Dynamic Software Evolution—

Issues and Approach
Shinichi Honiden, Yasuyuki Tahara

Background: Software evolution

» Software evolution: activity for adapting to
requirements changes

- Play central role in overall software lifecycle

» Recent topics: continuous software evolution

o GContinuous delivery

- Reliable Software Releases through Build, Test, and Deployment
Automation

- Background: continuous evolution to satisfy frequently—changed
user requirement

Continuous Delivery Case Studies

Easy: Continuous Innovation with 3 Releases Every Year

NETELI

Seamless, Automatic Upgrades

lesforee "9
salesforcecrm

o

com.&

lesforce
\Allr‘\]ﬁrce,\’x m i
snlc:f(‘)rce.mm &

sales rce.com -
sulcy%rce.com £‘;
salesorce.com. @12
saleSforce.com
salegf)rce.com 3

Szllcsﬁ)rce.com e,
3 BN

40 Major Releases

Every customization & integration
automatically upgraded

Includes features sourced by customer
community

salfuy‘f)rcc

! I
!
| (internal) ! -
T— " " | Ite
code TEVIEW by checkin and | in t;:::jtusej —! y LA i %awimiegir
development peer automated ! H2 deploy i (fullor
and testing E'Eﬂ'&ﬁ regression |\ [T S ! (1% users) | | | selected
by engineer e testing . i] subset
phabricator and perflab ' | f
testing ! H3 deploy [, of nsers)
requested bug sunday afternoon =~ S------------- .
changes fixes monday tuesday afternoon
and fixes {contributing

engingers on call)

Motivating Example

» Online shopping system
o GCurrent version: No security

» Evolving two times

o First evolution: to add the authentication function with IDs
and passwords

o Second evolution: to add the two—factor authentication
function requiring users to exchange additional secret codes
using smart phone applications or e—mails

Motivating Example

» Screenshot of browser before evolution

Product ID:
Quantity:
Order

» After the first evolution

Please sign in!

ID:
password:
Signin | OF | Signup |

» After the second evolution

Code:

Please enter the code sent to you by e-mail.

Motivating Example

» Goal model before evolution

Products be
Purchased
Secure High Usability Place Order Siiiis
shopping 9 Processed
Make
Order be

Motivating Example

» Sequence diagram before evolution

uid(l:Nat) : User

| Shop | | CreditCompany

1: processOrder() |
|

alt

1.1:pay()

[valid order]

alt
1.1.7: paid()

1.1.1.7: ship()

L _

[valid payment]

r
=
=<
=R
o
(9]
b
@
o
=

[invalid order]

1.3:log()

F

_—— - — —

Motivating Example

» Goal model after the first evolution

Secure

shopping

High UsabilityJ

Make
Some-

Added parts

Make

Products be
Purchased

Order be

Place Order
Processed

Make

Order be

Checked Pay Order

User Be Made
Have Logged in

User Be Made
Have Logged out

Input ID and
Password

Verify ID and

Regisk:
egister Password

Authentication
Results be
Informed to User

Motivating Example

» Sequence diagram after the first evolution

| uid(l:Nat) : Liser | | Authenticator I I Shap | | CreditCompany.

| 1:register() |

egistered()

Added parts

Toon [notlogzed in] | 1.1.1: login

| 1700z suthenticatel)

alt 111 valle) L

11110 1: loggeding

H
|
|

[valid] |
|

I
=)

| 2: processOrder()

Toop (ogged n I
P llogged in] | 2.1:payl)
|
it T
J
vallg order] At |
2.1z pald()
[valid payment] | 2.1.1.1:<hie)
h
| H
{invald payment] frommmmmmee I 1T ‘T o
3:invalidCredit)
T
A erden N T e T fmms=s
23080
N

: logout()

linvalid]

Motivating Example

» Goal model after the second evolution

Products be
Purchased

Order be
Processed

secure High Usability Place Order

Shopping

Make

Make Some-

Order be

Checked Pay Order

Log

Make

User Be Made
Have Logged in

Register Input ID and Verify ID and
Password Password

Added parts

User Be Made
Have Logged out

Authentication
Results be
Informed to User

User Be
Verified Using
Second Factor

Verify Secret
Code

Exchange
Secret Code

Motivating Example

» Sequence diagram after the second evolution

| wid(l:Nat) : User | | Authen ticator I I Shop. | I CreditCompany

T T T T

| i register() | | |

| |

registered() | |

T | |

| | |

loop [nol logged In| T T T
| 1.1.1:login) | |

T T |

1 | 11 authentizatal) |

|

|

ed parts |

| |

e I |

alt] | |

I | |

I |

| 110020 loggedind |

|_| |
| |

; : '

Tosp Tlogged in|

! 2: processOrder(] ! :

U i
alt T B T

| 2.1:payl) |
valid orcer] 1

alt I
1 217 padl)
Ivald payment] 1 211150
__________________ e
firivalid paymentl |

| 3:irwalic Credit()

. 31 mvaldCreditinfel)

Iy .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I O [
finvelid erder] I rvvalidOrdert) |

U il |

|

T T

| 23:log0) |

I |

‘ T i

I |

1 |

I |

] 4:legoull) |

I !

T £1:notlogeading |

|

I] i i

Tfvale] "7 77T TTTT T s e A s e e 5 I ATTTmTTT T |

10,11 3 Invalid() [|

|

111131 notLoggeding |

|

|

T

t

Proposed Approach

» How to implement dynamic evolution?

» Our Approach: use of Javassist that is a class library
providing reflection functionalities for Java programs

12

Backgrounds

» Dynamic evolution using reflection

> Reflection: System accesses to and manipulates itself from
the metalevel to the internal representation of object—level

Metalevel

A .
cceSS> Internal representation
of object—level

Manipulation

Object-level

Call stack

Program

Backgrounds

» Dynamic evolution using reflection
> Rewrite programs without interrupting system operation

o Javassist: Java class library for operations on Java byte
code
+ Java programs can rewrite themselves at run time

* Example of use of Javassist

public static void main(String[] args) throws Exception {
ClassPool cp = ClassPool.getDefault();
CtClass hs = cp.getCtClass(“javax.servlet.http.HttpServiet”);

Create a new class ———— CtClass sfa = cp.makeClass(”jp.ac.uec.tahara.eShop.SecondFactorAuthenticater”, hs);

Create a new method ——— CtMethod m = CtMethod.make(
“public static String generateCode() {¥n”
// omitted
7Y sfa)
Add the method » sfa.addMethod(m);

14

Backgrounds

» Dynamic evolution using reflection

- Example of use of Javassist

Metalevel

Object—level

Create \@ ndFaCtorAUthentiD
A |
Add method ==

SecondFactorAuthe
class

15

Backgrounds

» Dynamic evolution using reflection
o Example of use of Javassist (cont’ d)

Get existing class > CtClass ru = cp.getCtClass(”jp.ac.uec.tahara.eShop.RegisterUser”);
// omitted
Get existing method—____ | m = ru.getDeclaredMethod(“processRequest”);
Create a new method body — m1 = CtMethod.make(
“protected void processRequest(HttpServletRequest request,
HttpServletResponse response)¥n”
// omitted

+7) ru);
Replaces the method body — m setBody(m1, null);

16

Backgrounds

» Dynamic evolution using reflection

- Example of use of Javassist

Metalevel

Change a method —

ReglsterUser class

Internal representatlon \/ l

Object—level

........
......
[N L
. 0
[N L
. .
. .
- 0
0 .

‘e
-
.
.
N
L
Lr
.....

""" RegisterU
Replaced —b class

17

Backgrounds

» Why reflection?

> Gomparison with other techniques w.r.t. the unit of changes

Techniques

Unit of changes

Design patterns

Classes or methods

Architectural patterns

Components

Autonomic patterns

Resources accessed by actions defined in policies

Middleware-based effectors

Dependent on middleware's functionalities

Dynamic aspect weaving

Aspect

Function pointers

Functions

Reflection

Program of the system itself in detail

> Reflection is the only technique that enables systems to
change their own program in detail

18

Backgrounds

» Why reflection?
> Gomparison with other techniques w.r.t. the locations of

changes

Techniques Locations of changes

Design patterns Locations where the patterns are applied
Architectural patterns Locations where the patterns are applied
Autonomic patterns Resources accessible by actions defined in policies
Middleware-based effectors |Locations accessible by the middleware

Dynamic aspect weaving Join points that can be specified by pointcuts
Function pointers Locations where the functions are called
Reflection Anywhere in the program

> Reflection is the only technique that can change anywhere
In the program

19

Introduction

» Needs of dynamic software evolution

> To deal with rapidly changing requirements and
environments

o Without interruptions of system operation

- Service—down costs several thousands of dollars per minute**2

*! http://blogs.gartner.com/andrew—lerner/2014/07/16/the—cost—of-downtime/
*2 http://www.compudata.com/calculating—costs—of—it—downtime/

20

Dynamic Evolution for Continuous
Delivery

Before evolution <— — After evolution

User 1 : , > >

! |
Ordinary system operation : :

User n : : >
|
| N

________ h Concurrent execution part

Execution of
evolution

Deployment of
the program

Engineering activities
Development

of the
program for
evolution
behaviors

Example of Complicated Behaviors

» In the case of the second evolution

ID,
® password

Authentication

User 1 @yl:‘ﬁr UE\ — ‘ﬁrgsk > process with ID

/'

password

and Password

Example of Complicated Behaviors

» In the case of the second evolution

Authentication

ID. process with ID

e password 6

and Password
User 1 @y j — ‘ﬁlﬂ-k:

Engineer
/ D, Start . ‘

password dynamic
evolution

éij
User n @éfl@

?_lﬁﬂﬂ

Two—Factor
Authentication
process

Introduction

» Needs of dynamic sottware evelution

o To deal with repidly ehanging requirements and
GNVIroNMents

o Without interruptions of system operation
» Serviee down costs several thousands of dellars per minute®*!*2

» Issue: complicated behaviors

> Goncurrent execution of the ordinary system operations for
many users and the evolution behaviors may lead to
unexpected states

*! http://blogs.gartner.com/andrew—lerner/2014/07/16/the—cost—of-downtime/
*2 http://www.compudata.com/calculating—costs—of—it—downtime/

24

Motivating Example

» Online shopping system
o Current version: No security
» Evelving tweo times

o [First evolution: to add the authentication function with IDs and passwerds

o Second evelution: to add the two—lfacter authentication function requiring

users to exchange additional secret codes using smart phone applications or
E=mails

» Verified property
> anytime the users can access the shop and the shop
properly deals with the users’ orders

> Under the assumption that the system treats all the users

fairly (even if more than 100 or 1000 users at the same
time)

27

Proposed Approach

» Issues

o [How to implement dynamiec evelution?

* Our Approach: use of Javassist that is a class library providing
reflection functionalities for Java programs

> How to express the behavior specifications of the dynamic
evolution using reflection?

* Our Approach: use of model checking

28

Issues of Model Checking

» CGoncurrent execution of the ordinary system
operations and the evolution behaviors

» Various accesses by many users in various timings
> Before and during evolution

4

» State space explodes to an enormous size

29

Proposed Approach

» Model checking would be promising for verification of
evolution behaviors

> Full coverage for possible behaviors
> Automated verification

» Issues in model checking dynamic evolution
> Difficult to write behavior specifications

* Most model checkers cannot deal with dynamic changes of
specifications directly

o State explosion: numbers of states to be explored become
enormous for large—scale systems

30

Maude

Algebraic specification language

4

Useful to write behavior specifications of distributed
object—based systems

v

Support of reflection

> Treating constructs of object—level specifications as
metalevel terms (representations of data)

v

> Metalevel simulates object—level behaviors

Effective theoretical basis of abstraction

v

Model checkers

v

31

Proposed Approach

Goal models and sequence diagrams

yd
T~

/Before evolution

» Outline
éij; Create
QL]

Add properties

Source code skeleton
of program carrying
out evolution

After evolution

~
7
~
7

Automated tools

~

~
Cd

N

L

verified

Maude specification
Properties to be

if true

/

Maude
specification
generator

Maude model
checker

Source code
generator

32

Experiments

» First evolution: addition of the authentication
functionality

> Verified property: anytime the users can access the shop
and the shop properly deals with the users’ orders

* Under the assumption that the system treats all the users fairly
> Verification time (in milliseconds)

No. of users Before evolution During evolution

1 80 120
200 1084
2432 42956

33

Experiments

» Second evolution: addition of the two—factor
authentication functionality
> Verified property: the same
> Verification time (in milliseconds)

No. of users Before evolution During evolution
644 696
1948 3124

43772 117252

34

Prof. Tahara will present in the next talk

» Details of our proposed approach how to
solve issues
° Procedure
> Application to the motivating example
> Theoretical validation of abstraction

» Discussions

> Advantages and limitations of our proposed
approach

> Gomparison with other approaches
o Future work

35

