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Verification via Automatic Provers

e Last 10 years: rapid progress in
[ Frotr:j”d ] automatic tools for first-order
logics (SMT solvers, provers)
* Intermediate Verification

generates

| d . -
e Languages: e.g. Boogie and Why
Language * Provide common infrastructures
verified by for building program verifiers
[ Back-end ] * Many success stories and tools
tool * Microsoft Hypervisor (\VCC)

|  Device-drivers (Corral)
[ automatic I R4  ..and many more, e.g., Why3,
B X GPUVerify, Spec#, Dafny,

Vericool, Krakatoa, etc....




Permission-Based Reasoning

* Modern program logics for heap
reasoning + concurrency
e e.g.separation logics

* control of ownership/sharing of
partial heaps (heap fragments)

* First-order prover technology
difficult to directly exploit
e Custom verification engines
(usually symbolic execution)
e Lots of work to implement
* Hard to reuse for new work
« .. fewertools available ®



Framing with Permissions

void m(x:C)
requires
ensures

{

this.f := 2;

call increment (x) ; ’?

assert this.f == 2;
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Framing with Permissions

* Tackle the problem of  void m(x:c) &0

framing by splitting the ZSTiires 2 |
heap into partial heaps |

* Method call works on its this-ﬁ...f’f: 2;
own partial heap call increment (x);

— defined by precondition
* At each statement

— split current heap into:
e part needed by statement
* |eft-over part (the frame)

assert this.f ==




Framing with Permissions

(frame)

* Tackle the problem of  void m(x:c)

framing by splitting the  ZS#rs 1

ensures

heap into partial heaps

o
.
.
o
.

o
.
o
S

e Method call works on its L

o
.
.
o
.

own partial heap call increment (x) ;
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)



Framing with Permissions

* Tackle the problem of  void m(x:c) .« (frame)
, iy requires X.
fram/ng by Spllttlng the ensures ?f

heap into partial heaps

e Method call works on its

own partial heap call increment (x);
— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)
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Framing with Permissions

* Tackle the problem of  void m(x:c) &0
framing by splitting the  ~~2°°"°° 2 | A

ensures ?

heap into partial heaps

e Method call works on its
own partial heap

— defined by precondition

assert this.f ==
e At each statement
— split current heap into:

e part needed by statement
* |eft-over part (the frame)
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We have designed Silver: a new
intermediate verification language

ldea: front-end tools that translate a
problem into a Silver program

We provide (two) Silver Verifiers
 decide problems automatically

The tool infrastructure is called Viper
* in use for several projects (later)

Native support for permissions

Easy to encode many methodologies
e separation logic, dynamic frames,
Invariants, type systems, etc...



Silver: Basic Assertion Language

Based on Implicit Dynamic Frames [Smans et al. "09]

Permission assertions: accessibility predicates acc(e.f)
* exclusive: similarto e.f—_ in separation logics

Expressions e may depend directly on the heap
e e.g.acc(x.f) && x>0

Fractional permissions [Boyland’03], e.g. acc(x.f, 72)
* allow reading (and framing), not writing

Conjunction && is multiplicative for permissions
e e.g.acc(x.f, %5) && acc(x.f, o) = acc(x.f, 1)
e e.g.acc(this.f, 1) && acc(x.f, 1) k& this # x



Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & & c.f == old(c.f) + 1

{
c.f :=c.f +1

}

old(e) evaluates e in the pre-heap of the method call
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Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & c.f == old(c.f) + 1

{
c.f :=c.f +1

}

method m(this: Ref, x:Ref)
requires acc(this.f) && acc(x.f)
ensures acc(this.f) && acc(x.f) && this.f ==

{
this.f := 2;

increment(x);

assert this.f ==

}

old(e) evaluates e in the pre-heap of the method call
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Silver primitives: Inhale and Exhale

A statement inhale A means:
e all permissions required by are A gained
* alllogical constraints (e.g. x.f > 0) are assumed
A statement exhale A means:
* check, and remove all permissions required by A
e alllogical constraints (e.g. x.f > 0) are asserted
* any locations to which all permissions is lost are
implicitly havoced (their values are no-longer known)
Can be seen as the permission-aware analogues of
assume/assert statements used in first-order verification
* used to model appropriate permission transfers
* verification semantics for high-level constructs
* e.g. methodcall: exhale pre; inhale post



Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & c.f == old(c.f) + 1

{
c.f :=c.f +1

}

method m(this: Ref, x:Ref)
requires acc(this.f) && acc(x.f)
ensures acc(this.f) && acc(x.f) && this.f =

{
this.f := 2;

2

increment(x);

assert this.f == 2

}
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Silver: a tiny example

field f: Int

method increment(c: Ref)
requires acc(c.f)
ensures acc(c.f) & c.f == old(c.f) + 1
{
c.f :=c.tf +1

}

method m(this: Ref, x:Ref)
requires acc(this.f) && acc(x.f)
ensures acc(this.f) && acc(x.f) && this.f =

{
this.f := 2;

2

var old f : Int := x.f
exhale acc(x.f)
inhale acc(x.f) & & x.f == old f + 1

assert this.f == 2
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Example : Encoding Locks

class C {

int|[ ] data; int count = 0;

monitor invariant acc(this.data) && acc(this.count)

void Foo( ) {
acquire this;
int 1 = data.length;
while( 0 < 1 )

invariant acc(this.data)

invariant holds( this );

{ ... ; 1 =1 - 1; }

&& acc (this.count)

count = count + 1; release this;
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A few powerful Viper features

 Paired assertions [A,B]
e A usedwheninhaled, B used when exhaled

* mismatches: external justification / proof obligations
* Quantification over local state forallrefs[f] x

* non-standard for separation logics (but handy)



Example : Two-state invariants

class C {

int|[ ] data; int count = 0;

monitor invariant acc(this.data) && acc(this.count)

&& this.count > old(this.count)

void Foo( ) {
acquire this;
int 1 = data.length;
while( 0 < 1 )

invariant acc(this.data) && acc(this.count)

invariant holds( this );
{ ... ;, 1 =1 - 1; }

count = count + 1; release this;
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A few powerful Viper features

 Paired assertions [A,B]

e A usedwheninhaled, B used when exhaled

* mismatches: external justification / proof obligations
* Quantification over local state forallrefs[f] x

* non-standard for separation logics
e State snapshots, labelled “old” expressions



Recursive assertions: predicates

predicate tree(t: Ref) {
t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left))
&& acc(t.right) && acc(tree(t.right))

- Permission to unbounded recursive data structures
- predicate definitions can take any number of parameters

- Predicate instances (e.g. tree(t)) are treated as a
generalisation of permissions (inhaled/exhaled)

- Fold/unfold statements exchange predicate instances
with their bodies (not automatic, due to recursion)

-unfold tree (t) exchangesinstance for body assertion
- fold tree (t) exchanges body for predicate instance



Recursive assertions: functions

predicate tree(t: Ref) {
t != null ==> acc(t.val) && acc(t.left) && acc(tree(t.left))
&& acc(t.right) && acc(tree(t.right))

}
function vals(t: Ref): Seq[Int]

requires acc(tree(t))

{
t == null ? Seq[Int]() : unfolding tree(t) in
vals(t.left) ++ Seq(t.val) ++ vals(t.right)
}

- Silver also supports (recursive) functions
- The body of a function is an expression (side-effect-free)
- precondition must provide sufficient permissions to evaluate
- Function invocations only allowed where precondition holds
-e.g.tree(t) && vals(t) == Seq(l,2,3)
- usable in both specifications and statements (pure methods)
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A few powerful Viper features

Paired assertions [A,B]

e A usedwheninhaled, B used when exhaled

* mismatches: external justification / proof obligations
Quantification over local state forallrefs[f] x
 non-standard for separation logics

State snapshots, labelled “old” expressions

Custom predicates, heap-dependent functions [ECOOP’13]
» fold/unfold for predicates, functions mostly automatic
Custom domains, sets and sequences, quantifiers
Constrainable permissions [VMCAI'13, FTfJP’14]

e Alternative to fractional permissions (angelic amounts)
“Magic wand” support [ECOOP’15]

 Powerful connective from separation logic



Magic Wands
A —k B

describes potential exchange of verification states

Read as a promise: “In any state, if you combine A —k B
with A, then you can exchange them for B”

29



Tree Challenge

Scenario: lteratively traverse a recursively defined tree
(Verification Challenge at VerifyThis@FM’12)

30



Tree Challenge

Scenario: lteratively traverse a recursively defined tree
L Loop invariant: Describe partial data structure
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Partial Data Structures as Magic Wands
Indirectly describe partial data structure as a promise

A —x

——

32



Partial Data Structures as Magic Wands
Modus-Ponens-like rule makes promise applicable

[ ) ( \
A | && A—*A
\ J \ )




Partial Data Structures as Magic Wands
cEA—*B & Vo:-(0’EA =>o0W0o E)

[ ) ( \
A | && A—*K\
\ J \ )




Magic Wands in Proofs and Tools

Used in various pen & paper proofs (separation logic)
— Partial data structures
— Usage protocols for data structures (e.g. iterators)
— Synchronisation barriers

Typically* not supported in automatic verifiers
cEA—kB & Vo:-(6’EA = oWo EB)

Entailment of magic wand formulas is undecidable
L Lightweight user guidance to direct verification

* Only exception we are aware of is VerCors; developed in parallel
35



Guidance: Ghost Operations + Specifications

Make a
promise

L 4

L 4
L 4

~ Pass it
-..-“““-

around ~

A—*A package A —k B

Use A —k B
in specifications

NYN

i apply A —kB
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VerifyThis’12 Challenge Revisited

Scenario: lteratively traverse a recursively defined tree
L Loop invariant: Describe partial data structure
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Verification of Silver Code (back-ends)

/ Silver code /

/4&
[ Carbon ] [ Silicon ]

encodes in

BOOgie queries
(Microsoft)

queries
Z3
(Microsoft)

Verification Symbolic
Condition Execution
Generation
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Current (and Ongoing) Applications

Java
VerCors

Scala2Silver

: : OpenCL
[Challce25|lver (VerCors) ]
Silver /
Chalice (alternative verifier) VerCors (ERC) project
- concurrency verification - Marieke Huisman (UTwente)
- [Leino&Miller’09] (later + Smans) - Java, GPU code, kernel code
Scala (small fragment) Javascript verification

- Philippa Gardner (IC London)
Finite blocking verification
- [Bostrom&Miiller’15] SCION router verification

. , - Adrian Perrig (ETH Zurich)
Automating TaDa logic (W.I.P.)

- [da Rocha Pinto et al.14] [Your tool name here? ©]



Tool Availability and Future Work

Core tools released (open-source) in September 2014:

http://www.pm.inf.ethz.ch/research/viper.html
https://bitbucket.org/viperproject

 we have (public!) issue trackers for known problems
 Some advanced features are in the pipeline (but ask)

Building / supporting new tools by translations into Silver
e SL, dynamic frames, rely-guarantee, type systems

* More-advanced program logics? Weak memory? ...

* Alsointerested in work we cannot encode (yet ...)

A good platform to experiment with and build on ©
* coalesces much formal and practical past research
e users can focus on the aspects relevant to their work



http://www.pm.inf.ethz.ch/research/viper.html

o)

Java
VerCors

Scala2Silver

OpenCL ]

Chalice2Sil
[ alice2Silver (VerCors)

' ————

. infer additional
Silver /— ter 2cdional | Sample

specifications |

[ Carbon ] [ Silicon ]

lencodes in
Boogle queries
(Microsoft)

queries
/3
(Microsoft)

https://bitbucket.org/viperproject
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