
Viper
A Verification Infrastructure for

Permission-Based Reasoning

24th September 2015, Shonan Village Centre

Alex Summers, ETH Zurich

Joint work with Uri Juhasz, Ioannis Kassios,
Peter Müller, Milos Novacek, Malte Schwerhoff

(and many students)

✔

✘

• Last 10 years: rapid progress in
automatic tools for first-order
logics (SMT solvers, provers)

• Intermediate Verification
Languages: e.g. Boogie and Why

• Provide common infrastructures
for building program verifiers

• Many success stories and tools
• Microsoft Hypervisor (VCC)
• Device-drivers (Corral)
• .. and many more, e.g., Why3,

GPUVerify, Spec#, Dafny,
Vericool, Krakatoa, etc….

Verification via Automatic Provers

Intermediate
Verification
Language

automatic
prover

Back-end
tool

Front-end
tool

generates

verified by

• Modern program logics for heap
reasoning + concurrency
• e.g. separation logics

• control of ownership/sharing of
partial heaps (heap fragments)

• First-order prover technology
difficult to directly exploit
• Custom verification engines

(usually symbolic execution)
• Lots of work to implement
• Hard to reuse for new work
• … fewer tools available 

Permission-Based Reasoning

x.f

y.f
this.f

z.g

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

Framing with Permissions

?

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f

this.f

Framing with Permissions

?

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f

this.f

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f

this.f

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f

this.f

(frame)

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f
 2

this.f

(frame)

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

 2

this.f
x.f

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

2

this.f

x.f

(frame)

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

2

this.f

x.f

 ?

(frame)

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f

 ?
2

this.f

Framing with Permissions

• Tackle the problem of
framing by splitting the
heap into partial heaps

• Method call works on its
own partial heap

– defined by precondition

• At each statement

– split current heap into:

• part needed by statement

• left-over part (the frame)

void m(x:C)

requires

ensures

{

 this.f := 2;

 call increment(x);

 assert this.f == 2;

}

x.f

 ?
2

this.f

Framing with Permissions

• We have designed Silver: a new
intermediate verification language

• Idea: front-end tools that translate a
problem into a Silver program

• We provide (two) Silver Verifiers
• decide problems automatically

• The tool infrastructure is called Viper
• in use for several projects (later)

• Native support for permissions

• Easy to encode many methodologies
• separation logic, dynamic frames,

invariants, type systems, etc…

The Viper Project

Silver

Silver
Verifiers

✔

✘

Automatic
Prover

Program +
properties

• Based on Implicit Dynamic Frames [Smans et al. ’09]

• Permission assertions: accessibility predicates acc(e.f)
• exclusive: similar to e.f↦_ in separation logics

• Expressions e may depend directly on the heap
• e.g. acc(x.f) && x.f > 0

• Fractional permissions [Boyland’03], e.g. acc(x.f, ½)
• allow reading (and framing), not writing

• Conjunction && is multiplicative for permissions
• e.g. acc(x.f, ½) && acc(x.f, ½)  acc(x.f, 1)
• e.g. acc(this.f, 1) && acc(x.f, 1) ⊨ this  x

Silver: Basic Assertion Language

17

old(e) evaluates e in the pre-heap of the method call

field f: Int

method increment(c: Ref)
 requires acc(c.f)
 ensures acc(c.f) && c.f == old(c.f) + 1
 {
 c.f := c.f + 1
 }

method test()
 {
 var x : Ref;
 x := new(); x.f := 1

 increment(x);

 assert x.f == 2
 }

Silver: a tiny example

18

old(e) evaluates e in the pre-heap of the method call

field f: Int

method increment(c: Ref)
 requires acc(c.f)
 ensures acc(c.f) && c.f == old(c.f) + 1
 {
 c.f := c.f + 1
 }

method m(this: Ref, x:Ref)
 requires acc(this.f) && acc(x.f)
 ensures acc(this.f) && acc(x.f) && this.f == 2
 {
 this.f := 2;

 increment(x);

 assert this.f == 2
 }

Silver: a tiny example

• A statement inhale A means:
• all permissions required by are A gained
• all logical constraints (e.g. x.f > 0) are assumed

• A statement exhale A means:
• check, and remove all permissions required by A
• all logical constraints (e.g. x.f > 0) are asserted
• any locations to which all permissions is lost are

implicitly havoced (their values are no-longer known)
• Can be seen as the permission-aware analogues of

assume/assert statements used in first-order verification
• used to model appropriate permission transfers
• verification semantics for high-level constructs

• e.g. method call: exhale pre; inhale post

Silver primitives: Inhale and Exhale

20

field f: Int

method increment(c: Ref)
 requires acc(c.f)
 ensures acc(c.f) && c.f == old(c.f) + 1
 {
 c.f := c.f + 1
 }

method m(this: Ref, x:Ref)
 requires acc(this.f) && acc(x.f)
 ensures acc(this.f) && acc(x.f) && this.f == 2
 {
 this.f := 2;

 increment(x);

 assert this.f == 2
 }

Silver: a tiny example

21

field f: Int

method increment(c: Ref)
 requires acc(c.f)
 ensures acc(c.f) && c.f == old(c.f) + 1
 {
 c.f := c.f + 1
 }

method m(this: Ref, x:Ref)
 requires acc(this.f) && acc(x.f)
 ensures acc(this.f) && acc(x.f) && this.f == 2
 {
 this.f := 2;

 var old_f : Int := x.f
 exhale acc(x.f)
 inhale acc(x.f) && x.f == old_f + 1

 assert this.f == 2
 }

Silver: a tiny example

22

class C {

 int[] data; int count = 0;

 monitor invariant acc(this.data) && acc(this.count)

 void Foo() {

 acquire this;

 int i = data.length;

 while(0 < i)

 invariant acc(this.data) && acc(this.count)

 invariant holds(this);

 { ... ; i = i – 1; }

 count = count + 1; release this;

 }

}

Example : Encoding Locks

• Paired assertions [A,B]
• A used when inhaled, B used when exhaled
• mismatches: external justification / proof obligations

• Quantification over local state forallrefs[f] x ::
• non-standard for separation logics (but handy)

A few powerful Viper features

24

class C {

 int[] data; int count = 0;

 monitor invariant acc(this.data) && acc(this.count)

 && this.count > old(this.count)

 void Foo() {

 acquire this;

 int i = data.length;

 while(0 < i)

 invariant acc(this.data) && acc(this.count)

 invariant holds(this);

 { ... ; i = i – 1; }

 count = count + 1; release this;

 }

}

Example : Two-state invariants

• Paired assertions [A,B]
• A used when inhaled, B used when exhaled
• mismatches: external justification / proof obligations

• Quantification over local state forallrefs[f] x ::
• non-standard for separation logics

• State snapshots, labelled “old” expressions

A few powerful Viper features

26

predicate tree(t: Ref) {

 t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left))

 && acc(t.right) && acc(tree(t.right))

}

‐ Permission to unbounded recursive data structures
‐ predicate definitions can take any number of parameters

‐ Predicate instances (e.g. tree(t)) are treated as a
generalisation of permissions (inhaled/exhaled)

‐ Fold/unfold statements exchange predicate instances
with their bodies (not automatic, due to recursion)
‐ unfold tree(t) exchanges instance for body assertion

‐ fold tree(t) exchanges body for predicate instance

Recursive assertions: predicates

27

predicate tree(t: Ref) {

 t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left))

 && acc(t.right) && acc(tree(t.right))

}

function vals(t: Ref): Seq[Int]

 requires acc(tree(t))

{

 t == null ? Seq[Int]() : unfolding tree(t) in

 vals(t.left) ++ Seq(t.val) ++ vals(t.right)

}

‐ Silver also supports (recursive) functions
‐ The body of a function is an expression (side-effect-free)
‐ precondition must provide sufficient permissions to evaluate
‐ Function invocations only allowed where precondition holds

‐ e.g. tree(t) && vals(t) == Seq(1,2,3)
‐ usable in both specifications and statements (pure methods)

Recursive assertions: functions

• Paired assertions [A,B]
• A used when inhaled, B used when exhaled
• mismatches: external justification / proof obligations

• Quantification over local state forallrefs[f] x ::
• non-standard for separation logics

• State snapshots, labelled “old” expressions
• Custom predicates, heap-dependent functions [ECOOP’13]

• fold/unfold for predicates, functions mostly automatic
• Custom domains, sets and sequences, quantifiers
• Constrainable permissions [VMCAI’13, FTfJP’14]

• Alternative to fractional permissions (angelic amounts)
• “Magic wand” support [ECOOP’15]

• Powerful connective from separation logic

A few powerful Viper features

29

 A —∗ B

describes potential exchange of verification states

Read as a promise: “In any state, if you combine A —∗ B

with A, then you can exchange them for B”

Magic Wands

30

Scenario: Iteratively traverse a recursively defined tree
(Verification Challenge at VerifyThis@FM’12)

Tree Challenge

31

Scenario: Iteratively traverse a recursively defined tree
⤷ Loop invariant: Describe partial data structure

Tree Challenge

32

Indirectly describe partial data structure as a promise

---—∗

Partial Data Structures as Magic Wands

33

Modus-Ponens-like rule makes promise applicable

---—∗ &&

Partial Data Structures as Magic Wands

34

---—∗ &&

σ ⊨ A —∗ B ⇔ ∀ σ’ · (σ’ ⊨ A ⇒ σ ⊎ σ’ ⊨ B)

Partial Data Structures as Magic Wands

35

Used in various pen & paper proofs (separation logic)
− Partial data structures

− Usage protocols for data structures (e.g. iterators)

− Synchronisation barriers

− …

Typically* not supported in automatic verifiers

Entailment of magic wand formulas is undecidable
 ⤷ Lightweight user guidance to direct verification

* Only exception we are aware of is VerCors; developed in parallel

 σ ⊨ A —∗ B ⇔ ∀ σ’ · (σ’ ⊨ A ⇒ σ ⊎ σ’ ⊨ B)

Magic Wands in Proofs and Tools

36

package A —∗ B

apply A —∗ B Use it

Pass it

around

Make a
promise

---—∗ ∗

---—∗

Use A —∗ B
in specifications

Guidance: Ghost Operations + Specifications

37

Scenario: Iteratively traverse a recursively defined tree
⤷ Loop invariant: Describe partial data structure

A

A ---—∗ B B

VerifyThis’12 Challenge Revisited

38

Verification
Condition

Generation

Symbolic
Execution

Verification of Silver Code (back-ends)

Silicon Carbon

Boogie
(Microsoft)

Z3
(Microsoft)

verified by

encodes in

queries

queries

Silver code

39

Chalice (alternative verifier)
‐ concurrency verification

‐ [Leino&Müller’09] (later + Smans)

Scala (small fragment)

Finite blocking verification
 - [Boström&Müller’15]

Automating TaDa logic (W.I.P.)
 - [da Rocha Pinto et al.’14]

VerCors (ERC) project
‐ Marieke Huisman (UTwente)
‐ Java, GPU code, kernel code

Javascript verification
‐ Philippa Gardner (IC London)

SCION router verification
‐ Adrian Perrig (ETH Zurich)

[Your tool name here? ]

 Current (and Ongoing) Applications

Chalice2Silver
OpenCL

(VerCors)

Scala2Silver

Silver

Java
(VerCors) …..

• Core tools released (open-source) in September 2014:
 http://www.pm.inf.ethz.ch/research/viper.html

https://bitbucket.org/viperproject

• we have (public!) issue trackers for known problems
• Some advanced features are in the pipeline (but ask)

• Building / supporting new tools by translations into Silver
• SL, dynamic frames, rely-guarantee, type systems
• More-advanced program logics? Weak memory? …
• Also interested in work we cannot encode (yet …)

• A good platform to experiment with and build on 
• coalesces much formal and practical past research
• users can focus on the aspects relevant to their work

Tool Availability and Future Work

41

 http://www.pm.inf.ethz.ch/research/viper.html

https://bitbucket.org/viperproject

Chalice2Silver
OpenCL

(VerCors)

Scala2Silver

Silver

Java
(VerCors) …..

Silicon Carbon

Boogie
(Microsoft)

Z3
(Microsoft)

verified by

encodes in

queries

queries

Sample
infer additional

specifications

