method Invocation

~L├ new C(~v)<C,~L,~L>.m(~w) → e'

~L├ new C(~v).m(~w) → e' 

mbody(m, D, ~L1, ~L2) = ~x.e in E, (~L3;L)
class E < F 

~L4├ new C(~v)<D,~L1,~L2>.m(~w) → 
    [                 / this,
                       / ~x,
                                                  / proceed,
                                                  / super       ]  e

Invocation on an “unannotated” object
is affected by currently activated layers ~L

     new C(~v)
     ~w            
     new C<E, ~L3, ~L2>(~v).m
     new C<F, ~L2, ~L2>(~v)    
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This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations for COPL

● (Operational) Semantics
● Type System

– To prevent “NoSuchMethodError” including dangling 
proceed calls
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Overriding partial method

“Baseless” partial method,
which can dynamically change
the object interface!

“Sounds like an old problem. 
What is a challenge?”

● Object interfaces can change as layers are 
(de)activated!



  40

Key Idea (1/2)

Approximating activated layers at each program 
point
● With the help of explicit “requires” 

declarations to specify inter-layer dependency
● Static analysis could dispense with such explicit 

declarations, though



  41

Key Idea (2/2)

Two kinds of substitutability for layers
● When one layer L1 requires layer L2, does a 

sublayer of L2 can satisfy L1's requirement?
● When is it safe to pass an instance of a layer to 

where a supertype is expected?

should be distinguished
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Telecom example, revisited

● For charge() in Billing to work, baseless 
partial method getTime() defined in Timing 
should be active beforehand

class Conn {
  Conn(Customer a, Customer b) { … }
  void complete() { … }
  void drop() { … }
}

layer Timing {
  Timer Conn.timer;
  void Conn.complete() { proceed(); timer.start(); }
  void Conn.drop() { timer.stop(); proceed(); }
  int Conn.getTime() { return timer.getTime(); }
}

layer Billing                  {

  void Conn.drop(){ proceed(); charge(); }

  void Conn.charge(){ … getTime(); … }
}
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class Conn {
  Conn(Customer a, Customer b) { … }
  void complete() { … }
  void drop() { … }
}

layer Timing {
  Timer Conn.timer;
  void Conn.complete() { proceed(); timer.start(); }
  void Conn.drop() { timer.stop(); proceed(); }
  int Conn.getTime() { return timer.getTime(); }
}

layer Billing                  {

  void Conn.drop(){ proceed(); charge(); }

  void Conn.charge(){ … getTime(); … }
}

Telecom example, revisited

● For charge() in Billing to work, baseless 
method getTime() defined in Timing should 
be active beforehand

● In other words, Billing requires Timing

requires Timing
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Meaning of requires

When layer L requires L
1
, ..., L

n

● All of L
1
, ..., L

n
 must have been already 

activated (in any order) before activating L
● Partial method in L can invoke methods 

defined in any of L
1
, ..., L

n
 (or base class)

● Partial method m in L can proceed when m is 
defined in any of L

1
, ..., L

n
 (or base class)
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Type Judgment              

“Under set Λ of activated layers and type env. Γ, 
exp e is given type C”

● {}; c: Conn  ├ c.getTime() : int

● {Timing}; c: Conn  ├ c.getTime() : int

● {}; c: Conn├ with (new Timing())c.getTime() : int

● {}; c: Conn  ├ with (new Billing())c.drop() : void

● {Timing}; c: Conn
          ├ with (new Billing()) c.drop() : void

Λ; Γ├ e : TΛ; Γ├ e : T
Coeffect system?
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Main Typing Rules
● Typing rule for method invocation

● Typing rule for layer activation

  Λ; Γ ├ e
0
 : C

0
mtype(m,C

0
,Λ) =  ~T → T

0

Λ; Γ ├ ~e : ~S ~S <: ~T

Λ; Γ ├ e
0
.m(~e) : T

0

                                   Λ; Γ├ e1 : L Λ {∪ L}; Γ├ e2 : T

Λ; Γ├ with e1 e2 : T
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Inheritance and requires
● Sublayer can't require fewer layers than its 

parent
● Otherwise, requirement by inherited partial 

methods may be invalidated
● It seems natural to allow a sublayer to 

require more layers ...
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…Or, maybe not!

● The type system seems to always allow 
with(b) (if AbsBilling requires no layer)

● But, what if Billing2 requires more layers 
than AbsBilling?
● At run time, dependecy is broken!!

AbsBilling b =
  some_condition ? new Billing1():new Billing2();

with(b) { … }
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Our Solution: 
Two subtyping rels for layer types
● Weak subtyping:  reflexive transitive closure 

of extends
● Normal subtyping: reflexive transitive 

closure of extends with invariant requires 
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Main Typing Rules, revisited
● Typing rule for method invocation

● Typing rule for layer activation

  Λ; Γ ├ e
0
 : C

0
mtype(m,C

0
,Λ) =  ~T → T

0

Λ; Γ ├ ~e : ~S ~S <: ~T

Λ; Γ ├ e
0
.m(~e) : T

0

L req Λ' Λ <:
w
 Λ' Λ; Γ├ e1 : L Λ {∪ L}; Γ├ e2 : T

Λ; Γ├ with e1 e2 : T
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Other notable features
● Checking correct method overriding requires 

the whole program
● Accidental conflict between partial layers
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 Type Soundness
● Thm. (Type Soundness):

● If├ e : T and ├ e →* e'  (normal), then  e' = new 
S(~v) and S <: T

● Proof by showing Preservation and Progress
● Induction is trickier than you might expect
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Related Work
● Type System for COP [Clarke & Sergey@COP'09]

● ContextFJ
– proposed independently of us
– no inheritance, subtly different semantics

● Set of method signatures as method-wise 
dependency information
– Finer-grained specification

● No proof of soundness
– In fact, the type system turns out to be flawed 

(personal communication), due to without
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Related Work, contd.
● Type Systems for Mixins [Bono et al., Flatt et al., 

Kamina&Tamai, etc.]

● Interfaces of classes to be composed
– Structural type information

● Composition is fixed once an object is instantiated
● A similar idea works (to some extent ;-) also for 

more dynamic composition as in COP
● Types for FOP, DOP
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Related Work, contd.^2
● Typestate checking [Strom&Yemini'86, etc.]

● Checking state transition for computational 
resources (such as files and sockets)

● Layer configuration can be considered a state
● Resources are first-class whereas layers are 

global
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Conclusion
● Dynamic layer composition for describing 

context-dependent behavioral change 
concisely and modularly

● Core calculus ContextFJ<: for formal 
semantics and type system
● Estimation of (globally) activated layers
● Explicit requires clauses to help typechecking
● Two kinds of subtyping
● (Layer swapping)

● (Implementation will be available)
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Future work
● Interfaces for layers

● Specifying layer names makes your program too 
implementation-specific

● Formal accounts of advanced COP features
● Other activation mechanisms, e.g., in EventCJ 

[Kamina, Aotani, Masuhara AOSD'11]
● More formal connection to coeffects?
● Verification?
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