Viper
A Verification Infrastructure for
Permission-Based Reasoning

Alex Summers, ETH Zurich
Joint work with Uri Juhasz, loannis Kassios,

Peter Miiller, Milos Novacek, Malte Schwerhoff
(and many students)

24t September 2015, Shonan Village Centre

Verification via Automatic Provers

e Last 10 years: rapid progress in
[Frotr:j”d] automatic tools for first-order
logics (SMT solvers, provers)
* Intermediate Verification

generates

| d . -
e Languages: e.g. Boogie and Why
Language * Provide common infrastructures
verified by for building program verifiers
[Back-end] * Many success stories and tools
tool * Microsoft Hypervisor (\VCC)

| Device-drivers (Corral)
[automatic I R4 ..and many more, e.g., Why3,
B X GPUVerify, Spec#, Dafny,

Vericool, Krakatoa, etc....

Permission-Based Reasoning

* Modern program logics for heap
reasoning + concurrency
e e.g.separation logics

* control of ownership/sharing of
partial heaps (heap fragments)

* First-order prover technology
difficult to directly exploit
e Custom verification engines
(usually symbolic execution)
e Lots of work to implement
* Hard to reuse for new work
« .. fewertools available ®

Framing with Permissions

void m(x:C)
requires
ensures

{

this.f := 2;

call increment (x) ; ’?

assert this.f == 2;

Framing with Permissions

* Tackle the problem of void m(x:c) &0
framing by splitting the ZS¥ res 1

ensures

heap into partial heaps

e Method call works on its this.f := 2;

own partial heap call increment (x) ; D ?
— defined by precondition

assert this.f ==

Framing with Permissions

* Tackle the problem of void m(x:c) &0
framing by splitting the ZS¥ res 1

ensures

heap into partial heaps

e Method call works on its this.f := 2;

own partial heap call increment (x) ;
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

Framing with Permissions

* Tackle the problem of void m(x:c) &0
framing by splitting the ZS¥ res 1

ensures

heap into partial heaps

e Method call works on its this.f := 2;

own partial heap call increment (x) ;
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

Framing with Permissions

* Tackle the problem of void m(x:c) &0}
framing by splitting the ~>2°""°°

ensures x.f

heap into partial heaps 1 (frame)

e Method call works on its this.f£ := 2;

own partial heap call increment (x) ;
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

Framing with Permissions

* Tackle the problem of void m(x:c) &0
framing by splitting the ZS¥ res 2

ensures x.f

heap into partial heaps 1 (frame)

e Method call works on its this.i;..:,.::= 2.

own partial heap call increment (x) ;
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

Framing with Permissions

* Tackle the problem of void m(x:c) &0

framing by splitting the ZSTiires 2 |
heap into partial heaps |

* Method call works on its this-ﬁ...f’f: 2;
own partial heap call increment (x);

— defined by precondition
* At each statement

— split current heap into:
e part needed by statement
* |eft-over part (the frame)

assert this.f ==

Framing with Permissions

(frame)

* Tackle the problem of void m(x:c)

framing by splitting the ZS#rs 1

ensures

heap into partial heaps

o
.
.
o
.

o
.
o
S

e Method call works on its L

o
.
.
o
.

own partial heap call increment (x) ;
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

Framing with Permissions

* Tackle the problem of void m(x:c) .« (frame)
, iy requires X.
fram/ng by Spllttlng the ensures ?f

heap into partial heaps

e Method call works on its

own partial heap call increment (x);
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

Framing with Permissions

* Tackle the problem of void m(x:c) &0

framing by splitting the ZeTuires 2| A
heap into partial heaps

* Method call works on its
own partial heap call ig,c’ii:;ment(x);

— defined by precondition
* At each statement

— split current heap into:
e part needed by statement
* |eft-over part (the frame)

assert this.f ==

Framing with Permissions

* Tackle the problem of void m(x:c) &0
framing by splitting the ~~2°°"°° 2 | A

ensures ?

heap into partial heaps

e Method call works on its
own partial heap

— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)

sl

Program +
properties

J

NN

Silver

/

|

Silver
Verifiers

|

|

Automatic
Prover

-

he Viper Project

v
X

We have designed Silver: a new
intermediate verification language

ldea: front-end tools that translate a
problem into a Silver program

We provide (two) Silver Verifiers
 decide problems automatically

The tool infrastructure is called Viper
* in use for several projects (later)

Native support for permissions

Easy to encode many methodologies
e separation logic, dynamic frames,
Invariants, type systems, etc...

Silver: Basic Assertion Language

Based on Implicit Dynamic Frames [Smans et al. "09]

Permission assertions: accessibility predicates acc(e.f)
* exclusive: similarto e.f—_ in separation logics

Expressions e may depend directly on the heap
e e.g.acc(x.f) && x>0

Fractional permissions [Boyland’03], e.g. acc(x.f, 72)
* allow reading (and framing), not writing

Conjunction && is multiplicative for permissions
e e.g.acc(x.f, %5) && acc(x.f, o) = acc(x.f, 1)
e e.g.acc(this.f, 1) && acc(x.f, 1) k& this # x

Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & & c.f == old(c.f) + 1

{
c.f :=c.f +1

}

old(e) evaluates e in the pre-heap of the method call

17

Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & c.f == old(c.f) + 1

{
c.f :=c.f +1

}

method m(this: Ref, x:Ref)
requires acc(this.f) && acc(x.f)
ensures acc(this.f) && acc(x.f) && this.f ==

{
this.f := 2;

increment(x);

assert this.f ==

}

old(e) evaluates e in the pre-heap of the method call

18

Silver primitives: Inhale and Exhale

A statement inhale A means:
e all permissions required by are A gained
* alllogical constraints (e.g. x.f > 0) are assumed
A statement exhale A means:
* check, and remove all permissions required by A
e alllogical constraints (e.g. x.f > 0) are asserted
* any locations to which all permissions is lost are
implicitly havoced (their values are no-longer known)
Can be seen as the permission-aware analogues of
assume/assert statements used in first-order verification
* used to model appropriate permission transfers
* verification semantics for high-level constructs
* e.g. methodcall: exhale pre; inhale post

Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & c.f == old(c.f) + 1

{
c.f :=c.f +1

}

method m(this: Ref, x:Ref)
requires acc(this.f) && acc(x.f)
ensures acc(this.f) && acc(x.f) && this.f =

{
this.f := 2;

2

increment(x);

assert this.f == 2

}

20

Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & c.f == old(c.f) + 1
{
c.f :=c.tf +1

}

method m(this: Ref, x:Ref)
requires acc(this.f) && acc(x.f)
ensures acc(this.f) && acc(x.f) && this.f =

{
this.f := 2;

2

var old f : Int := x.f
exhale acc(x.f)
inhale acc(x.f) & & x.f == old f + 1

assert this.f == 2

21

Example : Encoding Locks

class C {

int|[] data; int count = 0;

monitor invariant acc(this.data) && acc(this.count)

void Foo() {
acquire this;
int 1 = data.length;
while(0 < 1)

invariant acc(this.data)

invariant holds(this);

{ ... ; 1 =1 - 1; }

&& acc (this.count)

count = count + 1; release this;

22

A few powerful Viper features

 Paired assertions [A,B]
e A usedwheninhaled, B used when exhaled

* mismatches: external justification / proof obligations
* Quantification over local state forallrefs[f] x

* non-standard for separation logics (but handy)

Example : Two-state invariants

class C {

int|[] data; int count = 0;

monitor invariant acc(this.data) && acc(this.count)

&& this.count > old(this.count)

void Foo() {
acquire this;
int 1 = data.length;
while(0 < 1)

invariant acc(this.data) && acc(this.count)

invariant holds(this);
{ ... ;, 1 =1 - 1; }

count = count + 1; release this;

24

A few powerful Viper features

 Paired assertions [A,B]

e A usedwheninhaled, B used when exhaled

* mismatches: external justification / proof obligations
* Quantification over local state forallrefs[f] x

* non-standard for separation logics
e State snapshots, labelled “old” expressions

Recursive assertions: predicates

predicate tree(t: Ref) {
t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left))
&& acc(t.right) && acc(tree(t.right))

- Permission to unbounded recursive data structures
- predicate definitions can take any number of parameters

- Predicate instances (e.g. tree(t)) are treated as a
generalisation of permissions (inhaled/exhaled)

- Fold/unfold statements exchange predicate instances
with their bodies (not automatic, due to recursion)

-unfold tree (t) exchangesinstance for body assertion
- fold tree (t) exchanges body for predicate instance

Recursive assertions: functions

predicate tree(t: Ref) {
t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left))
&& acc(t.right) && acc(tree(t.right))

}
function vals(t: Ref): Seq[Int]

requires acc(tree(t))

{
t == null ? Seq[Int]() : unfolding tree(t) in
vals(t.left) ++ Seq(t.val) ++ vals(t.right)
}

- Silver also supports (recursive) functions
- The body of a function is an expression (side-effect-free)
- precondition must provide sufficient permissions to evaluate
- Function invocations only allowed where precondition holds
-e.g.tree(t) && vals(t) == Seq(l,2,3)
- usable in both specifications and statements (pure methods)

27

A few powerful Viper features

Paired assertions [A,B]

e A usedwheninhaled, B used when exhaled

* mismatches: external justification / proof obligations
Quantification over local state forallrefs[f] x
 non-standard for separation logics

State snapshots, labelled “old” expressions

Custom predicates, heap-dependent functions [ECOOP’13]
» fold/unfold for predicates, functions mostly automatic
Custom domains, sets and sequences, quantifiers
Constrainable permissions [VMCAI'13, FTfJP’14]

e Alternative to fractional permissions (angelic amounts)
“Magic wand” support [ECOOP’15]

 Powerful connective from separation logic

Magic Wands
A —k B

describes potential exchange of verification states

Read as a promise: “In any state, if you combine A —k B
with A, then you can exchange them for B”

29

Tree Challenge

Scenario: lteratively traverse a recursively defined tree
(Verification Challenge at VerifyThis@FM’12)

30

Tree Challenge

Scenario: lteratively traverse a recursively defined tree
L Loop invariant: Describe partial data structure

31

Partial Data Structures as Magic Wands
Indirectly describe partial data structure as a promise

A —x

——

32

Partial Data Structures as Magic Wands
Modus-Ponens-like rule makes promise applicable

[) (\
A | && A—*A
\ J \)

Partial Data Structures as Magic Wands
cEA—*B & Vo:-(0’EA =>o0W0o E)

[) (\
A | && A—*K\
\ J \)

Magic Wands in Proofs and Tools

Used in various pen & paper proofs (separation logic)
— Partial data structures
— Usage protocols for data structures (e.g. iterators)
— Synchronisation barriers

Typically* not supported in automatic verifiers
cEA—kB & Vo:-(6’EA = oWo EB)

Entailment of magic wand formulas is undecidable
L Lightweight user guidance to direct verification

* Only exception we are aware of is VerCors; developed in parallel
35

Guidance: Ghost Operations + Specifications

Make a
promise

L 4

L 4
L 4

~ Pass it
-..-“““-

around ~

A—*A package A —k B

Use A —k B
in specifications

NYN

i apply A —kB

36

VerifyThis’12 Challenge Revisited

Scenario: lteratively traverse a recursively defined tree
L Loop invariant: Describe partial data structure

37

Verification of Silver Code (back-ends)

/ Silver code /

/4&
[Carbon] [Silicon]

encodes in

BOOgie queries
(Microsoft)

queries
Z3
(Microsoft)

Verification Symbolic
Condition Execution
Generation

38

Current (and Ongoing) Applications

Java
VerCors

Scala2Silver

: : OpenCL
[Challce25|lver (VerCors)]
Silver /
Chalice (alternative verifier) VerCors (ERC) project
- concurrency verification - Marieke Huisman (UTwente)
- [Leino&Miller’09] (later + Smans) - Java, GPU code, kernel code
Scala (small fragment) Javascript verification

- Philippa Gardner (IC London)
Finite blocking verification
- [Bostrom&Miiller’15] SCION router verification

. , - Adrian Perrig (ETH Zurich)
Automating TaDa logic (W.I.P.)

- [da Rocha Pinto et al.14] [Your tool name here? ©]

Tool Availability and Future Work

Core tools released (open-source) in September 2014:

http://www.pm.inf.ethz.ch/research/viper.html
https://bitbucket.org/viperproject

 we have (public!) issue trackers for known problems
 Some advanced features are in the pipeline (but ask)

Building / supporting new tools by translations into Silver
e SL, dynamic frames, rely-guarantee, type systems

* More-advanced program logics? Weak memory? ...

* Alsointerested in work we cannot encode (yet ...)

A good platform to experiment with and build on ©
* coalesces much formal and practical past research
e users can focus on the aspects relevant to their work

http://www.pm.inf.ethz.ch/research/viper.html

o)

Java
VerCors

Scala2Silver

OpenCL]

Chalice2Sil
[alice2Silver (VerCors)

' ————

. infer additional
Silver /— ter 2cdional | Sample

specifications |

[Carbon] [Silicon]

lencodes in
Boogle queries
(Microsoft)

queries
/3
(Microsoft)

https://bitbucket.org/viperproject

41

