
Performance Tuning for High
Performance Computing

Applications

Daisuke Takahashi
University of Tsukuba, Japan

2014/5/27 NII Shonan Meeting 1

2014/5/27 NII Shonan Meeting 2

Outline
• Performance development of

supercomputers
• HPC Challenge (HPCC) Benchmark Suite
• It’s all bandwidth
• Performance tuning

– What is performance tuning?
– Program optimization methods

2011/11/22 NII Shonan Meeting 3

Performance Development of
Supercomputers

• November 2013 TOP500 Supercomputing Sites
– Tianhe-2 (Intel Xeon E5-2692 12C 2.2GHz, Intel Xeon

Phi 31S1P) : 33.862 PFlops (3,120,000 Cores)
– Titan (Cray XK7, Opteron 6274 16C 2.2GHz, NVIDIA

K20x) : 17.590 PFlops (560,640 Cores)
– Sequoia (BlueGene/Q, Power BQC 16C 1.6GHz) :

17.173 PFlops (1,572,864 Cores)
– K computer (SPARC64 VIIIfx 2.0GHz) : 10.510 PFlops

(705,024 Cores)
• Recently, the number of cores keeps increasing.

2014/5/27 NII Shonan Meeting 4

Source:http://www.slideshare.net/top500/top500-
november-2013

2014/5/27 NII Shonan Meeting 5

Source:http://www.slideshare.net/top500/top500-
november-2013

2014/5/27 NII Shonan Meeting 6

Source:http://www.slideshare.net/top500/top500-
november-2013

2014/5/27 7

Linpack Benchmark
• Developed by Jack Dongarra of the

University of Tennessee.
• Benchmark test for evaluating floating-point

processing performance
• Uses Gaussian elimination method to

estimate the time required for solving
simultaneous linear equations

• Also used for the “TOP500 Supercomputer”
benchmark

NII Shonan Meeting

Overview of the HPC Challenge
(HPCC) Benchmark Suite

• HPC Challenge (HPCC) is a suite of tests
that examine the performance of HPC
architectures using kernels.

• The suite provides benchmarks that bound
the performance of many real applications
as a function of memory access
characteristics, e.g.,
– Spatial locality
– Temporal locality

2014/5/27 NII Shonan Meeting 8

The Benchmark Tests
• The HPC Challenge benchmark consists at

this time of 7 performance tests:
– HPL (High Performance Linpack)
– DGEMM (matrix-matrix multiplication)
– STREAM (sustainable memory bandwidth)
– PTRANS (A=A+B^T, parallel matrix transpose)
– RandomAccess (integer updates to random

 memory locations)
– FFT (complex 1-D discrete Fourier transform)
– b_eff (MPI latency/bandwidth test)

2014/5/27 NII Shonan Meeting 9

Targeted Application Areas in the
Memory Access Locality Space

Temporal locality

Sp
at

ia
l l

oc
al

ity

PTRANS
STREAM

RandomAccess FFT

HPL
DGEMM

Applications

CFD Radar X-section

TSP DSP

0

2014/5/27 NII Shonan Meeting 10

HPCC Testing Scenarios
• Local (S-STREAM, S-RandomAccess,

 S-DGEMM, S-FFT)
– Only single MPI process computes.

• Embarrassingly parallel (EP-STREAM,
EP-RandomAccess, EP-DGEMM, EP-FFT)
– All processes compute and do not communicate

(explicitly).
• Global (G-HPL, G-PTRANS, G-RandomAccess,

 G-FFT)
– All processes compute and communicate.

• Network only (RandomRing Bandwidth, etc.)

2014/5/27 NII Shonan Meeting 11

The winners of the 2013 HPC
Challenge Class 1 Awards

• G-HPL: 9,796 TFlops
– K computer (663,552 cores)

• G-RandomAccess: 2,021 GUPS
– IBM Power 775 (63,648 cores)

• G-FFT: 205.9 TFlops
– K computer (663,552 cores)

• EP-STREAM-Triad (system): 3,857 TB/s
– K computer (663,552 cores)

2014/5/27 NII Shonan Meeting 12

2014/5/27 NII Shonan Meeting 13

Indicator of Capability for Supplying
Data to the Processor

• In a computer system that performs scientific
computations, the “capability for supplying data to
the processor” is most important.

• Unless data is supplied to the arithmetic unit of the
processor, computations cannot be performed.

• The computing performance of the processor is
largely impacted by the data supply capacity.

• “Bandwidth” is used as an indicator of the data
supply capability.

2014/5/27 NII Shonan Meeting 14

Source: Wikipedia

2014/5/27 NII Shonan Meeting 15

Memory Hierarchy (1/2)

• Memory hierarchy is designed based on the
assumed locality of patterns of access to the
memory area.

• Different types of locality:
– Temporal locality

• Property whereby the accessing of a certain address
reoccurs within a relatively short time interval

– Spatial locality
• Property whereby data accessed within a certain time interval

is distributed among relatively nearby addresses

2014/5/27 NII Shonan Meeting 16

Memory Hierarchy (2/2)

• These tendencies often apply to business
computations and other non-numeric computations,
but are not generally applicable to numeric
computation programs.

• Especially in large-scale scientific computations,
there is often no temporal locality for data
references.

• This is a major reason why vector-type
supercomputers are advantageous for scientific
computations.

2014/5/27 NII Shonan Meeting 17

Concept of Byte/Flop
• The amount of memory access needed when performing a

single floating-point operation is defined in byte/flop.

• With daxpy, double-precision real-number data must be

loaded/stored three times (24 bytes total) in order to
perform two double-precision floating-point operations per
single iteration.
– In this case, 24Byte/2Flop = 12Byte/Flop.

• The smaller the Byte/Flop value is better.

void daxpy(int n, double a, double *x, double *y)
{
 int i;
 for (i = 0; i < n; i++)
 y[i] += a * x[i];
}

Performance of DAXPY (Intel Xeon
E3-1230 3.2GHz 8MB L3 cache,

Intel MKL 10.3)

0
10

20
30

40
50

60
70

80
90

100

1 32 1024 32768 1048576

vector size n

G
F
lo

p
s

2014/5/27 NII Shonan Meeting 18

2014/5/27 NII Shonan Meeting 19

PC and Vector-type Supercomputer
Memory Bandwidth

• Intel Xeon E5-2697 v2 (Ivy Bridge-EP 2.7GHz,
4 x DDR3-1866, 2 sockets/node)
– The theoretical peak performance of each node is

21.6GFlops×12 cores×2 sockets=518.4GFlops
– Memory bandwidth up to 119.4GB/s
– Byte/Flop value is 119.4/518.4≒0.23

• NEC SX-ACE (4 cores/node)
– The theoretical peak performance of each node is

69GFlops×4 cores=276GFlops
– Memory bandwidth up to 256GB/s
– Byte/Flop value is 256/276 ≒0.93

2014/5/27 NII Shonan Meeting 20

Comparison of Theoretical
Performance in DAXPY

• Intel Xeon E5-2697 v2
– Theoretical peak performance of each node: 518.4GFlops
– In the case where the working set exceeds the cache

capacity, the memory bandwidth (119.4GB/s) is rate-
limiting and so the limit is
(119.4GB/s)/(12Byte/Flop)≒9.95GFlops

– Only approximately 1.9% of theoretical peak performance!
• NEC SX-ACE

– Theoretical peak performance of each node: 276GFlops
– The memory bandwidth (256GB/s) is rate-limiting, and so

the limit is (256GB/s)/(12Byte/Flop)≒21.3GFlops
– Approximately 7.7% of theoretical peak performance.

Arithmetic Operations in BLAS

BLAS

 Loads
 +

 Stores

Operati
ons

Ratio

Level 1 DAXPY

Level 2 DGEMV

Level 3 DGEMM

xyy α+=

Axyy αβ +=

ABCC αβ +=

mnmn 2++

kmn ==

n3

knmkmn ++2

n2

mn2

mnk2

2:3

2:1

n:2

2014/5/27 NII Shonan Meeting 21

Performances of DGEMV and
DGEMM (Intel Xeon E3-1230 3.2GHz

8MB L3 cache, Intel MKL 10.3)

0
10

20
30
40

50
60
70
80

90
100

100 600 1100 1600

matrix order

G
F
lo

p
s

DGEMM
DGEMV

2014/5/27 NII Shonan Meeting 22

2014/5/27 NII Shonan Meeting 23

Significance of Performance Tuning
• In the case of calculations whose runtime lasts for

several months or longer, optimization may result
in a reduction of runtime on the order of a month.

• As in the case of numeric libraries, if a program is
used by many people, tuning will have sufficient
value.

• If tuning results in a 30% improvement in
performance, for example, the net result is the
same as using a machine having 30% higher
performance.

2014/5/27 NII Shonan Meeting 24

Optimization Policy
• If available, use a vendor-supplied high-speed library as

much as possible.
– BLAS, LAPACK, etc.

• The optimization capability of recent compilers is extremely
high.

• Optimization that can be performed by the compiler must
not be performed on the user side.
– Requires extra effort
– Results in a program that is complicated and may contain bugs

• Overestimates the optimizing capability of compilers
– Humans are dedicated to improving algorithms.

– Unless otherwise unavoidable, do not use an assembler.

2014/5/27 NII Shonan Meeting 25

Optimization Information of
Fortran Compiler on K computer

 (line-no.)(nest)(optimize)
 80 !$OMP DO
 81 1 p DO 70 II=1,NX,NBLK
 82 2 p DO 30 JJ=1,NY,NBLK
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< PREFETCH : 2
 <<< A: 2
 <<< Loop-information End >>>
 83 3 p DO 20 I=II,MIN0(II+NBLK-1,NX)
 84 3 !OCL SIMD(ALIGNED)
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< SIMD
 <<< SOFTWARE PIPELINING
 <<< Loop-information End >>>
 85 4 p 8v DO 10 J=JJ,MIN0(JJ+NBLK-1,NY)
 86 4 p 8v B(J,I-II+1)=A(I,J)
 87 4 p 8v 10 CONTINUE

2014/5/27 26

Loop Unrolling (1/2)
• Loop unrolling expands a loop in order to do the

following:
– Reduce loop overhead
– Perform register blocking

• If expanded too much, register shortages or
instruction cache misses may occur, and so care
is needed.

double A[N], B[N], C;
for (i = 0; i < N; i++) {
 A[i] += B[i] * C;
}

double A[N], B[N], C;
for (i = 0; i < N; i += 4) {
 A[i] += B[i] * C;
 A[i+1] += B[i+1] * C;
 A[i+2] += B[i+2] * C;
 A[i+3] += B[i+3] * C;
}

NII Shonan Meeting

2014/5/27 27

Loop Unrolling (2/2)
double A[N][N], B[N][N],
 C[N][N], s;
for (j = 0; j < N; k++) {
 for (i = 0; i < N; j++) {
 s = 0.0;
 for (k = 0; k < N; k++) {
 s += A[i][k] * B[j][k];
 }
 C[j][i] = s;
 }
}

double A[N][N], B[N][N],
 C[N][N], s0, s1;

for (j = 0; j < N; j += 2)
 for (i = 0; i < N; i++) {
 s0 = 0.0; s1 = 0.0;
 for (k = 0; k < N; k++) {
 s0 += A[j][k] * B[j][k];
 s1 += A[j+1][k] * B[j+1][k];
 }
 C[j][i] = s0;
 C[j+1][i] = s1;
 }

Matrix multiplication Optimized matrix multiplication
NII Shonan Meeting

2014/5/27 28

Loop Interchange
• Loop interchange is a technique mainly for reducing the

adverse effects of large-stride memory accesses.
• In some cases, the compiler judges the necessity and

performs loop interchanges.
double A[N][N], B[N][N], C;
for (j = 0; j < N; j++) {
 for (k = 0; k < N; k++) {
 A[k][j] += B[k][j] * C;
 }
}

Before loop interchange

double A[N][N], B[N][N], C;
for (k = 0; k < N; k++) {
 for (j = 0; j < N; j++) {
 A[k][j] += B[k][j] * C;
 }
}

After loop interchange

NII Shonan Meeting

2014/5/27 29

Padding
• Effective in cases where multiple arrays have been mapped

to the same cache location and thrashing occurs
– Especially in the case of an array having a size that is a power of two

• It is recommended to change the defined sizes of two-
dimensional arrays.

• In some instances, this can be handled by specifying the
compile options.
 double A[N][N], B[N][N];

for (k = 0; k< N; k++) {
 for (j = 0; j < N; j++) {
 A[j][k] = B[k][j];
 }
}

Before padding

double A[N][N+1], B[N][N+1];
for (k = 0; k < N; k++) {
 for (j = 0; j < N; j++) {
 A[j][k] = B[k][j];
 }
}

After padding
NII Shonan Meeting

2014/5/27 30

Cache Blocking (1/2)
• Effective method for optimizing memory accesses
• Cache misses are reduced as much as possible.

double A[N][N], B[N][N], C;
for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 A[i][j] += B[j][i] * C;
 }
}

double A[N][N], B[N][N], C;
for (ii = 0; ii < N; ii += 4) {
 for (jj = 0; jj < N; jj += 4) {
 for (i = ii; i < ii + 4; i++) {
 for (j = jj; j < jj + 4; j++) {
 A[i][j] += B[j][i] * C;
 }
 }
 }
} NII Shonan Meeting

2014/5/27 31

Cache Blocking (2/2)

Memory access pattern
without blocking

Memory access pattern
with blocking

NII Shonan Meeting

2014/5/27 NII Shonan Meeting 32

Use of Fused Multiply-Add (FMA)
Instructions

• Today, floating-point multiplication is as fast as
floating-point addition on the latest processors.

• Moreover, many processors have a fused multiply-
add instruction.

where a, b, c and d are floating-point registers.

• An addition, a multiplication, or a fused multiply-
add each requires one machine cycle on many
processors that have fused multiply-add
instructions.

cbad ×±±=

2014/5/27 NII Shonan Meeting 33

Goedecker’s Method for Fused
Multiply-Add Instructions

• Goedecker’s method consists of repeated
transformations of the expression:

• Applying repeated transformations of the above
equation to a conventional radix-2 FFT, a radix-2
FFT algorithm suitable for fused multiply-add
instructions can be obtained.

0where
))/((

≠
+=+

a
yabxabyax

2014/5/27 NII Shonan Meeting 34

Conventional Radix-2 FFT Kernel
 SUBROUTINE FFT(AR,AI,BR,BI,CS,SN,M,L)
 DIMENSION AR(M,2,*),AI(M,2,*),BR(M,L,*),BI(M,L,*),CS(M,*),SN(M,*)
 DO J=1,L
 WR=CS(1,J)
 WI=SN(1,J)
 DO I=1,M
 TR=WR*AR(I,2,J)-WI*AI(I,2,J)
 TI=WR*AI(I,2,J)+WI*AR(I,2,J)
 BR(I,J,1)=AR(I,1,J)+TR
 BI(I,J,1)=AI(I,1,J)+TI
 BR(I,J,2)=AR(I,1,J)-TR
 BI(I,J,2)=AI(I,1,J)-TI
 END DO
 END DO
 RETURN
 END

- 2 Multiplications
- 4 Additions
- 2 FMAs
In total, 8 cycles are needed.

2014/5/27 NII Shonan Meeting 35

Radix-2 FFT Kernel Suitable for
Fused Multiply-Add Instructions

 SUBROUTINE FFT_FMA(AR,AI,BR,BI,CS,SN,M,L)
 DIMENSION AR(M,2,*),AI(M,2,*),BR(M,L,*),BI(M,L),CS(M,*),SN(M,*)
 DO J=1,L
 WR=CS(1,J)
 WIWR=SN(1,J)/WR
 DO I=1,M
 TR=AR(I,2,J)-WIWR*AI(I,2,J)
 TI=AI(I,2,J)+WIWR*AR(I,2,J)
 BR(I,J,1)=AR(I,1,J)+TR*WR
 BI(I,J,1)=AI(I,1,J)+TI*WR
 BR(I,J,2)=AR(I,1,J)-TR*WR
 BI(I,J,2)=AI(I,1,J)-TI*WR
 END DO
 END DO
 RETURN
 END

- 6 FMAs
In total, 6 cycles are needed.

2014/5/27 NII Shonan Meeting 36

Challenges

• To abstract the hardware configuration for
application developers is much more important.

• Domain specific-language is one of the solutions.
– SPIRAL, etc.

• The another way is developing numerical libraries
to exploit the system performance.

• How to reduce the cost of performance tuning?
– Automatic tuning
– Automated code generation

	Performance Tuning for High Performance Computing Applications
	Outline
	Performance Development of Supercomputers
	スライド番号 4
	スライド番号 5
	スライド番号 6
	Linpack Benchmark
	Overview of the HPC Challenge (HPCC) Benchmark Suite
	The Benchmark Tests
	Targeted Application Areas in the Memory Access Locality Space
	HPCC Testing Scenarios
	The winners of the 2013 HPC Challenge Class 1 Awards
	Indicator of Capability for Supplying Data to the Processor
	スライド番号 14
	Memory Hierarchy (1/2)
	Memory Hierarchy (2/2)
	Concept of Byte/Flop
	Performance of DAXPY (Intel Xeon E3-1230 3.2GHz 8MB L3 cache, Intel MKL 10.3)
	PC and Vector-type Supercomputer Memory Bandwidth
	Comparison of Theoretical Performance in DAXPY
	Arithmetic Operations in BLAS
	Performances of DGEMV and DGEMM (Intel Xeon E3-1230 3.2GHz 8MB L3 cache, Intel MKL 10.3)
	Significance of Performance Tuning
	Optimization Policy
	Optimization Information of�Fortran Compiler on K computer
	Loop Unrolling (1/2)
	Loop Unrolling (2/2)
	Loop Interchange
	Padding
	Cache Blocking (1/2)
	Cache Blocking (2/2)
	Use of Fused Multiply-Add (FMA) Instructions
	Goedecker’s Method for Fused Multiply-Add Instructions
	Conventional Radix-2 FFT Kernel
	Radix-2 FFT Kernel Suitable for Fused Multiply-Add Instructions
	Challenges

