
 1

Foundations of
Context-Oriented Programming

or
Typing Dynamic Layer Composition

Atsushi Igarashi (Kyoto U.)

joint work with
Robert Hirschfeld (HPI)

Hidehiko Masuhara (U. Tokyo)
Hiroaki Inoue (Kyoto U.)

 2

Goal:

 Support for behavioral variations depending on
 the dynamic context of execution

Example: Mobile email app

Context-Oriented Programming (COP)
Language [Costanza, Hirshfeld DLS05]
[Hirschfeld, Costanza, Nierstrasz JOT08]

When network is fast
inline images are shown

When network is slow
no images are shown

 3

Common COP language features
● Layer

● A unit of behavioral variations, consisting of
partial method definitions for multiple classes

● (Loose) correspondence to contexts
● A unit of cross-cutting modularity

● Dynamic layer activation
● To change the behavior of a set of objects at

the same time

 4

Dynamic Layer Activation in COP

C
+ m1
+ m2

D E
+ m3

F
+ m4

C

D E

F

+ m2

+ m1

+ m5

Base class hiearchy
Layer of partial methods

 5

Dynamic Layer Activation in COP

C
+ m1
+ m2

D E
+ m3

F
+ m4

C

D E

F

+ m2

+ m1

+ m5

Base class hiearchy
Layer of partial methods

● Layer activation
changes behavior of
objects that have been
already instantiated

● Partial methods can call
the original behavior by
proceed()

 6

This Talk
● Quick tour on JCop [Appeltauer+], a specific

implementation of COP on top of Java
● With a more concrete example
● (Comparison with AOP using pointcut/advice)

● Foundations for COPL
● (Operational) Semantics
● Type System

 7

This Talk
● Quick tour on JCop [Appeltauer+], a specific

implementation of COP on top of Java
● With a more concrete example
● (Comparison with AOP using pointcut/advice)

● Foundations for COPL
● (Operational) Semantics
● Type System

 8

Example: Telecom simulation
(adapted from AOP example)

● Class Conn to represent connection between
two Customers
● complete() when a connection has been

established
● drop() when the customers are disconnected

● Behavioral variations to consider
● Recording the lengths of conversations
● Billing

 9

Base Program
class Conn { // Connection
 Conn(Customer a, Customer b) { … }
 void complete() { … }
 void drop() { … }
 // details are not important ...
}

Conn simulate() {
 Customer robert = …, hidehiko = …;
 Conn c = new Conn(robert, hidehiko);
 // Robert calls Hidehiko
 c.complete(); // Hidehiko accepts
 c.drop(); // and hangs up
 return c;
}

 10

Layer for Measuring Time
layer Timing {
 Timer timer = …;
 void Conn.complete(){ proceed(); timer.start();}
 void Conn.drop(){ timer.stop(); proceed(); }
 int Conn.getTime() { return timer.getTime(); }
}

● The two methods in Conn are modified by
partial method definitions to operate the timer
● The original behavior is represented by proceed()

● getTime() is newly introduced
● but also called “partial” method

 11

Layer Activation with with

● with block to activate a layer
● Activation is effective even in methods

invoked inside the block
● A layer instance has to be created

● Layer instances are also first-class objects

with (new Timing()) { // layer activation!
 Conn c = simulate();
 System.out.println(c.getTime());
}

 12

Layer for Billing
layer Billing {
 void Conn.drop() { proceed(); charge(); }
 void Conn.charge() { … getTime(); … }
}

with (new Timing()) {
 with (new Billing()) {
 Connection c = simulate();
} }

● Recently activated layer has priority
● drop() will stop the timer, hang the call, and

charge

 13

Not in this example, but...
● One layer can contain partial methods

belonging to different classes
● c.f. Mixin layers [Smaragdakis&Batory 98]

● super() is also supported
● Layer inheritance/subtyping

 14

Layer Inheritance/Subtyping
● Implementation of different billing policies,

switched by run-time conditions
abstract layer AbsBilling {
 void Conn.drop();
 void Conn.charge();
}
layer Billing1 extends AbsBilling { … }
layer Billing2 extends AbsBilling { … }

AbsBilling b =
 some_cond ? new Billing1():new Billing2();

with(b) { … }

 15

Very rough Comparison with PA-
style AOP

COP AOP
Unit of behavior partial meth. advice

Oblivious? No Yes

Join points Meth. exec. Many kinds

Pointcut cflow +
execution

Many kinds

 16

Some Foundational Questions
● What is the semantics of method invocations?

● What happens when the same layer is activated
more than once?

● How do proceed, super, and with interact with
each other?

● How can types prevent NoSuchMethodError?
● Object interface can change dynamically!
● Only overriding partial methods can proceed

 17

This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations for COPL

● (Operational) Semantics
● Type System

 18

A core calculus of COP: ContextFJ
[Hirschfeld, I., Masuhara FOAL11]

ContextFJ = Featherweight Java [I.,Pierce,Wadler'99]

 + partial methods

 + proceed(), super()

 + with expressions

 - layers are global and second-class

 - no layer inheritance

 19

ContextFJ<:
[I., Inoue APLAS'15]

ContextFJ<: = Featherweight Java

 + partial methods

 + proceed(), super()

 + with expressions

+ first-class layers (w/o fields)

+ layer inheritance

+ layer subtyping

 20

Syntax (1/2)

T ::= C | L types
CL ::= class C < D { ~T ~f; ~M } classes
LA ::= layer L < L { ~PM; } layers
M ::= T m(~T ~x){ return e; } methods
PM ::= T C.m(~T ~x){ return e; } partial meth.
e ::= x | e.f | e.m(~e) | new T(~e) expressions
 | with e e layer activation
 | proceed(~e) proceed call
 | super.m(~e) super call

“~” for
sequences

 21

Syntax (2/2)

ContextFJ program: (CT, LT, e)

● Class table: CT(C) = CL

● Layer table: LT(L) = LA

● Main expression: e

 24

C1

C2

C3

L2L1
C1

C2

C3

C1

C2

C3

Semantics of
Method Dispatch
w/o Layer Inheritance

with (new L1()) {
 with (new L2()) {
 c3.m(…);
} }

 25

Semantics with Layer Inheritance
● “3D” dispatching
● Each layer can be thought of as the result of

(possibly overriding) composition of
superlayers

L1

L2

C D
E F

C D
E F

C D

E F

 26

Lookup function: mbody

mbody(m,C,~L1,~L2) = ~x.e in D, ~L3

● “Body of method m in C is e with params ~x”
● ~L2 is the list of activated layers
● C, ~L1 denote the currently focused position

● Acting like a cursor
● D, ~L3 denote where ~x.e is found

 30

Reduction: ~L ├ e → e'

● “e reduces to e' under activated layers ~L”
● Instances from the same layer are not really

distinguished (because there are no states)
● e.g,

● Timing├ new Conn(...).drop()
→ new Conn(...).timer.stop(); proceed()

● Timing; Billing├ new Conn(...).drop()
 → proceed(); charge()

– … actually, proceed is replaced at this point (see next
slides)

 31

Reduction rule for layer activation
remove(L,~L) = ~L' ~L';L ├ e → e'

~L ├ with L e → with L e'

● The body e is reduced under the context
where L is added
● Activated layer L always comes at the top

– Even when it's already been activated

Timing ├
 with Billing (new Conn(...).drop())
 → with Billing (proceed(); charge())

 32

Run-time expression to deal with
proceed and super

e ::= … | new C<D,~L1,~L2>(~v)

● Essentially new C(~v).m(~e)

● Annotation <D,~L1,~L2> remembers
● where method lookup starts next time (D, ~L1)

● what layers have been activated (~L2)

Timing; Billing├ new Conn(...).drop() →
 new Conn<Conn,Timing,(Timing;Billing)>
 (...).drop();
 charge()

 33

Reduction Rules
for Method Invocation

~L├ new C(~v)<C,~L,~L>.m(~w) → e'

~L├ new C(~v).m(~w) → e'

mbody(m, D, ~L1, ~L2) = ~x.e in E, (~L3;L)
class E < F

~L4├ new C(~v)<D,~L1,~L2>.m(~w) →
 [/ this,
 / ~x,
 / proceed,
 / super] e

 new C(~v)
 ~w
 new C<E, ~L3, ~L2>(~v).m
 new C<F, ~L2, ~L2>(~v)

 34

Reduction Rules
for Method Invocation

~L├ new C(~v)<C,~L,~L>.m(~w) → e'

~L├ new C(~v).m(~w) → e'

mbody(m, D, ~L1, ~L2) = ~x.e in E, (~L3;L)
class E < F

~L4├ new C(~v)<D,~L1,~L2>.m(~w) →
 [/ this,
 / ~x,
 / proceed,
 / super] e

Invocation on an “unannotated” object
is affected by currently activated layers ~L

 new C(~v)
 ~w
 new C<E, ~L3, ~L2>(~v).m
 new C<F, ~L2, ~L2>(~v)

 38

This Talk
● Quick tour on COP language features

● With a more concrete example
● Foundations for COPL

● (Operational) Semantics
● Type System

– To prevent “NoSuchMethodError” including dangling
proceed calls

 39

C
+ m1
+ m2

D E
+ m3

F
+ m4

C

+ m2

+ m1

+ m5

Overriding partial method

“Baseless” partial method,
which can dynamically change
the object interface!

“Sounds like an old problem.
What is a challenge?”

● Object interfaces can change as layers are
(de)activated!

 40

Key Idea (1/2)

Approximating activated layers at each program
point
● With the help of explicit “requires”

declarations to specify inter-layer dependency
● Static analysis could dispense with such explicit

declarations, though

 41

Key Idea (2/2)

Two kinds of substitutability for layers
● When one layer L1 requires layer L2, does a

sublayer of L2 can satisfy L1's requirement?
● When is it safe to pass an instance of a layer to

where a supertype is expected?

should be distinguished

 42

Telecom example, revisited

● For charge() in Billing to work, baseless
partial method getTime() defined in Timing
should be active beforehand

class Conn {
 Conn(Customer a, Customer b) { … }
 void complete() { … }
 void drop() { … }
}

layer Timing {
 Timer Conn.timer;
 void Conn.complete() { proceed(); timer.start(); }
 void Conn.drop() { timer.stop(); proceed(); }
 int Conn.getTime() { return timer.getTime(); }
}

layer Billing {

 void Conn.drop(){ proceed(); charge(); }

 void Conn.charge(){ … getTime(); … }
}

 43

class Conn {
 Conn(Customer a, Customer b) { … }
 void complete() { … }
 void drop() { … }
}

layer Timing {
 Timer Conn.timer;
 void Conn.complete() { proceed(); timer.start(); }
 void Conn.drop() { timer.stop(); proceed(); }
 int Conn.getTime() { return timer.getTime(); }
}

layer Billing {

 void Conn.drop(){ proceed(); charge(); }

 void Conn.charge(){ … getTime(); … }
}

Telecom example, revisited

● For charge() in Billing to work, baseless
method getTime() defined in Timing should
be active beforehand

● In other words, Billing requires Timing

requires Timing

 44

Meaning of requires

When layer L requires L
1
, ..., L

n

● All of L
1
, ..., L

n
 must have been already

activated (in any order) before activating L
● Partial method in L can invoke methods

defined in any of L
1
, ..., L

n
 (or base class)

● Partial method m in L can proceed when m is
defined in any of L

1
, ..., L

n
 (or base class)

 45

Type Judgment

“Under set Λ of activated layers and type env. Γ,
exp e is given type C”

● {}; c: Conn ├ c.getTime() : int

● {Timing}; c: Conn ├ c.getTime() : int

● {}; c: Conn├ with (new Timing())c.getTime() : int

● {}; c: Conn ├ with (new Billing())c.drop() : void

● {Timing}; c: Conn
 ├ with (new Billing()) c.drop() : void

Λ; Γ├ e : TΛ; Γ├ e : T
Coeffect system?

 46

Main Typing Rules
● Typing rule for method invocation

● Typing rule for layer activation

 Λ; Γ ├ e
0
 : C

0
mtype(m,C

0
,Λ) = ~T → T

0

Λ; Γ ├ ~e : ~S ~S <: ~T

Λ; Γ ├ e
0
.m(~e) : T

0

 Λ; Γ├ e1 : L Λ {∪ L}; Γ├ e2 : T

Λ; Γ├ with e1 e2 : T

 47

Inheritance and requires
● Sublayer can't require fewer layers than its

parent
● Otherwise, requirement by inherited partial

methods may be invalidated
● It seems natural to allow a sublayer to

require more layers ...

 48

…Or, maybe not!

● The type system seems to always allow
with(b) (if AbsBilling requires no layer)

● But, what if Billing2 requires more layers
than AbsBilling?
● At run time, dependecy is broken!!

AbsBilling b =
 some_condition ? new Billing1():new Billing2();

with(b) { … }

 49

Our Solution:
Two subtyping rels for layer types
● Weak subtyping: reflexive transitive closure

of extends
● Normal subtyping: reflexive transitive

closure of extends with invariant requires

 50

Main Typing Rules, revisited
● Typing rule for method invocation

● Typing rule for layer activation

 Λ; Γ ├ e
0
 : C

0
mtype(m,C

0
,Λ) = ~T → T

0

Λ; Γ ├ ~e : ~S ~S <: ~T

Λ; Γ ├ e
0
.m(~e) : T

0

L req Λ' Λ <:
w
 Λ' Λ; Γ├ e1 : L Λ {∪ L}; Γ├ e2 : T

Λ; Γ├ with e1 e2 : T

 51

Other notable features
● Checking correct method overriding requires

the whole program
● Accidental conflict between partial layers

 52

 Type Soundness
● Thm. (Type Soundness):

● If├ e : T and ├ e →* e' (normal), then e' = new
S(~v) and S <: T

● Proof by showing Preservation and Progress
● Induction is trickier than you might expect

 68

Related Work
● Type System for COP [Clarke & Sergey@COP'09]

● ContextFJ
– proposed independently of us
– no inheritance, subtly different semantics

● Set of method signatures as method-wise
dependency information
– Finer-grained specification

● No proof of soundness
– In fact, the type system turns out to be flawed

(personal communication), due to without

 69

Related Work, contd.
● Type Systems for Mixins [Bono et al., Flatt et al.,

Kamina&Tamai, etc.]

● Interfaces of classes to be composed
– Structural type information

● Composition is fixed once an object is instantiated
● A similar idea works (to some extent ;-) also for

more dynamic composition as in COP
● Types for FOP, DOP

 70

Related Work, contd.^2
● Typestate checking [Strom&Yemini'86, etc.]

● Checking state transition for computational
resources (such as files and sockets)

● Layer configuration can be considered a state
● Resources are first-class whereas layers are

global

 71

Conclusion
● Dynamic layer composition for describing

context-dependent behavioral change
concisely and modularly

● Core calculus ContextFJ<: for formal
semantics and type system
● Estimation of (globally) activated layers
● Explicit requires clauses to help typechecking
● Two kinds of subtyping
● (Layer swapping)

● (Implementation will be available)

 72

Future work
● Interfaces for layers

● Specifying layer names makes your program too
implementation-specific

● Formal accounts of advanced COP features
● Other activation mechanisms, e.g., in EventCJ

[Kamina, Aotani, Masuhara AOSD'11]
● More formal connection to coeffects?
● Verification?

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 24
	ページ 25
	ページ 26
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52
	ページ 68
	ページ 69
	ページ 70
	ページ 71
	ページ 72

