Video Visualization with Computer Vision

Masahiro Toyoura University of Yamanashi

03/11/2014

NII Shonan Meeting on Computer Visualization: Concepts and Challenges

Vision & Visualization

Visualization for Vision

M. Toyoura, K. Kashiwagi, A. Sugiura, X. Mao, "Mono-glass for Providing Distance Information for People Losing Sight in One Eye," ACM SIGGRAPH VRCAI, pp.39-42, 2012.

See on behalf of Humans Vision for Visualization

M. Toyoura, S. Nishiguchi, X. Mao, M. Murakami, "Activity Visualization for Multiple Targets in a Video," Pacific Visualization (Poster), 2014.

Mono-glass

Provide the function of binocular disparity on behalf of user's eyes.

➡ Informative + Perceptual/Intuitive Vis of depth

Motivation

Cannot do binocular disparity processing with **one eye**.

↓ It makes grasping an object difficult, and reduces QoL (Quality of Life).

The number of people losing sight in one eye: (Not published, but) is considered to be **the same order to the visually impaired patients**. (Poor vision: **246** million, blindness: **39** million (2010))

Design of Mono-glsss

Depth estimation with stereo cameras

- Relatively light, real-time process
- Defocused image synthesis with software
 - An arbitrary degree of defocusing

R

MaoLab

MaoLab

Depth

MaoLab

Only **informativeness** is not enough. **Perceptionality** and **intuitiveness** are also important.

■ In case that synthesize image displayed…

- ♦ 6 subjects significantly shorter
- Only F significantly longer

Discussions

- Our synthesized images could provide distance information for some subjects
- There were differences

Vision & Visualization

Visualization for Vision

M. Toyoura, K. Kashiwagi, A. Sugiura, X. Mao, "Mono-glass for Providing Distance Information for People Losing Sight in One Eye," ACM SIGGRAPH VRCAI, pp.39-42, 2012.

See on behalf of Humans Vision for Visualization

M. Toyoura, S. Nishiguchi, X. Mao, M. Murakami, "Activity Visualization for Multiple Targets in a Video," Pacific Visualization (Poster), 2014.

Analyzing lecture room video for faculty development (FD)

ActVis support analyzing videos (Activity Visualizer)

Overview of ActVis

1. Capturing a video

- By settled camera
- Rough positions of target objects are not changed
- 2. Video processing
- Place panels
- Activation level is extracted
- Generate seek bars
- (Register meta-data)
- 3. Video analysis
- Skim through with visualized data

Place panels at any positions on the screen

- Manual placement helps to avoid miss/error of target detection
- Allow to apply to distorted videos captured by omni-directional cameras
- Multiple panels examines multiple targets

Activation Level Extraction

Activation level is extracted from the rate of pixels with large temporal differential

- Temporal differential, as a low-level feature, can be robustly extracted
- Red linear gauge at the right of the panel also visualizes large movement within the panel

Generates Seek Bars

③ and ⑤ would be important cues of students' attention for the lectures
① and ② may be useless for FD
Sleeping undetected, but important for FD

Ongoing ~ Sensor Fusion

Multiple cameras, more sensors would solve the occlusion.

Corresponding bars (Video and acceleration sensor)

Vision & Visualization

Visualization for Vision

M. Toyoura, K. Kashiwagi, A. Sugiura, X. Mao, "Mono-glass for Providing Distance Information for People Losing Sight in One Eye," ACM SIGGRAPH VRCAI, pp.39-42, 2012.

See on behalf of Humans Vision for Visualization

M. Toyoura, S. Nishiguchi, X. Mao, M. Murakami, "Activity Visualization for Multiple Targets in a Video," Pacific Visualization (Poster), 2014.

Thank you for your attention.