NII Shonan Meeting, Oct 21, 2014

Generalized Software Reliability Model (GSRM)

Hironori Washizaki 鷲崎 弘宜 Waseda University National Institute of Informatics

Twitter: @Hiro_Washi washizaki@waseda.jp

http://www.washi.cs.waseda.ac.jp/

Kiyoshi Honda, Hironori Washizaki, YoshiakiFukazawa, "A Generalized Software Reliability Model Considering Uncertainty and Dynamics in Development," PROFES 2013

Background: Testing and Reliability

- Empirical
 - Bug Localization in Industry [ICST'14]
 - Testing in OSS [PROFES'14]
- Web and Ajax
 - Gray Box Testing [FASE'13]
 - Mutation Testing [SEKE'13]
 - State-Machine Extraction and Verification [ASE'13][ASE'14]

Semi-automatic Incompatibility Localization for Re-engineered Industrial Software, ICST'14 Do open source software projects conduct tests enough?, PROFES'14 Mutation Analysis for JavaScript Web Applications Testing, SEKE'13 Automated Verification of Pattern-based Interaction Invariants in Ajax Applications, ASE'13 Validating Ajax Applications Using a Delay-Based Mutation Technique, ASE'14 A generalized software reliability model considering uncertainty and dynamics in development. PROFES'13

Motivation

- When can we release software?
- How many efforts are necessary for further testing?

Software Reliability Model (SRM)

Types of SRM

- Statistic analysis model
 - From actual data approximate to a curve.
 - Gompertz model
 - Logistic model
- Stochastic process model
 - The detection of defects follows stochastic process
 - Non-homogeneous Poisson process(NHPP) model [Goel]

[Goel] A.L. Goel and K. Okumoto *A non-homogeneous poisson process model for software reliability and other performance measures*, 1979

Further Challenges in SRM

- Uncertainty
 - Actual projects have many uncertain elements which cause defects.
 - E.g. changes of specifications
- Dynamicity
 - Actual projects have some time dependency.
 - E.g. changes of developers

Idea: Generalized SRM

Conventional Logistic Model

$$\frac{N(t)}{dt} = (a + bN(t))N(t)$$

- Assumptions
 - Number of defects that can be found is variable depending on time.
 - Number of defects that can be found contains uncertainty, which can be simulated with Gaussian white noise.

Dynamicity Uncertainty

$$a = \alpha(t) + \sigma dw(t)$$

$$dN(t) = (\alpha(t) + \sigma dw(t) + \beta N(t))N(t)dt$$

Uncertainty

The uncertainty increases near the end.

The uncertainty is constant at any given time.

the uncertainty is greater at the start of the project than at the end.

Dynamicity

The number of developers is constant.

The number of developers per unit time changes at a certain time. The number of developers per unit time increase near the end.

Combination of Uncertainty and Dynamicity

Prediction with Probability

Visualization integrated with Continuous Integration Tool

13

Case (Industry)

Module	Current	Predicted Total	Predicted Current	Predicted End Day
XYZ	147	144	134	156

Almost all defects seem to be detected. Now more debugging rather than testing.

14

Case (OSS)

Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa, "Predicting the Release Time Based on a Generalized Software Reliability Model (GSRM)," COMPSAC'14

Open Research Questions

- How to Predict Uncertainty and Dynamicity?
- How to dynamically adapt prediction?
- Can we integrate testing and debugging techniques with (G)SRM?
- Any relations among Predicted Reliability and other measures such as Testing Coverage and Mutation Testing Scores?

