
Performance Tuning for High 
Performance Computing 

Applications 
 

Daisuke Takahashi 
University of Tsukuba, Japan 

2014/5/27 NII Shonan Meeting 1 



2014/5/27 NII Shonan Meeting 2 

Outline 
• Performance development of 

supercomputers 
• HPC Challenge (HPCC) Benchmark Suite 
• It’s all bandwidth 
• Performance tuning 

– What is performance tuning? 
– Program optimization methods 
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Performance Development of 
Supercomputers 

• November 2013 TOP500 Supercomputing Sites 
– Tianhe-2 (Intel Xeon E5-2692 12C 2.2GHz, Intel Xeon 

Phi 31S1P) : 33.862 PFlops (3,120,000 Cores) 
– Titan (Cray XK7, Opteron 6274 16C 2.2GHz, NVIDIA 

K20x) : 17.590 PFlops (560,640 Cores) 
– Sequoia (BlueGene/Q, Power BQC 16C 1.6GHz) : 

17.173 PFlops (1,572,864 Cores) 
– K computer (SPARC64 VIIIfx 2.0GHz) : 10.510 PFlops 

(705,024 Cores) 
• Recently, the number of cores keeps increasing. 
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Source:http://www.slideshare.net/top500/top500-
november-2013  
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Source:http://www.slideshare.net/top500/top500-
november-2013  
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Source:http://www.slideshare.net/top500/top500-
november-2013  
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Linpack Benchmark 
• Developed by Jack Dongarra of the 

University of Tennessee.  
• Benchmark test for evaluating floating-point 

processing performance 
• Uses Gaussian elimination method to 

estimate the time required for solving 
simultaneous linear equations 

• Also used for the “TOP500 Supercomputer” 
benchmark 
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Overview of the HPC Challenge 
(HPCC) Benchmark Suite 

• HPC Challenge (HPCC) is a suite of tests 
that examine the performance of HPC 
architectures using kernels. 

• The suite provides benchmarks that bound 
the performance of many real applications 
as a function of memory access 
characteristics, e.g., 
– Spatial locality 
– Temporal locality 
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The Benchmark Tests 
• The HPC Challenge benchmark consists at 

this time of 7 performance tests: 
– HPL (High Performance Linpack) 
– DGEMM (matrix-matrix multiplication) 
– STREAM (sustainable memory bandwidth) 
– PTRANS (A=A+B^T, parallel matrix transpose) 
– RandomAccess (integer updates to random 

                           memory locations) 
– FFT (complex 1-D discrete Fourier transform) 
– b_eff (MPI latency/bandwidth test) 
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Targeted Application Areas in the 
Memory Access Locality Space 
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HPCC Testing Scenarios 
• Local (S-STREAM, S-RandomAccess,  

           S-DGEMM, S-FFT) 
– Only single MPI process computes. 

• Embarrassingly parallel (EP-STREAM,  
EP-RandomAccess, EP-DGEMM, EP-FFT) 
– All processes compute and do not communicate 

(explicitly). 
• Global (G-HPL, G-PTRANS, G-RandomAccess, 

             G-FFT) 
– All processes compute and communicate. 

• Network only (RandomRing Bandwidth, etc.) 
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The winners of the 2013 HPC 
Challenge Class 1 Awards 

• G-HPL: 9,796 TFlops 
– K computer (663,552 cores) 

• G-RandomAccess: 2,021 GUPS 
– IBM Power 775 (63,648 cores) 

• G-FFT: 205.9 TFlops 
– K computer (663,552 cores) 

• EP-STREAM-Triad (system): 3,857 TB/s 
– K computer (663,552 cores) 
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Indicator of Capability for Supplying 
Data to the Processor 

• In a computer system that performs scientific 
computations, the “capability for supplying data to 
the processor” is most important. 

• Unless data is supplied to the arithmetic unit of the 
processor, computations cannot be performed. 

• The computing performance of the processor is 
largely impacted by the data supply capacity. 

• “Bandwidth” is used as an indicator of the data 
supply capability. 
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Source: Wikipedia 
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Memory Hierarchy (1/2) 

• Memory hierarchy is designed based on the 
assumed locality of patterns of access to the 
memory area. 

• Different types of locality: 
– Temporal locality 

• Property whereby the accessing of a certain address 
reoccurs within a relatively short time interval 

– Spatial locality 
• Property whereby data accessed within a certain time interval 

is distributed among relatively nearby addresses 
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Memory Hierarchy (2/2) 

• These tendencies often apply to business 
computations and other non-numeric computations, 
but are not generally applicable to numeric 
computation programs. 

• Especially in large-scale scientific computations, 
there is often no temporal locality for data 
references. 

• This is a major reason why vector-type 
supercomputers are advantageous for scientific 
computations. 
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Concept of Byte/Flop 
• The amount of memory access needed when performing a 

single floating-point operation is defined in byte/flop. 
 
 

 
 
 

 
• With daxpy, double-precision real-number data must be 

loaded/stored three times (24 bytes total) in order to 
perform two double-precision floating-point operations per 
single iteration. 
– In this case, 24Byte/2Flop = 12Byte/Flop. 

• The smaller the Byte/Flop value is better. 

void daxpy(int n, double a, double *x, double *y) 
{ 
    int i; 
    for (i = 0; i < n; i++) 
        y[i] += a * x[i]; 
} 



Performance of DAXPY (Intel Xeon 
E3-1230 3.2GHz 8MB L3 cache, 

Intel MKL 10.3) 
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PC and Vector-type Supercomputer 
Memory Bandwidth 

• Intel Xeon E5-2697 v2 (Ivy Bridge-EP 2.7GHz, 
4 x DDR3-1866, 2 sockets/node) 
– The theoretical peak performance of each node is 

21.6GFlops×12 cores×2 sockets=518.4GFlops 
– Memory bandwidth up to 119.4GB/s 
– Byte/Flop value is 119.4/518.4≒0.23 

• NEC SX-ACE (4 cores/node) 
– The theoretical peak performance of each node is 

69GFlops×4 cores=276GFlops 
– Memory bandwidth up to 256GB/s 
– Byte/Flop value is 256/276 ≒0.93 
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Comparison of Theoretical 
Performance in DAXPY 

• Intel Xeon E5-2697 v2 
– Theoretical peak performance of each node: 518.4GFlops 
– In the case where the working set exceeds the cache 

capacity, the memory bandwidth (119.4GB/s) is rate-
limiting and so the limit is 
(119.4GB/s)/(12Byte/Flop)≒9.95GFlops 

– Only approximately 1.9% of theoretical peak performance! 
• NEC SX-ACE 

– Theoretical peak performance of each node: 276GFlops 
– The memory bandwidth (256GB/s) is rate-limiting, and so 

the limit is (256GB/s)/(12Byte/Flop)≒21.3GFlops 
– Approximately 7.7% of theoretical peak performance. 



Arithmetic Operations in BLAS 
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Performances of DGEMV and 
DGEMM (Intel Xeon E3-1230 3.2GHz 

8MB L3 cache, Intel MKL 10.3) 
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Significance of Performance Tuning 
• In the case of calculations whose runtime lasts for 

several months or longer, optimization may result 
in a reduction of runtime on the order of a month. 

• As in the case of numeric libraries, if a program is 
used by many people, tuning will have sufficient 
value. 

• If tuning results in a 30% improvement in 
performance, for example, the net result is the 
same as using a machine having 30% higher 
performance. 
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Optimization Policy 
• If available, use a vendor-supplied high-speed library as 

much as possible. 
– BLAS, LAPACK, etc. 

• The optimization capability of recent compilers is extremely 
high. 

• Optimization that can be performed by the compiler must 
not be performed on the user side. 
– Requires extra effort 
– Results in a program that is complicated and may contain bugs  

• Overestimates the optimizing capability of compilers 
– Humans are dedicated to improving algorithms. 

– Unless otherwise unavoidable, do not use an assembler. 
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Optimization Information of 
Fortran Compiler on K computer 

 (line-no.)(nest)(optimize) 
         80                     !$OMP DO 
         81     1   p                 DO 70 II=1,NX,NBLK 
         82     2   p                   DO 30 JJ=1,NY,NBLK 
                              <<< Loop-information Start >>> 
                              <<<  [OPTIMIZATION] 
                              <<<    PREFETCH       : 2 
                              <<<      A: 2 
                              <<< Loop-information  End >>> 
         83     3   p                     DO 20 I=II,MIN0(II+NBLK-1,NX) 
         84     3               !OCL SIMD(ALIGNED) 
                              <<< Loop-information Start >>> 
                              <<<  [OPTIMIZATION] 
                              <<<    SIMD 
                              <<<    SOFTWARE PIPELINING 
                              <<< Loop-information  End >>> 
         85     4   p   8v                  DO 10 J=JJ,MIN0(JJ+NBLK-1,NY) 
         86     4   p   8v                    B(J,I-II+1)=A(I,J) 
         87     4   p   8v         10       CONTINUE 
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Loop Unrolling (1/2) 
• Loop unrolling expands a loop in order to do the 

following: 
– Reduce loop overhead 
– Perform register blocking  

• If expanded too much, register shortages or 
instruction cache misses may occur, and so care 
is needed. 

double A[N], B[N], C; 
for (i = 0; i < N; i++) { 
  A[i] += B[i] * C; 
} 

double A[N], B[N], C; 
for (i = 0; i < N; i += 4) { 
  A[i] += B[i] * C; 
  A[i+1] += B[i+1] * C; 
  A[i+2] += B[i+2] * C; 
  A[i+3] += B[i+3] * C; 
} 
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Loop Unrolling (2/2) 
double A[N][N], B[N][N], 
            C[N][N], s; 
for (j = 0; j < N; k++) { 
   for (i = 0; i < N; j++) { 
      s = 0.0; 
      for (k = 0; k < N; k++) { 
         s += A[i][k] * B[j][k]; 
      } 
      C[j][i] = s; 
    } 
} 

double A[N][N], B[N][N], 
        C[N][N], s0, s1; 

for (j = 0; j < N; j += 2) 
   for (i = 0; i < N; i++) { 
      s0 = 0.0;  s1 = 0.0; 
      for (k = 0; k < N; k++) { 
         s0 += A[j][k] * B[j][k]; 
         s1 += A[j+1][k] * B[j+1][k]; 
      } 
      C[j][i] = s0; 
      C[j+1][i] = s1; 
   } 

Matrix multiplication Optimized matrix multiplication 
NII Shonan Meeting 
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Loop Interchange 
• Loop interchange is a technique mainly for reducing the 

adverse effects of large-stride memory accesses. 
• In some cases, the compiler judges the necessity and 

performs loop interchanges. 
double A[N][N], B[N][N], C; 
for (j = 0; j < N; j++) { 
  for (k = 0; k < N; k++) { 
    A[k][j] += B[k][j] * C; 
  } 
} 

Before loop interchange 

double A[N][N], B[N][N], C; 
for (k = 0; k < N; k++) { 
  for (j = 0; j < N; j++) { 
    A[k][j] += B[k][j] * C; 
  } 
} 

After loop interchange 
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Padding 
• Effective in cases where multiple arrays have been mapped 

to the same cache location and thrashing occurs 
– Especially in the case of an array having a size that is a power of two 

• It is recommended to change the defined sizes of two-
dimensional arrays. 

• In some instances, this can be handled by specifying the 
compile options. 
 double A[N][N], B[N][N]; 

for (k = 0; k< N; k++) { 
  for (j = 0; j < N; j++) { 
    A[j][k] = B[k][j]; 
  } 
} 

Before padding 

double A[N][N+1], B[N][N+1]; 
for (k = 0; k < N; k++) { 
  for (j = 0; j < N; j++) { 
        A[j][k] = B[k][j]; 
  } 
} 

After padding 
NII Shonan Meeting 
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Cache Blocking (1/2) 
• Effective method for optimizing memory accesses 
• Cache misses are reduced as much as possible. 

double A[N][N], B[N][N], C; 
for (i = 0; i < N; i++) { 
  for (j = 0; j < N; j++) { 
    A[i][j] += B[j][i] * C; 
  } 
} 

double A[N][N], B[N][N], C; 
for (ii = 0; ii < N; ii += 4) { 
  for (jj = 0; jj < N; jj += 4) { 
    for (i = ii; i < ii + 4; i++) { 
      for (j = jj; j < jj + 4; j++) { 
        A[i][j] += B[j][i] * C; 
      } 
    } 
  } 
} NII Shonan Meeting 
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Cache Blocking (2/2) 

Memory access pattern 
without blocking 

Memory access pattern 
with blocking 

NII Shonan Meeting 
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Use of Fused Multiply-Add (FMA) 
Instructions 

• Today, floating-point multiplication is as fast as 
floating-point addition on the latest processors. 

• Moreover, many processors have a fused multiply-
add instruction. 
 
 
where a, b, c and d are floating-point registers. 

• An addition, a multiplication, or a fused multiply-
add each requires one machine cycle on many 
processors that have fused multiply-add 
instructions. 

cbad ×±±=
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Goedecker’s Method for Fused 
Multiply-Add Instructions 

• Goedecker’s method consists of repeated 
transformations of the expression: 
 
 
 
 

• Applying repeated transformations of the above 
equation to a conventional radix-2 FFT, a radix-2 
FFT algorithm suitable for fused multiply-add 
instructions can be obtained. 
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Conventional Radix-2 FFT Kernel 
     SUBROUTINE FFT(AR,AI,BR,BI,CS,SN,M,L) 
     DIMENSION AR(M,2,*),AI(M,2,*),BR(M,L,*),BI(M,L,*),CS(M,*),SN(M,*) 
     DO J=1,L 
          WR=CS(1,J) 
          WI=SN(1,J) 
          DO I=1,M 
              TR=WR*AR(I,2,J)-WI*AI(I,2,J) 
              TI=WR*AI(I,2,J)+WI*AR(I,2,J) 
              BR(I,J,1)=AR(I,1,J)+TR 
              BI(I,J,1)=AI(I,1,J)+TI 
              BR(I,J,2)=AR(I,1,J)-TR 
              BI(I,J,2)=AI(I,1,J)-TI 
          END DO 
     END DO 
     RETURN 
     END 

- 2 Multiplications 
- 4 Additions 
- 2 FMAs 
In total, 8 cycles are needed. 
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Radix-2 FFT Kernel Suitable for 
Fused Multiply-Add Instructions 

     SUBROUTINE FFT_FMA(AR,AI,BR,BI,CS,SN,M,L) 
     DIMENSION AR(M,2,*),AI(M,2,*),BR(M,L,*),BI(M,L),CS(M,*),SN(M,*) 
     DO J=1,L 
          WR=CS(1,J) 
          WIWR=SN(1,J)/WR 
          DO I=1,M 
              TR=AR(I,2,J)-WIWR*AI(I,2,J) 
              TI=AI(I,2,J)+WIWR*AR(I,2,J) 
              BR(I,J,1)=AR(I,1,J)+TR*WR 
              BI(I,J,1)=AI(I,1,J)+TI*WR 
              BR(I,J,2)=AR(I,1,J)-TR*WR 
              BI(I,J,2)=AI(I,1,J)-TI*WR 
          END DO 
     END DO 
     RETURN 
     END 

- 6 FMAs 
In total, 6 cycles are needed. 
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Challenges 

• To abstract the hardware configuration for 
application developers is much more important. 

• Domain specific-language is one of the solutions. 
– SPIRAL, etc. 

• The another way is developing numerical libraries 
to exploit the system performance. 

• How to reduce the cost of performance tuning? 
– Automatic tuning 
– Automated code generation 
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