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✔ 

✘ 

• Last 10 years: rapid progress in 
automatic tools for first-order 
logics (SMT solvers, provers) 

• Intermediate Verification 
Languages: e.g. Boogie and Why 

• Provide common infrastructures 
for building program verifiers 

• Many success stories and tools 
• Microsoft Hypervisor (VCC) 
• Device-drivers (Corral) 
• .. and many more, e.g., Why3, 

GPUVerify, Spec#, Dafny, 
Vericool, Krakatoa, etc…. 

Verification via Automatic Provers 
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• Modern program logics for heap 
reasoning + concurrency 
• e.g. separation logics 

 

• control of ownership/sharing of 
partial heaps (heap fragments) 
 

• First-order prover technology 
difficult to directly exploit 
• Custom verification engines 

(usually symbolic execution) 
• Lots of work to implement 
• Hard to reuse for new work 
• … fewer tools available  
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void m(x:C)  

requires 

ensures 

{ 

 

  this.f := 2; 

 

  call increment(x); 

 

  assert this.f == 2; 

 

} 
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• We have designed Silver: a new 
intermediate verification language 
 

• Idea: front-end tools that translate a 
problem into a Silver program 

 

• We provide (two) Silver Verifiers 
• decide problems automatically 

 

• The tool infrastructure is called Viper 
• in use for several projects (later) 

 

• Native support for permissions 
 

• Easy to encode many methodologies 
• separation logic, dynamic frames, 

invariants, type systems, etc… 
 

 

The Viper Project 
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• Based on Implicit Dynamic Frames [Smans et al. ’09] 
 

• Permission assertions: accessibility predicates acc(e.f) 
• exclusive: similar to  e.f↦_  in separation logics 
 

• Expressions e may depend directly on the heap 
• e.g. acc(x.f) && x.f > 0 

 

•  Fractional permissions [Boyland’03], e.g. acc(x.f, ½) 
• allow reading (and framing), not writing 
 

• Conjunction && is multiplicative for permissions 
• e.g. acc(x.f, ½) && acc(x.f, ½)  acc(x.f, 1)  
• e.g. acc(this.f, 1) && acc(x.f, 1) ⊨ this  x 

 
 

 
 

Silver: Basic Assertion Language 
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old(e) evaluates e in the pre-heap of the method call 

field f: Int 

method increment(c: Ref) 
  requires acc(c.f) 
  ensures  acc(c.f) && c.f == old(c.f) + 1 
 {  
   c.f := c.f + 1 
 } 
 
method test() 
 { 
   var x : Ref; 
   x := new();  x.f := 1 
 
    
   increment(x); 
 
     
  assert x.f == 2 
 } 

Silver: a tiny example 
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old(e) evaluates e in the pre-heap of the method call 

field f: Int 

method increment(c: Ref) 
  requires acc(c.f)  
  ensures  acc(c.f) && c.f == old(c.f) + 1 
 {  
   c.f := c.f + 1 
 } 
 
method m(this: Ref, x:Ref) 
  requires acc(this.f) && acc(x.f) 
  ensures acc(this.f) && acc(x.f) && this.f == 2 
 { 
   this.f := 2; 
    
   increment(x); 
 
     
   assert this.f == 2 
 } 

Silver: a tiny example 



• A statement inhale A means: 
• all permissions required by are A gained 
• all logical constraints (e.g. x.f > 0) are assumed 

• A statement exhale A means: 
• check, and remove all permissions required by A  
• all logical constraints (e.g. x.f > 0) are asserted 
• any locations to which all permissions is lost are 

implicitly havoced (their values are no-longer known) 
• Can be seen as the permission-aware analogues of 

assume/assert statements used in first-order verification 
• used to model appropriate permission transfers 
• verification semantics for high-level constructs 

• e.g. method call: exhale pre; inhale post 
 

 

Silver primitives: Inhale and Exhale 
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field f: Int 

method increment(c: Ref) 
  requires acc(c.f)  
  ensures  acc(c.f) && c.f == old(c.f) + 1 
 {  
   c.f := c.f + 1 
 } 
 
method m(this: Ref, x:Ref) 
  requires acc(this.f) && acc(x.f) 
  ensures acc(this.f) && acc(x.f) && this.f == 2 
 { 
   this.f := 2; 
    
 
   increment(x); 
 
     
   assert this.f == 2 
 } 

Silver: a tiny example 
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field f: Int 

method increment(c: Ref) 
  requires acc(c.f)  
  ensures  acc(c.f) && c.f == old(c.f) + 1 
 {  
   c.f := c.f + 1 
 } 
 
method m(this: Ref, x:Ref) 
  requires acc(this.f) && acc(x.f) 
  ensures acc(this.f) && acc(x.f) && this.f == 2 
 { 
   this.f := 2; 
    
   var old_f : Int := x.f 
   exhale acc(x.f) 
   inhale acc(x.f) && x.f == old_f + 1 
     
   assert this.f == 2 
 } 

Silver: a tiny example 
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class C { 

  int[ ] data; int count = 0;  
 

  monitor invariant acc(this.data) && acc(this.count) 

 
 

  void Foo( ) { 

    acquire this; 

    int i = data.length; 

    while( 0 < i ) 

      invariant acc(this.data) && acc(this.count) 

      invariant holds( this ); 

    { ... ; i = i – 1; } 

    count = count + 1; release this; 

  } 

} 

Example : Encoding Locks 



• Paired assertions [A,B] 
•  A used when inhaled, B  used when exhaled 
• mismatches: external justification / proof obligations 

• Quantification over local state forallrefs[f] x :: 
• non-standard for separation logics (but handy) 

A few powerful Viper features 
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class C { 

  int[ ] data; int count = 0; 
 

  monitor invariant acc(this.data) && acc(this.count)    

                    && this.count > old(this.count) 
 

  void Foo( ) { 

    acquire this; 

    int i = data.length; 

    while( 0 < i ) 

      invariant acc(this.data) && acc(this.count) 

      invariant holds( this ); 

    { ... ; i = i – 1; } 

    count = count + 1; release this; 

  } 

} 

Example : Two-state invariants 



• Paired assertions [A,B] 
•  A used when inhaled, B  used when exhaled 
• mismatches: external justification / proof obligations 

• Quantification over local state forallrefs[f] x :: 
• non-standard for separation logics 

• State snapshots, labelled “old” expressions 
 

A few powerful Viper features 
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predicate tree(t: Ref) { 

  t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left)) 

                && acc(t.right) && acc(tree(t.right)) 

} 

‐ Permission to unbounded recursive data structures 
‐ predicate definitions can take any number of parameters 

‐ Predicate instances (e.g. tree(t)) are treated as a 
generalisation of permissions (inhaled/exhaled) 

‐ Fold/unfold statements exchange predicate instances 
with their bodies (not automatic, due to recursion) 
‐ unfold tree(t) exchanges instance for body assertion 

‐ fold tree(t)   exchanges body for predicate instance 

 

 

Recursive assertions: predicates 
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predicate tree(t: Ref) { 

  t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left)) 

                && acc(t.right) && acc(tree(t.right)) 

} 

function vals(t: Ref): Seq[Int] 

  requires acc(tree(t)) 

{  

  t == null ? Seq[Int]() : unfolding tree(t) in  

                vals(t.left) ++ Seq(t.val) ++ vals(t.right)  

} 

‐ Silver also supports (recursive) functions  
‐ The body of a function is an expression (side-effect-free) 
‐ precondition must provide sufficient permissions to evaluate 
‐ Function invocations only allowed where precondition holds 

‐ e.g. tree(t) && vals(t) == Seq(1,2,3) 
‐ usable in both specifications and statements (pure methods) 

 

Recursive assertions: functions 



• Paired assertions [A,B] 
•  A used when inhaled, B  used when exhaled 
• mismatches: external justification / proof obligations 

• Quantification over local state forallrefs[f] x :: 
• non-standard for separation logics 

• State snapshots, labelled “old” expressions 
• Custom predicates, heap-dependent functions [ECOOP’13] 

• fold/unfold for predicates, functions mostly automatic 
• Custom domains, sets and sequences, quantifiers 
• Constrainable permissions [VMCAI’13, FTfJP’14] 

• Alternative to fractional permissions (angelic amounts) 
• “Magic wand” support [ECOOP’15] 

• Powerful connective from separation logic 
 

A few powerful Viper features 
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 A —∗  B 
 

describes potential exchange of verification states 

 

Read as a promise: “In any state, if you combine A —∗  B 

with A, then you can exchange them for B” 

Magic Wands 
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Scenario: Iteratively traverse a recursively defined tree 
(Verification Challenge at VerifyThis@FM’12) 

Tree Challenge 
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Scenario: Iteratively traverse a recursively defined tree 
⤷ Loop invariant: Describe partial data structure 

Tree Challenge 
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Indirectly describe partial data structure as a promise 

---—∗ 

Partial Data Structures as Magic Wands 
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Modus-Ponens-like rule makes promise applicable 

---—∗ && 

Partial Data Structures as Magic Wands 
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---—∗ && 

σ ⊨ A —∗   B    ⇔    ∀ σ’ · (σ’ ⊨ A   ⇒  σ ⊎ σ’ ⊨ B) 

Partial Data Structures as Magic Wands 
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Used in various pen & paper proofs (separation logic) 
− Partial data structures 

− Usage protocols for data structures (e.g. iterators) 

− Synchronisation barriers 

− … 

Typically* not supported in automatic verifiers 

 

Entailment of magic wand formulas is undecidable 
 ⤷ Lightweight user guidance to direct verification 

 

 

 

* Only exception we are aware of is VerCors; developed in parallel 

  σ ⊨ A —∗   B    ⇔    ∀ σ’ · (σ’ ⊨ A   ⇒  σ ⊎ σ’ ⊨ B) 

 

Magic Wands in Proofs and Tools 
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package A —∗  B 

apply A —∗  B Use it 

Pass it 
 

around 

Make a 
promise 

---—∗ ∗ 

---—∗ 

Use A —∗  B 
in specifications 

Guidance: Ghost Operations + Specifications 
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Scenario: Iteratively traverse a recursively defined tree 
⤷ Loop invariant: Describe partial data structure 

A 

A ---—∗ B B 

VerifyThis’12 Challenge Revisited 



38 

Verification 
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Generation 
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Verification of Silver Code (back-ends) 
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Silver code 
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Chalice (alternative verifier) 
‐ concurrency verification 

‐  [Leino&Müller’09] (later + Smans) 

Scala (small fragment) 

Finite blocking verification 
 - [Boström&Müller’15] 

Automating TaDa logic (W.I.P.) 
 - [da Rocha Pinto et al.’14] 

 

 

VerCors (ERC) project   
‐ Marieke Huisman (UTwente) 
‐ Java, GPU code, kernel code 

Javascript verification 
‐ Philippa Gardner (IC London) 

SCION router verification 
‐ Adrian Perrig (ETH Zurich) 

[Your tool name here? ] 

 
 

  Current (and Ongoing) Applications 

Chalice2Silver 
OpenCL 

(VerCors) 

Scala2Silver 

Silver 

Java 
(VerCors) ….. 



• Core tools released (open-source) in September 2014: 
     http://www.pm.inf.ethz.ch/research/viper.html 

https://bitbucket.org/viperproject 

• we have (public!) issue trackers for known problems 
• Some advanced features are in the pipeline (but ask) 

 

• Building / supporting new tools by translations into Silver 
• SL, dynamic frames, rely-guarantee, type systems 
• More-advanced program logics? Weak memory? … 
• Also interested in work we cannot encode (yet …) 

 

• A good platform to experiment with and build on  
• coalesces much formal and practical past research 
• users can focus on the aspects relevant to their work 

 
 

Tool Availability and Future Work 
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  http://www.pm.inf.ethz.ch/research/viper.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://bitbucket.org/viperproject 

Chalice2Silver 
OpenCL 

(VerCors) 

Scala2Silver 

Silver 

Java 
(VerCors) ….. 

Silicon Carbon 

Boogie 
(Microsoft) 

Z3 
(Microsoft) 

verified by 

encodes in 

queries 

queries 

Sample 
infer additional 

 

specifications 


