
Wyvern Formalisation: Objects, 
Classes, Modules, Type Members

Alex Potanin



The Internet [of Things]

• JavaScript
• Ruby on Rails
• Java
• Flash
• PHP
• Python
• Coffee Script
• …

• Cross-Site Scripting 
(XSS)

• Cross-Site Request 
Forgery (CSRF)

• Injection Attacks
• Insecure Direct Object 

References
• Broken Authentication 

and Session 
Management

• …
(OWASP Top 10 2013)



Wyvern

A web and mobile programming language 
that is secure by default.

http://www.cs.cmu.edu/~aldrich/wyvern/

Our Goal: To simultaneously enhance security and 
productivity for mobile and web applications by co-

designing a language, its types, and its libraries.



Wyvern

• Guide: http://www.cs.cmu.edu/~aldrich/wyvern/wyvern-guide.html

require stdout

stdout.print("Hello, World!")

• Wyvern Language Features
– Statically type checked
– Structural types
– Indentation-based
– First class classes and modules

4



Evolution of Wyvern Since its Birth in 2013

What’s there in 2014:
• A pure object-oriented 

model that supports 
reuse via composition 
mechanisms (see 
MASPEGHI 2013)

• Specialization and 
generalization of types 
(see Onward! Essay 
2013 by Jonathan)

• Support for Type-
Specific Languages (see 
ECOOP 2014)

What’s there in 2015:
• High-level abstractions for 

architecture and data (see 
IWACO 2014)

• Support for combining structural 
and nominal typing using tags 
(see ECOOP 2015)

• A reuse mechanism, such as 
inheritance or delegation (see 
FTfJP 2015)

• A first-class, typed module 
system (in progress)

• Support for abstract type 
members (in progress)



What’s Pure OO?

• State encapsulation (OO)
• Uniform access principle (Meyer)
• Interoperability and uniform treatment (Cook)



Wyvern Core 0: Extended Lambda Calculus



Wyvern Core 1: Adding Objects



Wyvern Core 1: Sample Program

1 type Lot =
2 def value : Int
3
4 def purchase(q : Int, p : Int) : Lot =
5 new
6 var quantity : Int = q
7 var price : Int = p
8 def value : Int = this.quantity * this.price
9
10 var aLot : Lot = purchase(100, 100)
11 var value : Int = aLot.value



Classes are Not Essential

e.g. Self and JavaScript

…but they are convenient.

We believe classes should be syntactic sugar on top of a 
foundational object-oriented core.



Wyvern Core 2: Adding Classes



Wyvern Core 2: Translating Classes

1 class Option
2 var quantity : Int = 0
3 var price : Int = 0
4 def exercise : Int = ...
5
6 class var totalQuantityIssued : Int = 0
7 class def issue(q : Int,
8 p : Int) : Option =
9 new
10 var quantity : Int = q
11 var price : Int = p
12
13 var optn : Option = Option.issue(100, 50)
14 var ret : Int = optn.exercise

1 type Option =
2 def exercise : Int
3
4 type OptionClass =
5 def issue : Int -> Int -> Option
6
7 var Option : OptionClass =
8 new
9 var totalQuantityIssued : Int = 0
10 def issue(q : Int,
11 p : Int) : Option =
12 new
13 var quantity : Int = q
14 var price : Int = p
15 def exercise : Int = ...
16
17 var optn : Option = Option.issue(100, 50)
18 var ret : Int = optn.exercise

OO Wyvern Core 1OO Wyvern with Classes



What’s Next?

• Today, Work in Progress:
– Adding Modules
– Problems with Adding Type Members (if time)

• Other Work (on request):
– Adding Nominal and Structural Types using Tags
– Adding Type-Specific Languages
– Delegation vs Inheritance
– Wyvern VM and Implementation Work

13



Adding Modules
by Darya Kurilova @ CMU

14



Wyvern with Modules Example 1

resource module wyvern/examples/logging

import wyvern/collections/List
require filesystem

resource type Log
def log(x:String)

def makeLog(path:String):Log
val logFile = filesystem.openForAppend(path)
val messageList = List.make()
new

def log(x:String)
messageList.append(x)
logFile.print(x)

15

require filesystem

instantiate wyvern/examples/logging(filesystem)
instantiate myapplication(logging)

myapplication.start() 



Wyvern with Modules Example 2
16



Wyvern Core 3A: Adding Modules
17



Wyvern Core 3A: Adding Modules
18



Wyvern Modules Summary

• We prove an “authority safety theorem” that 
guarantees using our type system whether a module 
is stateful or pure based on a points-to relation.

• We provide a translation from the more abstract 
grammar to the base grammar very similar to Wyvern 
Cores and prove the latter sound.

• We are developing a threat/attacker model to be able 
to demonstrate our module access guarantees by 
utilising the capabilities.

• Type members are part of the module’s signatures 
(next step)

19



Why Add Type Members to Wyvern?

• Much discussion of type members since Beta and 
gBeta and later Scala adopting them

• Type members can encode generics but are more 
expressive and require less annotations, e.g.

def copyCell(c:Cell):Cell
new Cell

type t = c.t
val data : t = c.data

versus

def copyCell<T>(c:Cell<T>):Cell<T> ...

20



Why Add Type Members to Wyvern?

datatype DiverseTree
case type Leaf

type T
val v:T

case type Branch
val t1:DiverseTree
val t2:DiverseTree

21



Why Add Type Members to Wyvern?

type Table
type Key
type Value
def get(k:Key):Value
def add(v:Value):Key

// the Key type of the returned table is abstract
def newTable<ValueType>()

:Table<Value=ValueType>

22



Wyvern Core 3B: Adding Type Members
23



Adding Type Members
by Julian Mackay @ VUW

24

• A lot of work in the 90’s (including Atsushi).
• Wyvern Type Members are based on those in Scala.
• Recent work by Nada Amin, Tiark Rompf et al. on trying to 

prove a type system with full type members support sound 
(FOOL 2012, OOPSLA 2014, ongoing…)

• Issues with just proving preservation include:
– Path equality problem (we do not evaluate paths till required)
– Inability to resolve some type members during type checking due 

to environment narrowing (we keep track of the declared type)
– Nonsensical expansions of declarations and loss of well 

formedness when combining environment narrowing and 
intersection types (we try to avoid environment narrowing at all 
costs)

– Subtype transitivity problem (complex mutual induction in proofs)



Issue 1: Path Equality Problem
25

a.i.l reduces to b.l of type b.L but we can’t ensure that b.L <: a.i.L



Issue 2: Term Membership Restriction
26

Unfortunately, small step 
reduction requires the 
following next expression to 
be well typed, which is not 
as we have nothing to 
substitute for z.l:



Therefore, our Method Reduction Rule is:
27



Issue 3: Expansion Lost
28

We can construct a less obvious expression that effectively 
results in the same contradictory intersection type…



Issue 4: Loss of Well-Formedness
29

Again, we can construct a less obvious expression that 
effectively results in the same contradictory intersection 
type implying two unrelated types subtype each other!



Issue 5: Subtype Transitivity Problem

• Subtype Transitivity is mutually dependent on 
Environment Narrowing:

• Thus, we weaken environment narrowing proof by 
admitting subtype transitivity (same tactic as Amin et 
al.).

• Then we prove the relaxed subtype narrowing and 
subtype transitivity and show that the admitted 
subtyping judgement is equivalent to the original.

• Finally, thanks to Julian Mackay, our proofs are done 
both on paper and in COQ.

30



Wyvern Type Members Summary

• We have a preservation (and thus soundness as 
progress is easy) proof for a restricted language 
defined using small step semantics.

• We are working on other issues and the kinds of 
assumptions we can use in “OO world” that might not 
be acceptable in more “pure world” that would allow 
us to have a sound type system.

• We plan to extend our work by utilising the formal 
benefit of small step to capability reasoning (when 
merging our type members work with our modules 
work) and explore the implications for type refinement 
and graduate types in Wyvern.

31



Suggestions?
32


