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ABSTRACT
There are many different styles of parallel programming for
shared-memory hardware. Each style has strengths, but can
conflict with other styles. How can we use a variety of these
styles in one program and minimize their conflict and max-
imize performance, readability, and flexibility? This paper
surveys the relative advantages and disadvantages of three
styles (SIMD, fork join, and message passing), shows how
to compose them hierarchically, and advises how to choose
what goes at each level in the hierarchy.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Patterns; D.1.3 [Program-
ming Techniques]: ConcurrentProgramming—parallel pro-
gramming

General Terms
Design, Algorithms

Keywords
SIMD, fork-join, message-passing, composition

1. INTRODUCTION
There are many different styles of parallel programming

for shared-memory hardware. Each has strengths and weak-
nesses, both from software and hardware perspectives. Pro-
grams tend to use several styles partly because no one style
is good for everything, and partly because the hardware of-
ten has features best exploited by one of the styles. But
these styles can conflict with each other. How can we use a
variety of parallel programming styles in one program and
minimize their conflict and maximize performance, readabil-
ity, and flexibility?
This paper proposes a pattern as an answer to this ques-

tion. Section 2 explains the parallel programming context
along with three programming styles. Section 3 discusses
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.

Messaging (MPI)



Three Layer Cake for Shared-Memory Programming

Arch D. Robison
Intel Corporation
1906 Fox Drive

Champaign IL 61821
arch.robison@intel.com

Ralph E. Johnson
University of Illinois at Urbana-Champaign

Department of Computer Science
201 N. Goodwin Ave

Urbana IL 61801
rjohnson@illinois.edu

ABSTRACT
There are many different styles of parallel programming for
shared-memory hardware. Each style has strengths, but can
conflict with other styles. How can we use a variety of these
styles in one program and minimize their conflict and max-
imize performance, readability, and flexibility? This paper
surveys the relative advantages and disadvantages of three
styles (SIMD, fork join, and message passing), shows how
to compose them hierarchically, and advises how to choose
what goes at each level in the hierarchy.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Patterns; D.1.3 [Program-
ming Techniques]: ConcurrentProgramming—parallel pro-
gramming

General Terms
Design, Algorithms

Keywords
SIMD, fork-join, message-passing, composition

1. INTRODUCTION
There are many different styles of parallel programming

for shared-memory hardware. Each has strengths and weak-
nesses, both from software and hardware perspectives. Pro-
grams tend to use several styles partly because no one style
is good for everything, and partly because the hardware of-
ten has features best exploited by one of the styles. But
these styles can conflict with each other. How can we use a
variety of parallel programming styles in one program and
minimize their conflict and maximize performance, readabil-
ity, and flexibility?
This paper proposes a pattern as an answer to this ques-

tion. Section 2 explains the parallel programming context
along with three programming styles. Section 3 discusses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 2nd Annual Conference on Parallel Programming Patterns
(ParaPLoP).
ParaPLoP ’10 March 30 - 31st, 2010, Carefree, AZ
Copyright 2010 is held by the authors. ACM 978-1-4503-0127-5 .

the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.

Threading (TBB,OMP..)

Messaging (MPI)
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1. INTRODUCTION
There are many different styles of parallel programming

for shared-memory hardware. Each has strengths and weak-
nesses, both from software and hardware perspectives. Pro-
grams tend to use several styles partly because no one style
is good for everything, and partly because the hardware of-
ten has features best exploited by one of the styles. But
these styles can conflict with each other. How can we use a
variety of parallel programming styles in one program and
minimize their conflict and maximize performance, readabil-
ity, and flexibility?
This paper proposes a pattern as an answer to this ques-

tion. Section 2 explains the parallel programming context
along with three programming styles. Section 3 discusses
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.

Threading (TBB,OMP..)

Vectorization (SIMD)

Messaging (MPI)
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.

Threading (TBB,OMP..)

Vectorization (SIMD)

Messaging (MPI)
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
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from values to values. Control flow remains sequential.
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tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.

Threading (TBB,OMP..)

Vectorization (SIMD)

Messaging (MPI)

A Haskell Cake

GHC SIMD primops, 
Intel HRC

Mainland,  
ICFP’13 

strategies, Repa,  
monad-par, LVish

Haskell’11 
POPL’14,  
PLDI’14 

Cloud Haskell, HdpH, 
meta-par

ICFP’12 



SafeHaskell Determinism
• Pure function 

‣ (Architecture,Prog) → Answer  

• Still allows parallelism! 
• Some relaxation helpful: 

‣ (Word size, OS name, GPU model, Prog) 
 → Answer



HLL’s (e.g. Haskell) for HPC? 

• Not yet. 
• Feature bag for workload: 

‣ {Flops, read/write array elem, funcall/jmp} 
‣ {alloc/gc, array copy, indirect jmp} 

• Orthogonal: compiler quality 
‣ aggressive compiler techniques can perform 

alchemy & transform feature bag 
‣ Haskell can sometimes get down to blue only 

(how often? see Leaf Petersen et al. 2013) 
‣ What remains is bkend compiler quality
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ABSTRACT
There are many different styles of parallel programming for
shared-memory hardware. Each style has strengths, but can
conflict with other styles. How can we use a variety of these
styles in one program and minimize their conflict and max-
imize performance, readability, and flexibility? This paper
surveys the relative advantages and disadvantages of three
styles (SIMD, fork join, and message passing), shows how
to compose them hierarchically, and advises how to choose
what goes at each level in the hierarchy.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Patterns; D.1.3 [Program-
ming Techniques]: ConcurrentProgramming—parallel pro-
gramming

General Terms
Design, Algorithms

Keywords
SIMD, fork-join, message-passing, composition

1. INTRODUCTION
There are many different styles of parallel programming

for shared-memory hardware. Each has strengths and weak-
nesses, both from software and hardware perspectives. Pro-
grams tend to use several styles partly because no one style
is good for everything, and partly because the hardware of-
ten has features best exploited by one of the styles. But
these styles can conflict with each other. How can we use a
variety of parallel programming styles in one program and
minimize their conflict and maximize performance, readabil-
ity, and flexibility?
This paper proposes a pattern as an answer to this ques-

tion. Section 2 explains the parallel programming context
along with three programming styles. Section 3 discusses
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.
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1. INTRODUCTION
There are many different styles of parallel programming

for shared-memory hardware. Each has strengths and weak-
nesses, both from software and hardware perspectives. Pro-
grams tend to use several styles partly because no one style
is good for everything, and partly because the hardware of-
ten has features best exploited by one of the styles. But
these styles can conflict with each other. How can we use a
variety of parallel programming styles in one program and
minimize their conflict and maximize performance, readabil-
ity, and flexibility?
This paper proposes a pattern as an answer to this ques-

tion. Section 2 explains the parallel programming context
along with three programming styles. Section 3 discusses
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the software forces for using each of the three styles. Sec-
tion 4 similarly covers the hardware forces. Section 6 shows
the Three Layer Cake pattern that hierarchically composes
the three styles, and how to choose which layer to use for
each part of a program. Section 7 sketches an example pro-
gram that uses the pattern. Section 8 mentions known uses
of the pattern.

2. CONTEXT
Programs for parallel computers have both software and

hardware aspects. The software aspects are about making
a program correct. The hardware aspects are about making
it fast. There are many models of parallel programming.
Each model abstracts away some details and limits the do-
main of programming to make reasoning about a program’s
correctness and performance easier. The models may differ
in how well they exploit aspects of parallel hardware. For
example, some models map naturally onto hardware SIMD
units, whereas other models map naturally on to hardware
threads. The pattern in this paper is based on three com-
mon models, which this paper calls SIMD, fork join, and
message passing. All are decades old, predating the current
need to exploit hardware parallelism.

The SIMD model extends serial programming by extend-
ing the space of operand values from scalars to arrays. It
extends scalar operations to element-wise application, reduc-
tion, scan (parallel prefix), etc. These are functional maps
from values to values. Control flow remains sequential.

The fork-join model extends serial programming by ex-
tending control flow. It introduces a new control structure,
fork-join, that allows control to split into multiple indepen-
dent control flows that later join together. Some variants
enforce clean nesting for fork-join (e.g. Cilk [2]) while others
do not (e.g. TBB [5]). Those particulars are not important
to the general pattern. However, for sake of showing fork-
join in pure form with strong guarantees, Cilk semantics are
assumed.

The message-passing model extends serial programs by
composing them via message passing. To distinguish from
the full application program, each serial subprogram will
be called an activity. Each activity is programmed like an
ordinary sequential program. Message passing is simply a
form of I/O between activities.

Often one of these models is not enough for all parts of
a program, and thus the models must be composed. The
issue becomes one of deciding which models to use where,
and how to glue them together.
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DSLs @ IU
• Standalone 

‣ Harlan - closures on the GPU + region based mem 
mgmt (OOPSLA’14) 

• Haskell-embedded 
‣ Accelerate - cpu bkends + multi-device 
‣ StreamItHS (one-off experiment) 
‣ Obsidian - lower-lvl GPU kernel construction 

(CACM 06/2014) 
‣ [new] Probabilistic programming (Ken Shan) 
‣ [new] FLOOD (new streaming DSL)  

+ Flange (net. monitoring and in-net comp.)
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Accelerate
• Meta: Haskell

‣ replace Prelude things: (==*), (>*), IsNum
‣ (Z :. x :. y) shapes and shape types

• rank polymorphism (e.g. fold inner of N dims)

‣ works w/ custom product types
• lift/unlift for tuples (no overloaded pat. match)

‣ Implementation: observable sharing + type-
level de-bruijn indices

• Target: 
‣ multi-dim arrays, tuples, scalars, 
‣ fixed communication combinators (fold, scan)

dotp :: IsNum n => Acc (Vector n) !
                -> Acc (Vector n) !
                -> Acc (Scalar n)!
dotp x y = fold (+) 0 (zipWith (*) x y)
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General purpose programs

DSL compilers provide small targets
• Combination of 

‣ restricting lang features 
‣ impose structure (stream graph, stencil, etc) 

• How best to hit them?

Halide
StreamIt

Accelerate

MetaProgramming

Abstraction without regrets

• General staging

• 2-stage hetero.  
metaprog.

• Partial Eval.
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Research langs: 
• Copperhead, Sh,  

ArBB,  
• Nikola, Obsidian, 

Accelerate,  
• Harlan, NOVA

By practitioners, for 
practitioners: 
• R, NumPy 
• Theano, Torch



Research langs: 
• Copperhead, Sh,  

ArBB,  
• Nikola, Obsidian, 

Accelerate,  
• Harlan, NOVA

By practitioners, for 
practitioners: 
• R, NumPy 
• Theano, Torch

  What are we missing? 
Are we being honest about state of lib 

support, compiler support, etc? 
Do we provide the most important bits?
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Ease of use?  REPL time - NumPy

>>> from numpy import *
>>> arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])  

>>> arange(10).reshape(2,5)
array([[0, 1, 2, 3, 4],  
       [5, 6, 7, 8, 9]])
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> import Data.Array.Accelerate
> :t generate
generate  
  :: (Elt a, Shape ix) =>  
     Exp ix ->  
     (Exp ix -> Exp a) ->  
     Acc (Array ix a)

REPL time - Accelerate
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> generate 10 id
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> generate 10 id
> generate 10 (\x -> x)  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> generate 10 id
> generate 10 (\x -> x)  

No instance for (Elt a0) arising from a use of ‘print’  
    The type variable ‘a0’ is ambiguous  
    Note: there are several potential instances:  
      instance Elt ()  
        -- Defined in ‘Data.Array.Accelerate.Array.Sugar’  
      instance (Elt a, Elt b) => Elt (a, b)  
        -- Defined in ‘Data.Array.Accelerate.Array.Sugar’  
      instance (Elt a, Elt b, Elt c) => Elt (a, b, c)  
        -- Defined in ‘Data.Array.Accelerate.Array.Sugar’  
      ...plus 38 others

REPL time - Accelerate



> generate 10 (\x -> x) :: Acc (Vector Int)  

Couldn't match type ‘DIM0 :. Int’ with ‘Int’  
    Expected type: Exp Int  
      Actual type: Exp DIM1  
    In the expression: x

REPL time - Accelerate



REPL time - Accelerate



> generate 10  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Acc (Vector Int)
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> generate 10  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Acc (Vector Int)
 
No instance for (IsNum (DIM0 :. Int)) 
arising from the literal ‘10’  
In the first argument of ‘generate’, namely 
‘10’

REPL time - Accelerate
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> generate (Z :. 10)  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Acc (Vector Int)
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> generate (Z :. 10)  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Acc (Vector Int)
 
Couldn't match  
   expected type ‘Exp DIM1’  
with actual type ‘Z :. head0’  
In the first argument of ‘generate’, namely 
‘(Z :. 10)’

REPL time - Accelerate
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> generate (constant (Z :. 10))  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Acc (Vector Int)

REPL time - Accelerate



> generate (constant (Z :. 10))  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Acc (Vector Int)
 
generate Z :. 10 (\x0 -> indexHead x0)
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> import Data.Array.Accelerate.Interpreter  
> run $ generate (constant (Z :. 10))  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Vector Int
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> import Data.Array.Accelerate.Interpreter  
> run $ generate (constant (Z :. 10))  
    (\x -> let (Z :. i) = unlift x  
           in i)  
     :: Vector Int
 
Array (Z :. 10) [0,1,2,3,4,5,6,7,8,9]

REPL time - Accelerate

Caveat: (Z :. 10 :. 20) is usually 
(Z :. (10::Int) :. (20::Int)) 

Caveat: no 2D or higher printing



 
> run $ generate (index1 10) unindex1  
        :: Vector Int!
 
Array (Z :. 10) [0,1,2,3,4,5,6,7,8,9]

REPL time - Accelerate
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> p0
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> p0
|  1  2  3  4  5 |  
|  6  7  8  9 10 |  

REPL time - [Easy] Accelerate



> p0
|  1  2  3  4  5 |  
|  6  7  8  9 10 |  

> :t p0  
p0 :: Matrix Int64  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> p0
|  1  2  3  4  5 |  
|  6  7  8  9 10 |  

> :t p0  
p0 :: Matrix Int64  

> p0 + p0  
|  2  4  6  8 10 |  
| 12 14 16 18 20 |

REPL time - [Easy] Accelerate



Part 3: Alternatives to embedding



Alternative 1: 
Quotation-free metaprog
• “Quotation” includes: 

‣ `(foo ,x)    #`(foo #,x)   $[foo ..]  .< 8 - .~y .> 
‣  let (x,y) = lift (f x)  

in unlift (x + constant z, y)!

• Quotation-free ⟹ partial eval. 
‣ Phase ambiguity? 
‣ Not if  

• 2 stage only 
• feature exists in only meta or target/object lang.



Sans embedding tricks
 let x :: Exp Int!
     y :: Exp Float!
     (x,y) = lift (f x)  
in unlift (x + constant z, y)!

      :: Exp (Int,Float)!
v.s. 
 let (x,y) = (f x)  
in (x + z, y)



Sans embedding tricks
 let x :: Exp Int!
     y :: Exp Float!
     (x,y) = lift (f x)  
in unlift (x + constant z, y)!

      :: Exp (Int,Float)!
v.s. 
 let (x,y) = (f x)  
in (x + z, y)

• Use haskell-src-exts, etc to parse standalone files.  
• Enforce language subsetting (syntactically). 
• Reuse existing Haskell type checker.



But… still want some abstraction. 
Simplest proposal:

p := map (λv.e) p | fold (λv1 v2.e) e p	
   | v | let v=p in p | …	
e := e+e | e*e | if e e e | …	
!
M := λv.M | M M | M+M | if M M M | …



But… still want some abstraction. 
Simplest proposal:

p := map (λv.e) p | fold (λv1 v2.e) e p	
   | v | let v=p in p | …	
e := e+e | e*e | if e e e | …	
!
M := λv.M | M M | M+M | if M M M | …

Hypothesis: people don’t really use that 
much functionality in their metaprogs.



• Expand source file into 
‣ 1. real haskell code 
‣ 2. a subset-validated AST 

(phase polymorphism) 
• When codegen invoked, partially 

evaluate; succeed or fail 
• Optimize if desired.

But… still want some abstraction. 
Simplest proposal:
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Partial eval. error messages can 
be surprisingly comprehensible

• map (if x y z) a  

• “Expected x to be compile-time computable”

• Meta-prog runtime is still compile-time in the 
Accelerate case.
‣ No fundamental advantage of type errors over 

other compile-time errors.
‣ Tracking source locations is always good



Some languages already do a 
(possibly sloppy) form of implicit 
staging

• StreamIt - except not with very good error 
messages  
!

• WaveScript - my thesis, embodies 
approach on prev. slides



Experience with “fuzzy” staging
!
fun foo(n,S) {!
  if (n==0) S!
  else {!
   S2 = iterate x in S {!
         emit x;!
         if (even(x)) emit x; !
        };!
   foo(n-1,S2)!
  }!
}
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Also: staging optional (e.g. partial eval)



I don’t believe common EDSL tropes

• “Easier because you don’t have to 
implement a parser” 

• “Easier because you reuse the host std lib” 
• “Easier because you avoid retraining in 

terms of syntax, etc”



Alternative 2: Embed in a more 
customizable host language
• Racket is a good candidate: 

• (acc (let [(x y) (ref a1 i)]  
       (map (+ x) a2)))  

• IDE support, errors, custom type checker.



Proposal: all of the above!
• DSL compilers should (usually) be front-end 

agnostic 
‣ really portable = one .h and one .so 
!

• We’re thinking about doing an online user study 
‣ compare DSL frontends, e.g.: 

• Acc. traditional embedded vs.  
• Acc. w/easy wrappers vs.  
• Acc. Racket embedded vs. 
• Acc. language subsetting + partial eval 


