

Robust Linear Quadratic Control for Software Systems Marin Litoiu

Adaptive Systems Research Lab Dept. of EE and CS York University http://ceraslabs.com

Agenda

- Motivation
- Model Identification Adaptive Control
- Experimental Results
- Conclusions

Linear Quadratic Control

Linear Quadratic Regulator(LQR):

maintains y_r and minimizes J

$$J = \sum_{n=1}^{\infty} x^T Q_x x + u^T Q_u u$$

Subject to y=f(x,u) being linear Q_x , Q_u , weight matrices

- y_{r:} goal/setpoint/reference
- y: outputs
- u: inputs/commands (actionable by controller)
- x: states (internal variables)
- p: perturbations
 - Workloads, faults, etc...

Control Theory and Adaptive Systems

Methodology

- Have an adaptation goal (set point, objective function, etc...)
- Build a model (linear or linearized) of the software system

 $\begin{cases} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) + Du(k) \end{cases}$

- Study the properties of system
 - Observability: can I estimate x if I only measure y?
 - Stability: bound inputs-> bound outputs?
 - Controllability: can I reach any x with set of inputs u?
- Synthesize a controller/Adaptation manager

Controller=h(goals, A, B,C,D)

LQR Structure: K, k_r

Big questions: -y=f(u,x)? -K=? -kr=?

Consider

- y response time
- u change in waiting time (threads, replicas, etc..)
- $y_r = 2$ seconds
- K=1, k_r=1(to keep it simple)
- Sampling 1
 - y=2→u=0; nothing to change
- Sampling 2
 - y=3→ u=-1→decrease waiting time
- Sampling 3
 - − y=1.8 \rightarrow u=0.2 \rightarrow increase waiting time

What Limits LQR Robustness?

y=f(u) is considered static and linear

- not accurate for real systems
- u has one dimension (threads or #servers..)
 - SISO
 - Has limited influence, cannot address large perturbations
- The controller is designed statically
- In practice, engineers still use "ON condition, DO action"

Model Identification Adaptive Control (for performance and cost)

Non-Linear Model

Structure(known)

- u is multi-dimensional [threads, no of instances, bandwith, etc...]
- y is multi-dimensional [response time, throughput, cost, etc..]
- y=f(u, x) is non-linear (LQM, ML, etc..)
- Uncertainties (unknown) in the model
 - Model parameter uncertainties
 - use estimators, like Kalman filter, to estimate them at runtime
 - Perturbation uncertainties
 - the controller is designed to address these
 - Non-modeled dynamics

Case Study

u=[webServers, threadsWS, DBServers, threadsDB] y=x= [response time] p= [workload]

x(k+1)=Ax(k)+Bu(k) C=1, D=0; y(k)=x(k)

$$J = \sum_{0}^{\infty} x^{T}Q_{x}x + u^{T}Q_{u}u$$

$$Q_x = [1] \qquad Q_u = \begin{bmatrix} 100\,000 & 0 & 0 & 0 \\ 0 & 1\,000 & 0 & 0 \\ 0 & 0 & 100\,000 & 0 \\ 0 & 0 & 0 & 1\,500 \end{bmatrix}$$

Linearization

At time k, we linearize around this point, op

 $y(k) = y_a(k) - y_{op}$ $x(k) = x_a(k) - x_{op}$ $u(k) = u_a(k) - u_{op}$

 $\begin{cases} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) + Du(k) \end{cases}$

Controller Design: K and k_r

- If we have the model $\begin{cases} x(k+1) & -Ax(k) + Bu(k) \\ y(k) & -Cx(k) + Du(k) \end{cases}$
- And the objective function

$$J = \sum_{0}^{\infty} x^{T}Q_{x}x + u^{T}Q_{u}u$$

- Then we apply a lot of algebraic formulas and find $K = -Q_u^{-1}B^T P$ · $PA + A^T P - PBQ_u^{-1}B^T P + Q_x = 0$
 - $1 = C(A BK)^{-1}Bk_r$

One Linear Model Fails to Control

However, MIAC works!!! Evrika!!!!

..even with sudden changes in workload(perturbations)

Conclusions...

Model Identification Adaptive Controller

- Identifies a nonlinear model
- At runtime, linearizes it
- At runtime synthesizes a LQR controller

Limitations

- Some experiments done through simulations, do they hold on real system?
- Sensitivity analysis
- How do we know the bounds of robustness
- Other type of controllers