Assured Graceful Degradation
with Discrete Controller Synthesis

Kenji Tei
National Institute of Informatics

Joint work with

Kazuya Aizawa, Waseda University
Nicolas D’Ippolito, Universidad de Buenos Aires

Assurance at development time

control

' - l T \
L A
ﬂ § N A RE !
L] of 1
" i 3
. h —— | [
X -
“ \ (o
fiulh H"""'
. v v € v | l
[J b |
ey \
)
s |
4 o
&
.

monito

Modeling approach : LTS and FLTL

* M and E : labeled transition system (LTS)
* G : fluent linear temporal logic (FLTL)

controllable actions
M (c1,c2,c3,c4) E G

m ¥cl 0 pl /\
op2 A
c4 c2 ca 2 <> p3
c3

Example : Automated Warehouse

/ arrive.m

arrive.e ﬁ ﬁ ﬁ

w environment

pickup-
success

Modeling an environment by LTS
| |E = (MAP||W ROBOT).

__—

MAP=(> MAP['w]),

MAP['w]=(move['e] -> -> MAP['m]
| move['w] -> -> MAP['w]

| putdown -> -> MAP['W]

| pickup -> -> MAP['W]),
MAP['m]=(move['e] -> -> MAP[’e]
| move['w] -> -> MAP['w]

| putdown -> -> MAP['m]

| pickup -> -> MAP['m]),

MAP[’ e]=(move[’'e] -> -> MAP[’e]
| move['w] -> -> MAP['m]

| putdown -> -> MAP['e]

| pickup -> -> MAP[’e]).

N
W_ROBOT=(> ROBOT),
ROBOT= (move[Direction] -> -> ROBOT
| pickup -> (-> ROBOT | -> ROBOT)
| putdown -> (-> ROBOT | -> ROBOT)

| ended -> reset -> ROBOT).

-

pickupéail

———— puttail—4——

Modeling how the state of the env. is changed
and how the env. will react

Specifying Goals by FLTL

[I((AT['w] && X(move['e])) -> X(!arrive[’'w] W pickupsuccess))

[1((AT[e] && X(move['w])) -> X(!arrive[’e] W putsuccess))

[l(putdown->AT['w]) [1'(!<pickupsuccess,putsuccess> && putdown)

[l(pickup->AT[’e]) []'(<pickupsuccess,putsuccess> && pickup)

[l[(<ended,reset> -> (<pickupsuccess,{reset}> && <putsuccess,{reset}>))

¢ fluent AT[x:Locations] = <arrive[x],{move[Direction] \{move[x]}>

A way to generate M with assurance

* discrete controller synthesis
[D’lppolito, 2010] [D’lppolito, 2011]

— solve a control problem <E,G> to find an LTS M

¥cl
E c4 4l c2
c >\ Controller
Synthesizer - 2| M
opl A
G op2 A

O p3

E may be invalid at runtime

control

monitor

iy

—
—— |

1] E | I=

System may no longer work,
or may continue, but without any assurances

Assuming More Realistic

i\./.IAP[’w]=(move['e] ->

-> MAP['m]
| move['w] -> -> MAP['w]
| putdown -> -> MAP['w]
| pickup -> -> MAP['w]),

Eove_['e]_» (_ el _-> mAPTm]-I

> MAP['w])l
o ->_MAT[’VVT —
-> MAP['W]
-> MAP['w]),

MAP['w]=(

| move[’w'] >
| putdown ->
| pickup ->

[T((AT['w] && X(move[’e])) -> X(!arrive['w] W pickupsuccess))

[1((AT[’e] && X(move['w])) -> X(!arrive[’e] W putsuccess))

[I(putdown->AT['W]) [1'('<pickupsuccess,putsuccess> && putdown)

[1(pickup->AT[’e]) [IY(<pickupsuccess,putsuccess> && pickup)

[l(<ended,reset> -> (<pickupsuccess,{reset}> && <putsuccess,{reset}>))

M

[1((AT[’e] && X(move['w])) -> X(!arrive[’e] W putsuccess))

[I(putdown->AT['w]) [1!(!<pickupsuccess,putsuccess> && putdown)

[1(pickup->AT[’e]) [1}(<pickupsuccess,putsuccess> && pickup)

[l(<ended,reset> -> (<pickupsuccess,{reset}> && <putsuccess,{reset}>))

How much should we assume?

high E rich
optimistic
Everything
works ideally

Everything
can go wrong

pessimistic

Ajljeuonouny

low E

o
o
o
-

Graceful Degradation
by Self-adaptation

(o) Le) Lo

adaptation

M <----m

engine @

environment

Questions

How can the system be made to degrade
gracefully with assurance?

How can the system determine how much
it should degrade?

Objective

We propose a framework for adaptation engine
enabling graceful degradation

@----@ Avoiding too much degradation

— should not degrade the system too much

@ll E’ |=@Providing assurance

— should assure that the system after
degradation satisfies a selected level of goals

@simulate@ Performing degradation seamlessly

— should not stop or restart the system
— M’ should simulate M

Approach : Models@Run.time

* Revising environment model at runtime
— to fit the environment
* Generating behavior specification with
assurance at runtime
— by using algorithmic techniques,
in particular discrete controller synthesis

 Change behavior of the system in accordance
with the generated model

Overall architecture

Adaptation Engine

functionality —| @

level

G, ...

2. determine func. level

cached
controllers

G.
selection Analyzer ' : Planner
y
] I 3. generate
o | et
E M
1. update | knowledge
env. model
Monitor Executer
/ executionl enactment 4 hot_swap
env. model == controller

learning

Q

discrete
controller

\ .
synthesis

E—

G

System

0. Initialization

1. Specify levels of functionalities
2. Describe the initial environment model
E, "

3. Select a func. level and
construct the initial controller

O VAEE

, c2
c3

1. Monitor: Environment Model Updates

* update E, to generate E,; so that E,,; can explain
execution traces of the system

— find and add unmodeled uncontrollable transitions A4

ao_ 7

* When a robot performed “move.w” action at “e”,
the environment will respond “arrive.m” or “arrive.e”

— rule learning for environment model update[Sykes,2013]
Et

E l =
el) [P
c4 c2 F .

1. update | knowledge

c3 1 env. model
—> ° - - Executer
Monitor _
c4 c2 traces 4. hot-swap
controller
executing trace‘J~

Adaptation Engine ——
2. determine func. level

Analyzer) Planner

2. Analysis: Functionality-level Selection

* Determine a functionality level G; from {G,,...Gy}
— G; can be satisfied in E,;
— The system can degrade to G; without stopping or restarting

itself

* Functionality level selection
— (will be explained later)

current' : '

level

Et+1

2

y'C
C

—>Analyzer>——’@

Adaptation Engine — —
2. determine func. level
| | 3. generate
l , controller
E M
1. update | knowledge |
env. model
i enactment 4. hot-swap
races
controller
M
Ceontrol)
System

3. Plan: Discrete Controller Synthesis

* Generate an LTS M,,; guaranteeing satisfaction of G; in E,,,

* Discrete controller synthesis [D’|ppolito, 2010] [D’lppolito, 2011]
— solve a control problem <E,G> to find an LTS M

cl
IVI Adaptation Engine ——
t + 1 2. determine func. level
c4 c2 Analyzer
c3 O cl | l 3. generate
s 7) E m
P I a n n e r 1. update | knowledge |
c4 m c2 env. model
S e
execution enactment 4. hot-swap
controller
M
Ceontrol

4. Execute: Enactor

* Hot-swap controller model from M, to M,,,
— It can be done without stopping the system because M,,, simulates M,

* Enactment framework [Braberman, 2013]
— interpret LTS and orchestrate high-level operations provided by the system

t+1
o o
‘)
ca m 2 Execute r Adaptation Engine —
N 2. determine func. level
O Q \ Analyzer @ ! Planner
| b3 t
, | @ (‘gjo e A
o Cj. ") 1. update | . knowledge * |
) @ e env. model -
O Q | Monitor
e n a Cto r i enactment 4. hot-swap
controller
%
£ N
System

Q: How can the system determine
how much it should degrade?

Adaptation Engine
2. determine func. level | controllers
@ @ -Analyzer .ﬂ Planner
. e | B
. generate
l , controller
E M
1. update | knowledge |
env. model
current
-
level
i 4. hot-swap
ontroll
¥cl
t+ 1 c4 j c2
c3

— How does the system find the highest level @ ?

@ exists such that
(1)@” E... |=@ (provide assurance)

(2) @ simulate @ (perform degradation seamlessly)

Naive Strategy : Synthesize, then check
!

[Pick up G,]< * Simple and straightforward
1 — synthesized controller M,,,can
be used for the next controller

Solve a control
problem <E,,,,G>

tne d]# synthesized] Computationally inefficient

— N control problems should
Check
[“M,.. sim. M,”] be solved at worst

[simulat§ [!simulate]

A W

Advanced Strategy: Check without Synthesis
!

[pick ub G](_ * winning region W, ,
' — the set of all states s such that no system forces E,
to satisfy G, from s

— controller strategy should avoid the winning region
e.g. a winning region for G=op

Update winning
region for E, ,and G;

Check whether
M, forces E,,; to the
winning region

[reached] update winning region
[treached] — Wi g1 IS Obtained from W, ;,and 4,,,

— determine states newly added in the region
by checking updated part in env. model

Advanced Strategy: Check without Synthesis
!

Crwe >
|

Update winning
region for E,,; and G;

* Does M| |E,,;reach to W, ?
M, forces E,,, to the — if yes, M,,, does not exist such that

winning region
G (e)-(S)
e e ()

['reached]

Check whether

Case studies

automated warehouse production cell

400

350 -

300

N N
o w
o o

execution time (sec)
&
o

Automated Warehouse

1es in thp automated warehouse scenario

Table 1: Case stu

[Case | 1] 2 6| 7| 8] 9 10] 11 12 13[14 15 |
before dcgradatlon G5 G5 G5 G5 G5 G4 G;; G4 G2 G5 G5 G' G‘; Gg Gg
after degradation Gs |Gy |G |Gy |Gy |Gy |G |G |G |Gy |G | Gs | Gs | Go | Gy
of levels checked 1 2 3 4 2 2 3 3 2 2 4 3 1 1 2

functionality level selection

B controller synthesis

&
& @

Naive strategy

400

350

functionality level selection

B controller synthsis

300

N
%
o

execution time (sec)

o B 5@,\9»0%

°Advanéed strategy

* »
S &
&

For func. selection

For func. selection

+ controller synthesis

2.5 -

1.5 7

0.5

(a) Functionality level
selection

%
100 1

90 -

80 -

70

60 -

50 -

40

30 A

20

10 -

I
(b) Total

0

0.7% in the worst
0.00002% on average

35.8% in the worst
13.6% on average

Production Cell

Table 2: Case studies in the production cell scenario

| Case [1| 2| 3] 4| 5[6| 7| 8| 9|10| 11| 12] 13| 14| 15|
before degradation G12 G12 G12 G12 G11 G12 Gl() Gu G7 G_—', Gs G4 Gll Gs G11
after degradation Gi2 |G| Gs |G| Gs| Ga| Gr| Ges | Gs | Gs | G2 | G1 | Gs | Ga | G11
of levels checked 1 3 5 3 7 4 4 6 4 3 5 4 6 3 1
12000
functionality level selection
10000 "1 W controller synthesis .
. For func. selection
T oo For func. selection :
8 + controller synthesis
£ %
.g 6000 — 0.03 106‘ .
£
§ 4000 90 -
b) 0.025
80 -
2000
0.02 70 -
0 60 4
P R S AR B -\ I S RN N
F & F T F T EFF S S S S 0.015 - 50 -
Naive strategy 20
12000 0.01
functionality level selection 30
10000 | W controll thesi i
controller synthesis 0.005 20 J_
g 8000 10 -
£ 0 =~ 0
b 6000 : :
5 (a) Functionality (b) Total
5 level selection
% 4000
2.5% in the worst 99.2% in the worst
0.176% on average 44.9% on average
o4
S & L &L ‘9??) ,_;2/,\ L L L PP é\’u e,\(?
M, O PSS M AP L
AUVAlILCU Sliadalcgy

Conclusion

* How does the system cope with development time
uncertainty?

— How do we select appropriate level of functionality
considering risks and functionality?

* We propose a framework enabling graceful degradation
— revise environment model @ runtime
— generate behavior specification with assurance @ runtime
— change behavior of the system @ runtime

 We introduce two strategies to find the highest level

of functionality that can be guarantee and to which the
system can seamlessly degrade

