
Dynamic Software Composition
for Run-time System Evolution

(Context-oriented Programming at HPI)

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam

Germany
http://www.hpi.de/swa/

Shonan Village Center, Hayama, Kanagawa, Japan

2015-09-07

NII Shonan Meeting Seminar 052
Engineering Adaptive Software Systems (EASSy)

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Some History…

Software Architecture

Distributed Processing Environments

Dynamic Aspect-oriented Programming

Reflective Designs

Context-oriented Programming

Dynamic Service Adaptation

with Pascal Costanza
and Oscar Nierstrasz

2

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Context
context ? = everything computationally accessible

location

time of day

temperature

connectivity

bandwidth

battery level

energy consumption

subscriptions

preferences

age

mood…

3

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Outline

4

tooling

use-cases

contracts

development layers

behavioral scoping

structural scoping

event-based composition

reactive composition

constraint-based composition

constraint layers

meta-tracing JITs

developers
users

VM/runtime

image/objects
constraint solver

layers only

semantics

foundations
Vivide

ContextFJ

UseCasePy

PyDCL

Context*

ContextJS / Lively

ContextJS / Lively

L1...4

ContextJS / Babelsberg

ContextJS / Babelsberg

JCop

R/Squeak-VM / PyPy

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

•  Behavioral (dynamic) scoping
–  Dynamic extent of execution
–  Almost all COP extensions

•  Structural (topological) scoping
–  ContextJS
–  Development layers

•  Open implementation (OI) for scoping strategies
–  Allows for domain-specific scoping
–  Mainly applied to UI framework structures

•  Lively: Morphic
•  Webwerkstatt : Parts

Behavioral Variations

5

behavioral scoping

structural scoping

Context*

ContextJS / Lively

development layers
ContextJS / Lively

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

•  More applied à more useful
•  In PL work tool support often neglected

–  Usually too expensive, especially early…
à Need for explorative tool building support

•  Vivide

•  Crosscutting nature of layers lends itself nicely to
crosscutting software engineering concerns
–  Explicit use-cases representation

•  UseCasePy
–  Dynamic contract layers

•  PyDCL

Development Support

6

tooling

use-cases

contracts

Vivide

UseCasePy

PyDCL

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Reactive Approaches

7

event-based composition

reactive composition

constraint-based composition

constraint layers

ContextJS / Babelsberg

ContextJS / Babelsberg

JCop

	
 Framework	

User	
 Code	

layer	
 composi3on	

layer	
 composi3on	

layer	
 composi3on	

layer	
 composi3on	

Hero	

En(tyUI	

RegionUI	

En(ty	

Character	

AiCharacter	

Knight	
 Princess	

World	

Region	
 GameWindow	

WorldUI	

ImageProvider	

KeyboardListener	

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

•  Semantics and types
–  ContextFJ

•  Symmetry
–  No classes, only layers
–  No base system

•  L1..4

•  Sideways composition very expensive
–  Runtime support for optimizations
–  Meta-tracing JITs

•  R/Squeak-VM
–  Higher performance à more (meta-level) flexibility

Foundations

8

layers only

semantics ContextFJ

L1...4

meta-tracing JITs R/Squeak-VM / PyPy
the last section, we do not provide syntax for layers; partial meth-
ods are registered in a partial method table, explained below. A
method M takes x as arguments and returns the value of expres-
sion e. As ContextFJ is a functional calculus like FJ, the method
body consists of a single return statement and all constructs includ-
ing with and without return values. An expression e can be a
variable, field access, method invocation, object instantiation, layer
activation/deactivation, proceed/super call, or a special expres-
sion new C(v)<C,L,L>.m(e), which will be explained shortly. A
value is an object of the form new C(v).

The expression new C(v)<D,L′,L>.m(e), where L′ is as-
sumed to be a prefix of L, is a special run-time expression and
not supposed to appear in classes. It basically means that m is go-
ing to be invoked on new C(v). The annotation <D,L′,L>, which is
used to model super and proceed, indicates where method lookup
should start. More concretely, the triple <D,(L1; · · · ; Li),(L1; · · · ; Ln)>
(i ≤ n) means that the search for the method definition will start
from class D of layer Li. So, for example, the usual method invoca-
tion new C(v).m(e) (without annotation) is semantically equiva-
lent to new C(v)<C,L,L>.m(e), where L is the active layers when
this invocation is to be executed. This triple also plays the role of a
“cursor” in the method lookup procedure and proceeds as follows

<D,(L1; · · · ; Li),(L1; · · · ; Ln)>
⇒ <D,(L1; · · · ; Li−1),(L1; · · · ; Ln)> ⇒ · · ·
⇒ <D, • ,(L1; · · · ;Ln)>
⇒ <E,(L1; · · · ; Ln),(L1; · · · ; Ln)> (E is a direct superclass of D)
⇒ <E,(L1; · · · ; Ln−1),(L1; · · · ;Ln)> ⇒ · · ·

until the method definition is found. Notice that the third element
is needed when the method is not found in D in any layer including
the base: the search continues to layer Ln of D’s direct superclass.

With the help of this form, we can give a semantics of super
and proceed by simple substitution-based reduction. For example,
consider method invocation new C().m(v). As in FJ, this expres-
sion reduces to the method body where parameters and this are
replaced with arguments v and the receiver new C(), respectively.
Now, what happens to super in the method body? It cannot be re-
placed with the receiver new C() since it would confuse this and
super. Method lookup for super is different from usual (virtual)
method lookup in that it has to start from the direct superclass of
the class in which super appears. So, if the method body contain-
ing super.n() is found in class D, then the search for n has to start
from the direct superclass of D. To express this fact, we replace
super with new C()<E,...> where E is the direct superclass
of D. We can deal with proceed similarly. Suppose the method
body is found in layer Li in D. Then, proceed(e) is replaced
with new C()<D,(L1; · · · ; Li−1),L>.m(e), where L1; · · · ; Li−1

are layers activated before Li.
A ContextFJ program (CT,PT, e) consists of a class table CT ,

which maps a class name to a class definition, a partial method
table PT , which maps a triple C, L, and m of class, layer, and
method names to a method definition, and an expression, which
corresponds to the body of the main method. In what follows, we
assume CT and PT to be fixed and satisfy the following sanity
conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).
2. Object ̸∈ dom(CT).
3. For every class name C (except Object) appearing anywhere in

CT , we have C ∈ dom(CT);
4. There are no cycles in the transitive closure of the extends

clauses.
5. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).

fields(C) = C f

fields(Object) = •

class C ▹ D { C f; ... } fields(D) = D g

fields(C) = D g, C f

mbody(m, C, L′, L) = x.e in D, L′′

class C ▹ D { ... C0 m(C x){ return e; } ...}

mbody(m, C, •, L) = x.e in C, •

PT(m, C, L0) = C m(C x){ return e; }

mbody(m, C, (L′; L0), L) = x.e in C, (L′; L0)

class C ▹ D { ... M } m ̸∈ M
mbody(m, D, L, L) = x.e in E, L′

mbody(m, C, •, L) = x.e in E, L′

PT(m, C, L0) undefined mbody(m, C, L′, L) = x.e in D, L′′

mbody(m, C, (L′; L0), L) = x.e in D, L′′

Figure 1. ContextFJ: Lookup functions.

Lookup functions. As in FJ, we define a few auxiliary functions
to look up field and method definitions. They are defined by the
rules in Figure 1. The function fields(C) returns a sequence C f of
pairs of a field name and its type by collecting all field declarations
from C and its superclasses. The function mbody(m, C, L1, L2) re-
turns the parameters and body x.e of method m in class C when the
search starts from L1; the other layer names L2 keep track of the
layers that are activated when the search initially started. It also re-
turns the information on where the method has been found—the in-
formation will be used in reduction rules to deal with proceed and
super. As we mentioned already, the method definition is searched
for in class C in all activated layers and the base definition and, if
there is none, then the search continues to C’s superclass. By read-
ing the rules in a bottom-up manner, we can read off the recursive
search procedure. The first rule means that m is found in the base
class definition C (notice the third argument is •) and the second
that m is found in layer L0. The third rule, which deals with the sit-
uation where m is not found in a base class (expressed by the con-
dition m ̸∈ M), motivates the fourth argument of mbody. The search
goes on to C’s superclass D and has to take all activated layers into
account; so, L is copied to the third argument in the premise. The
fourth rule means that, if C of L0 does not have m, then the search
goes on to the next layer (in L′) leaving the class name unchanged.

3.2 Operational Semantics
The operational semantics of ContextFJ is given by a reduction
relation of the form L ⊢ e −→ e′, read “expression e reduces
to e′ under the activated layers L”. Here, L do not contain duplicate
names, as we noted earlier. The main rules are shown in Figure 2.

The first four rules are the main computation rules for field
access and method invocation. The first rule for field access is
straightforward: fields tells which argument to new C(..) corre-
sponds to fi. The next three rules are for method invocation. The
second rule is for method invocation where the cursor of the method
lookup procedure has not been “initialized”; the cursor is set to be
at the receiver’s class and the currently activated layers. In the third
rule, the receiver is new C(v) and <C′,L′,L> is the location of
the cursor. When the method body is found in the base-layer class

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Behavioral Scoping

9

COP
w/ Pascal Costanza and Oscar Nierstrasz

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming
class Person {
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer) {
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Contact: "+address;
 }
 }

 layer Employment {
 String toString() {
 return proceed()+"; [Employer] "+employer;
 }
 }
}

class Employer {
 private String name, address;

 Employer(String newName,
 Stringe newAddress) {
 this.name = newName;
 this.employer = newEmployer;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Visitors: "+address;
 }
 }
}

10

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming
class Person {
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer) {
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Contact: "+address;
 }
 }

 layer Employment {
 String toString() {
 return proceed()+"; [Employer] "+employer;
 }
 }
}

class Employer {
 private String name, address;

 Employer(String newName,
 Stringe newAddress) {
 this.name = newName;
 this.employer = newEmployer;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Visitors: "+address;
 }
 }
}

Employer hpi = new Employer(”HPI", ”14440 Potsdam");
Person robert = new Person(”Robert Hirschfeld", ”14471 Potsdam", hpi);

 System.out.println(robert);

 Output: Name: Robert Hirschfeld

11

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming
class Person {
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer) {
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Contact: "+address;
 }
 }

 layer Employment {
 String toString() {
 return proceed()+"; [Employer] "+employer;
 }
 }
}

class Employer {
 private String name, address;

 Employer(String newName,
 Stringe newAddress) {
 this.name = newName;
 this.employer = newEmployer;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Visitors: "+address;
 }
 }
}

Employer hpi = new Employer(”HPI", ”14440 Potsdam");
Person robert = new Person(”Robert Hirschfeld", ”14471 Potsdam", hpi);

 with (Address) {
 System.out.println(robert);
 }

 Output: Name: Robert Hirschfeld; Contact: 14471 Potsdam

12

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming
class Person {
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer) {
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Contact: "+address;
 }
 }

 layer Employment {
 String toString() {
 return proceed()+"; [Employer] "+employer;
 }
 }
}

class Employer {
 private String name, address;

 Employer(String newName,
 Stringe newAddress) {
 this.name = newName;
 this.employer = newEmployer;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Visitors: "+address;
 }
 }
}

Employer hpi = new Employer(”HPI", ”14440 Potsdam");
Person robert = new Person(”Robert Hirschfeld", ”14471 Potsdam", hpi);

with (Employment) {
 with (Address) {
 System.out.println(robert);
 }
}

 Output: Name: Robert Hirschfeld; Contact:14471 Potsdam;
 [Employer] Name: HPI; Visitors: 14440 Potsdam

13

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming
class Person {
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer) {
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Contact: "+address;
 }
 }

 layer Employment {
 String toString() {
 return proceed()+"; [Employer] "+employer;
 }
 }
}

class Employer {
 private String name, address;

 Employer(String newName,
 Stringe newAddress) {
 this.name = newName;
 this.employer = newEmployer;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Visitors: "+address;
 }
 }
}

Employer hpi = new Employer(”HPI", ”14440 Potsdam");
Person robert = new Person(”Robert Hirschfeld", ”14471 Potsdam", hpi);

with (Address) {
 with (Employment) {
 System.out.println(robert);
 }
}

 Output: Name: Robert Hirschfeld; [Employer] Name: HPI;
 Visitors: 14440 Potsdam; Contact:14471 Potsdam

14

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming
class Person {
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer) {
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Contact: "+address;
 }
 }

 layer Employment {
 String toString() {
 return proceed()+"; [Employer] "+employer;
 }
 }
}

class Employer {
 private String name, address;

 Employer(String newName,
 Stringe newAddress) {
 this.name = newName;
 this.employer = newEmployer;
 }

 String toString() {return "Name: "+name;}

 layer Address {
 String toString() {
 return proceed()+"; Visitors: "+address;
 }
 }
}

Employer hpi = new Employer(”HPI", ”14440 Potsdam");
Person robert = new Person(”Robert Hirschfeld", ”14471 Potsdam", hpi);

with (Address) {
 with (Employment) {
 System.out.println(robert);
 }
}

 Output-1: Name: Robert Hirschfeld; [Employer] Name: HPI;
 Visitors: 14440 Potsdam; Contact:14471 Potsdam

with (Employment) {
 with (Address) {
 System.out.println(robert);
 }
}

 Output-2: Name: Robert Hirschfeld; Contact:14471 Potsdam;
 [Employer] Name: HPI; Visitors: 14440 Potsdam

Thread-1

Thread-2

15

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Dynamically-scoped Layer Activation

•  Constructs
with (…) {…}
without (…) {…}
next (…)

•  Activate (deactivate) layers for the current thread
–  No interference with other layer activations/deactivations in

other threads
–  Layers are activated/deactivated only for the dynamic extent

of the associated code block (dynamic scoping)
–  Activation order determines method precedence

x
y

z

m

16

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

COP Basics Summary

•  Behavioral variations
–  Partial class, method, and layer definitions

•  Layers
–  Groups of related context-dependent behavioral variations

•  Activation
–  Activation and deactivation of layers at run-time

•  Context
–  Anything computationally accessible

•  Scoping
–  Well-defined explicitly-controlled scopes

17

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

COP Extensions (Some…)

•  ContextS
•  ContextS2
•  ContextJS
•  JCop (ContextJ)
•  ContextPy
•  PyDCL
•  UseCasePy
•  PyContext
•  ContextR
•  ContextG
•  ContextAmber
•  L1…4

•  ContextL
•  ContextScheme
•  ContextJ*
•  ContextErlang
•  EventCJ
•  Lambic
•  Ambience
•  COP.JS
•  delMDSCO/cj
•  Phenomenal Gem
•  Subjective-C
•  Context Petri Nets

18

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Structural Scoping & Development Layers

19

Strct
w/ Jens Lincke

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Lively Webwerkstatt

20

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Lively Kernel and Lively Wiki

21

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Self-supporting Development Environments

•  Collaboratively evolve tools and environment
–  Adapt tools while using them
–  From within
–  Share easily

•  Design goals for self-supporting development
environments (SSDEs)
–  Innovative repair
–  Short feedback loops à immediacy

•  Technical problem
–  Changes to core functionality might break the environment

(also for everyone)

22

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

ContextJS

•  Library-based COP extension to JavaScript
•  Open implementation (OI) for layer composition

–  Behavioral scoping
–  Structural scoping

23

EventCounter = {
n: 0,
count: function(evt) {

this.n = this.n + 1;
}

}

EventCounter.count = function(evt) {
alert("evt: " + evt);
this.n = this.n + 1;

}

cop.create("DevLayer").refineObject(EventCounter, {
count: function(evt) {

alert("evt: " + evt);
this.n = this.n + 1;

}
})

DevLayer.beGlobal(); debugArea.setWithLayers([DevLayer])

cop.proceed(evt);

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Example 1: Visualizing Events

24

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Example 1: Visualizing Events

25

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Example 2: Text Coloring

26

this.setWithLayers([...])

TextColorLayer.beGlobal()

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Example 3: Developing Auto-completion

27

$morph('DevArea').setWithLayers([WordCompletionLayer]);

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Structural Scoping Summary

•  Application of COP to SSDEs
–  Organize changes into layers
–  Apply changes during development

to only objects of interest
à Structural scoping
à Development layers

•  Evolution of tools in SSDEs
can be direct, interactive,
and safe

•  Future work
–  Refactoring of layers back into base

 28

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Explicit Use-case Representation

29

UC
w/ Michael Perscheid

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Use-cases in Software Development
•  Users perceive

program behavior without
implementation knowledge

•  Developers also

know internals and
implementation details

•  Use-cases describe

interaction at system
boundary

•  Use-cases link

both perspectives
30

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Use-cases in Software Development
•  Use-cases and variants are

integral part of most
contemporary
development processes

•  Traceability to use-cases
lost in later more code- and
deployment-centric
development activities

•  à Lack of understanding
about which parts of the
system contribute to
which use-case

31

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Use-case-centered Development

•  Explicit use-case
representation in
object-oriented languages

•  Use-cases in source

code, as deployment
units, and at run-time

32

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

First-class Entities at Run-time
•  Based on source code annotations
•  Use-cases as meta objects
•  Central registry of use-case descriptions
•  Available at run-time for introspection and intercession

33

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Dynamic Composition
•  Based on selection of a set of desired use-cases
•  Requires use-case-aware method dispatch
•  Allows for use-cases as deployment units

34

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Use-case Discovery
•  Introduce use-case-centered

development to existing
systems

•  Based on feature location
techniques

•  Tracer observes execution
of use-cases from
the users’ point of view

•  Semi-automatic and
automatic implementations

35

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Use-case Layers Summary

•  Use-case-centered development allows for explicit
representation of use-cases in code and at run-time
–  Available during implementation, testing, and deployment
–  Use-case discovery migrates existing systems to use-case-

centered development

•  Future work
–  User studies
–  Improved analysis techniques
–  Better tool support

36

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Monitor Analyze Plan Execute-Knowledge

37

MAPE-K
NII Shonan Seminar 052 EASSy

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

COP & MAPE-K

38

M

A P

E K

R

Layers

Partial methods Partial methods

Regular (or partial) methods and objects Regular (or partial) methods and objects

Regular (or partial) methods and objects

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

COP & MAPE-K

39

class ResourceManager {
 // …
 layer MAPE { // not necessary
 static mapeBefore(resource, in, ...) {
 // note = ...;
 monitorBefore(...);
 analyzeBefore(...);
 planBefore(...);
 executeBefore(…);
 return note;
 }
 static mapeAfter(resource, in, note, out, ...) {
 // newOut = ...
 monitorAfter(...); // executeAfter(...);

 analyzeAfter(...); // planAfter(...);

 planAfter(...); // analyzeAfter(...);

 executeAfter(…); // monitorAfter(…);

 return newOut;
} } }

class ManagedResource {
 // …
 process(in) {
 // out := ...;
 return out;
 }
 layer MAPE {
 process(in) {
 note := ResourceManager.mapeBefore(self, in, ...);
 out := next(in);
 out := ResourceManager.mapeAfter(self, in, note, out, ...);
 return out;
} } }

M

A P

E K

R

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

COP & MAPE-K

40

class ResourceManager {
 // …
 layer MAPE { // not necessary
 static mapeBefore(resource, in, ...) {
 // note = ...;
 monitorBefore(...);
 analyzeBefore(...);
 planBefore(...);
 executeBefore(…);
 return note;
 }
 static mapeAfter(resource, in, note, out, ...) {
 // newOut = ...
 monitorAfter(...); // executeAfter(...);

 analyzeAfter(...); // planAfter(...);

 planAfter(...); // analyzeAfter(...);

 executeAfter(…); // monitorAfter(…);

 return newOut;
} } }

class ManagedResource {
 // …
 process(in) {
 // out := ...;
 return out;
 }
 layer MAPE {
 process(in) {
 note := ResourceManager.mapeBefore(self, in, ...);
 out := next(in);
 out := ResourceManager.mapeAfter(self, in, note, out, ...);
 return out;
} } }

M

A P

E K

R

1

2

3

4

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Acknowledgements
Pascal Costanza, Hidehiko Masuhara, Atsushi Igarashi,
Michael Haupt, Malte Appeltauer, Michael Perscheid, Bastian
Steinert, Jens Lincke, Marcel Taeumel, Tobias Pape, Tim
Felgentreff, Robert Krahn, Carl Friedrich Bolz, Marcel
Weiher, Hans Schippers, Tim Molderez, Oscar Nierstrasz,
Shigeru Chiba, Hiroaki Inoue, Tobias Rho, Stefan Udo
Hanenberg, Dick Gabriel, Dave Thomas, Gilad Bracha, Alan
Kay, Dan Ingalls, Alan Borning, Jeff Eastman, Christopher
Schuster, Christian Schubert, Gregor Schmidt, Stefan
Lehmann, Matthias Springer, …

41

Robert Hirschfeld (2015)

Recent Developments in Context-oriented Programming

Web References

•  COP-related publications
–  HPI/SWA

http://www.hpi.uni-potsdam.de/swa/publications/

•  Selected systems
–  JCop

https://github.com/hpi-swa/JCop/
–  ContextJS and Lively Webwerkstatt

http://lively-kernel.org/repository/webwerkstatt/webwerkstatt.xhtml
–  EventCJ

http://prg.is.titech.ac.jp/projects/eventcj/
–  Lively Kernel

http://lively-kernel.org/

42

M

A P

E K

R

