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Assurance at development time
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Modeling approach : LTS and FLTL

* M and E : labeled transition system (LTS)
* G : fluent linear temporal logic (FLTL)
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Example : Automated Warehouse

/ arrive.m

arrive.e ﬁ ﬁ ﬁ

w environment

pickup-
success




Modeling an environment by LTS
| |E = (MAP||W ROBOT).

__—

MAP=( > MAP['w]),

MAP['w]=( move['e] -> -> MAP['m]
| move['w] -> -> MAP['w]

| putdown -> -> MAP['W]

| pickup -> -> MAP['W]),
MAP['m]=( move['e] -> -> MAP[’e]
| move['w] -> -> MAP['w]

| putdown -> -> MAP['m]

| pickup -> -> MAP['m]),

MAP[’ e]=( move[’'e] -> -> MAP[’e]
| move['w] -> -> MAP['m]

| putdown -> -> MAP['e]

| pickup -> -> MAP[’e]).

N
W_ROBOT=( > ROBOT),
ROBOT= (move[Direction] -> -> ROBOT
| pickup -> ( -> ROBOT | -> ROBOT)
| putdown -> ( -> ROBOT | -> ROBOT)

| ended -> reset -> ROBOT).
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pickupéail
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Modeling how the state of the env. is changed
and how the env. will react




Specifying Goals by FLTL

[I((AT['w] && X(move['e])) -> X(!arrive[’'w] W pickupsuccess))

[1((AT[ e] && X(move['w])) -> X(!arrive[’e] W putsuccess))

[l(putdown->AT['w]) [1'(!<pickupsuccess,putsuccess> && putdown)

[l(pickup->AT[’e]) []'(<pickupsuccess,putsuccess> && pickup)

[l[(<ended,reset> -> (<pickupsuccess,{reset}> && <putsuccess,{reset}>))

¢ fluent AT[x:Locations] = <arrive[x],{move[Direction] \{move[x]}>




A way to generate M with assurance

* discrete controller synthesis
[D’lppolito, 2010] [D’lppolito, 2011]

— solve a control problem <E,G> to find an LTS M
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E may be invalid at runtime
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System may no longer work,
or may continue, but without any assurances



Assuming More Realistic

i\./.IAP[’w]=( move['e] ->

-> MAP['m]
| move['w] -> -> MAP['w]
| putdown -> -> MAP['w]
| pickup -> -> MAP['w]),

Eove_['e]_» (_ el _-> mAPTm]-I

> MAP['w])l
o ->_MAT[’VVT —
-> MAP['W]
-> MAP['w]),

MAP['w]=(

| move[’w'] >
| putdown ->
| pickup ->

[T((AT['w] && X(move[’e])) -> X(!arrive['w] W pickupsuccess))

[1((AT[’e] && X(move['w])) -> X(!arrive[’e] W putsuccess))

[I(putdown->AT['W]) [1'('<pickupsuccess,putsuccess> && putdown)

[1(pickup->AT[’e]) [IY(<pickupsuccess,putsuccess> && pickup)

[l(<ended,reset> -> (<pickupsuccess,{reset}> && <putsuccess,{reset}>))

M

[1((AT[’e] && X(move['w])) -> X(!arrive[’e] W putsuccess))

[I(putdown->AT['w]) [1!(!<pickupsuccess,putsuccess> && putdown)

[1(pickup->AT[’e]) [1}(<pickupsuccess,putsuccess> && pickup)

[l(<ended,reset> -> (<pickupsuccess,{reset}> && <putsuccess,{reset}>))




How much should we assume?

high E rich
optimistic
Everything
works ideally

Everything
can go wrong

pessimistic
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Graceful Degradation
by Self-adaptation
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Questions

How can the system be made to degrade
gracefully with assurance?

How can the system determine how much
it should degrade?



Objective

We propose a framework for adaptation engine
enabling graceful degradation

@----@ Avoiding too much degradation

— should not degrade the system too much

@ll E’ |=@Providing assurance

— should assure that the system after
degradation satisfies a selected level of goals

@simulate@ Performing degradation seamlessly

— should not stop or restart the system
— M’ should simulate M



Approach : Models@Run.time

* Revising environment model at runtime
— to fit the environment
* Generating behavior specification with
assurance at runtime
— by using algorithmic techniques,
in particular discrete controller synthesis

 Change behavior of the system in accordance
with the generated model



Overall architecture

Adaptation Engine
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0. Initialization

1. Specify levels of functionalities
2. Describe the initial environment model
E, "

3. Select a func. level and
construct the initial controller
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1. Monitor: Environment Model Updates

* update E, to generate E,; so that E,,; can explain
execution traces of the system

— find and add unmodeled uncontrollable transitions A4

ao_ 7

* When a robot performed “move.w” action at “e”,
the environment will respond “arrive.m” or “arrive.e”

— rule learning for environment model update[Sykes,2013]
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2. Analysis: Functionality-level Selection

* Determine a functionality level G; from {G,,...Gy}
— G; can be satisfied in E,;
— The system can degrade to G; without stopping or restarting

itself

* Functionality level selection
— (will be explained later)
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3. Plan: Discrete Controller Synthesis

* Generate an LTS M,,; guaranteeing satisfaction of G; in E,,,

* Discrete controller synthesis [D’|ppolito, 2010] [D’lppolito, 2011]
— solve a control problem <E,G> to find an LTS M
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4. Execute: Enactor

* Hot-swap controller model from M, to M,,,
— It can be done without stopping the system because M,,, simulates M,

* Enactment framework [Braberman, 2013]
— interpret LTS and orchestrate high-level operations provided by the system
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Q: How can the system determine
how much it should degrade?

Adaptation Engine
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— How does the system find the highest level @ ?

@ exists such that
(1)@” E... |=@ (provide assurance)

(2) @ simulate @ (perform degradation seamlessly)




Naive Strategy : Synthesize, then check
!

[ Pick up G, ]< * Simple and straightforward
1 — synthesized controller M,,,can
be used for the next controller

Solve a control
problem <E,,,,G>

tne d]# synthesized]  Computationally inefficient

— N control problems should
Check
[ “M,.. sim. M,” ] be solved at worst

[simulat§ [!simulate]

A W




Advanced Strategy: Check without Synthesis
!

[ pick ub G ](_ * winning region W, ,
' — the set of all states s such that no system forces E,
to satisfy G, from s

— controller strategy should avoid the winning region
e.g. a winning region for G=op

Update winning
region for E, ,and G;

Check whether
M, forces E,,; to the
winning region

[reached]  update winning region
[treached] — Wi g1 IS Obtained from W, ;,and 4,,,

— determine states newly added in the region
by checking updated part in env. model



Advanced Strategy: Check without Synthesis
!

Crwe >
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Update winning
region for E,,; and G;

* Does M| |E,,;reach to W, ?
M, forces E,,, to the — if yes, M,,, does not exist such that

winning region
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['reached]
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Case studies

automated warehouse production cell




400

350 -

300

N N
o w
o o

execution time (sec)
&
o

Automated Warehouse

1es in thp automated warehouse scenario

Table 1: Case stu

[Case | 1] 2 6| 7| 8] 9 10] 11 12 13[ 14 15 |
before dcgradatlon G5 G5 G5 G5 G5 G4 G;; G4 G2 G5 G5 G' G‘; Gg Gg
after degradation Gs |Gy |G |Gy |Gy |Gy |G |G |G |Gy |G | Gs | Gs | Go | Gy
# of levels checked 1 2 3 4 2 2 3 3 2 2 4 3 1 1 2
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Production Cell

Table 2: Case studies in the production cell scenario

| Case [ 1| 2| 3] 4| 5[ 6| 7| 8| 9|10| 11| 12] 13| 14| 15|
before degradation G12 G12 G12 G12 G11 G12 Gl() Gu G7 G_—', Gs G4 Gll Gs G11
after degradation Gi2 |G| Gs |G| Gs| Ga| Gr| Ges | Gs | Gs | G2 | G1 | Gs | Ga | G11
# of levels checked 1 3 5 3 7 4 4 6 4 3 5 4 6 3 1
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Conclusion

* How does the system cope with development time
uncertainty?

— How do we select appropriate level of functionality
considering risks and functionality?

* We propose a framework enabling graceful degradation
— revise environment model @ runtime
— generate behavior specification with assurance @ runtime
— change behavior of the system @ runtime

 We introduce two strategies to find the highest level

of functionality that can be guarantee and to which the
system can seamlessly degrade



