
Session 2 Discussion 

Recorded by Lionel Montrieux, NII, Japan 
 

Bashar Nuseibeh: Adaptation and Boundaries 
 
Bashar starts by warning us that most of his talk is speculation, no 
results, though he has some evidence to support his claims. He hopes to 
trigger discussions. 
 
Bashar focuses on boundaries, especially in ubiquitous and mobile 
systems. These systems should be able to reconfigure themselves, and 
adapt to changing contexts, but somehow users should not notice. Bashar 
argues that this seamlessness in fact hides boundaries between systems 
and components. These boundaries change, and information flows across them. 
 
Boundaries are prevalent in software engineering, and it is very 
instructive to think of boundaries and the flow information across them. 
Bashar argues that boundaries in SE (e.g. boundaries between design and 
run time) are not disappearing, but are often tacit. It is important to 
identify those tacit boundaries. 
 
In requirements engineering, he echoes Michael Jackson's argument that 
the essence of requirements engineering is to find the problem's boundaries. 
 
Security is all about boundaries. Get them wrong, and your system is not 
secure. Trust assumptions are the raw material of boundaries, as they 
affect what designers believe to be true at a certain point. These trust 
assumptions change over time, and so do the boundaries that follow from 
them. 
 
Bashar concludes by talking about topological boundaries, and the use of 
topology to describe the structure of the operational environment of a 
system, including its physical, digital, and/or social aspects. 
 
 
John Mylopoulos: Engineering Adaptive Software Systems 
 
John had prepared 10 questions, on the tools, techniques and concepts 
for building adaptive software systems (ADSSs). Due to time constraints, 
he had to skip a few of them. 
 
What makes ADSSs special, is their architecture that separates the base 
system from the adaptation system. 
 
 
1/ What requirements lead to a MAPE? 
 
4 types of requirements need a MAPE look: awareness, evolution, 
adaptation and contextual requirements. Tools and techniques are 
required to deal with each of those types of requirements. 
 
2/ What do runtime requirements look like? 
 



The literature includes hierarchies of goals, fuzzy runtime requirement 
models, or runtime requirement models for reflection. The critical issue 
is that monitoring becomes non-scalable and/or intractable in the 
modelling language is over-expressive. The description of the system's 
behaviour, in particular, is very important. 
 
3/ What failures trigger adaptation? 
 
[skipped] 
 
4/ Diagnosing the problem 
 
Failure is often a symptom of a problem, not the problem itself. Root 
cause analysis is necessary to understand what happened, and hopefully 
prevent it from happening again. Some answers may exist in the AI 
diagnostic community. Solutions are often difficult to scale, but some 
seem to work well in practice. 
 
5/ Systems with large adaptation spaces 
 
How big an adaptation space does a system support? What's the space of 
all possible adaptations? 
 
6/ Dealing with multiple failures 
 
An adaptation that deals with one problem may interfere with adaptations 
that deal with other problems. Some work in this area includes the use 
of rules, or quantitative reasoning. 
 
Rules tend not to scale well. 
 
It is necessary to give one coherent answer to several problems, rather 
than several answers, each solving a single problem, but not necessarily 
compatible with each other. 
 
7/ When can you reconfigure the system? 
 
[skipped] 
 
8/ Optimisations for adaptation requirements 
 
In general, there may be many adaptations satisfying all the adaptive 
system's constraints. How to choose the best one is an optimisation 
problem, which requires both SAT-based and optimisation-based reasoning. 
This is difficult. 
 
9/ The identification problem for ADSSs 
 
Finding the relationship between input and output is a well-known 
problem in control theory. In our case, we look at requirements and 
failures. 
 
Solutions in the literature include: 
+ guestimate qualitative differential relations; 
+ case-based reasoning; 



+ learn over time. 
 
10/ Full adaptation 
 
See Jeff Kramer's rather excellent SEAMS'15 keynote. 
Can we adapt to failures in ways unanticipated at design time? 
Some have proposed the use of AI planning and domain knowledge to 
propose new requirements at runtime. 


