Products of effective topological spaces and a uniformly computable Tychonoff Theorem

Robert Rettinger, Klaus Weihrauch

University of Hagen, Germany,

Shonan meeting ICC, Nov. 4-7, 2013

Survey

The Tychonoff theorem

Computability via multi-representations

Tychonoff on computable topological spaces

Computable Tychonoff on the class of effective topological spaces

Products of sets and Tychonoff for mincover

The Tychonoff theorem

Topological space $\mathbf{X} = (X, \tau)$, topology τ = set of open sets $K \subseteq X$ is compact iff every open cover of K has a finite subcover.

 $(\forall \sigma \subseteq \tau, K \subseteq \bigcup \sigma) (\exists \pi \subseteq \sigma) (\pi \text{ is finite and } K \subseteq \bigcup \pi)$

Product $\mathbf{X} = (X, \tau) = \mathbf{X}_1 \times \mathbf{X}_2 \times \ldots$ of spaces $\mathbf{X}_i = (X_i, \tau_i)$: - $X := X_1 \times X_2 \times \ldots$

- every set $X_1 \times \ldots \times X_{k-1} \times \bigcup_k \times X_{k+1} \times \ldots$ is open $(U_k \in \tau_k)$,

- add all finite intersections,

- add all unions.

Theorem (Tychonoff)

The product $K_1 \times K_2 \times \ldots$ of compact sets is compact.

(accordingly for arbitrary products $\bigotimes_{i \in I} \mathbf{X}_i$ of spaces \mathbf{X}_i)

Computability via multi-representations

Representation approach

Computable functions on Σ^* and Σ^{ω} (finite and infinite sequences of symbols) are defined explicitly by Turing machines.

Computability on "abstract sets" X is defined by computations on "concrete" names from Σ^* or Σ^{ω} .

A representation of a set X is a partial surjection $\delta : \subseteq Y \to X$, where $Y = \Sigma^*$ or $Y = \Sigma^{\omega}$. $\delta(p) = x$ means that p is a name of x.

Examples of representations

$$u_{\mathbb{N}} : \subseteq \Sigma^* \to \mathbb{N}, \ \nu_{\mathbb{N}}(1111) = 4 \text{ etc.}$$

addition, multiplication etc. are computable w.r.t. $u_{\mathbb{N}}$.

$$-\rho_{dec}(3.14159...) = \pi$$
 etc. (decimal representation)

- $-I:\subseteq \Sigma^* \to \operatorname{RI}$ canonical representation of $\{(a,b)\subseteq \mathbb{R} \mid a,b\in \mathbb{Q}\}$.
- $\begin{aligned} &-\rho:\subseteq \Sigma^{\omega}\to \mathbb{R}, \ \rho(u_0\$u_1\$\ldots)=x \text{ iff} \\ &I(u_0),I(u_1),\ldots \text{ is a list of all rational intervals } J \text{ such that } x\in J. \end{aligned}$

There is no $(\rho, \nu_{\mathbb{N}})$ -computable function $f : \mathbb{R} \to \mathbb{N}$ such that x < f(x), but:

There is a computable function $h: \Sigma^{\omega} \to \Sigma^*$ such that $\rho(p) = x \implies x < \nu_{\mathbb{N}} \circ h(p)$.

The multi-function $f : \mathbb{R} \rightrightarrows \mathbb{N}$ is $(\rho, \nu_{\mathbb{N}})$ -computable, where f(x) is some $n \in \mathbb{N}$ such that x < n.

(日) (同) (三) (三) (三) (○) (○)

Computable Analysis needs multi-functions.

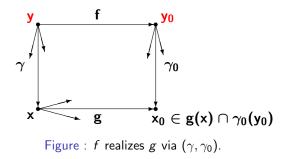
Computable Analysis needs multi-representations.

A multi-representation of a set X is a surjective multi-function $\delta: Y \rightrightarrows X$, where $Y = \Sigma^*$ or $Y = \Sigma^{\omega}$.

 $x \in \delta(p)$ means that p is a name of x, p may be the name of many $x \in X$. (Many people have the name Miller.)

Induced computability

Multi-representations $\gamma: \Sigma^{\omega} \rightrightarrows X$ and $\gamma_0: \Sigma^{\omega} \rightrightarrows X_0$ $f: \subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ operates on "concrete data", $g: X_1 \rightrightarrows X_0$ operates on "abstract data".



g is computable iff it has a computable realization.

Tychonoff on computable topological spaces

Definition effective topological space $\mathbf{X} = (X, \tau, \beta, \nu)$

- τ is T_0 : x = y if $\{U \in \tau \mid x \in U\} = \{U \in \tau \mid y \in U\}$
- $\beta \subseteq \tau$ is a countable base
- $\nu:\subseteq \mathbf{\Sigma}^* \to \beta$ is a representation of β

Definition $\mathbf{X} = (X, \tau, \beta, \nu)$ is computable iff

- $\operatorname{dom}(\nu) \in \Sigma^*$ is recursive
- There is some r.e. set $S \subseteq (\operatorname{dom}(\alpha))^3$ such that $\nu(u) \cap \nu(v) = \bigcup \{\nu(w) \mid (u, v, w) \in S\}$

Examples: $(\mathbb{R}, \tau_{\mathbb{R}}, \text{RI}, I)$, \mathbb{R}^2 with rational open Euclidean balls

Definition product of $X_1 = (X_1, \tau_1, \beta_1, \nu_1)$, $X_2 = (X_2, \tau_2, \beta_2, \nu_2)$: $X_1 \times X_2 := (X_1 \times X_2, \tau, \beta, \nu)$, $\nu(u_1 \$ u_2) := \nu_1(u_1) \times \nu_2(u_2)$

Theorem X₁ \times **X**₂ is computable if **X**₁ and **X**₂ are computable.

for an effective topological space $\mathbf{X} = (X, \tau, \beta, \nu)$:

Definition (Multi-representation κ_X of compact sets)

 $K \in \kappa_{\mathbf{X}}(p)$ iff p is (encodes) a list of all $\{u_1, \ldots, u_k\}$ such that $K \subseteq \nu(u_1) \cup \ldots \cup \nu(u_k)$.

Theorem (Tychonoff I) For computable topological spaces X_1 and X_2 with product $X = X_1 \times X_2$, the product operator on compact sets, $(K_1, K_2) \mapsto K_1 \times K_2$, is $(\kappa_{X_1}, \kappa_{X_2}, \kappa_X)$ -computable.

Corollary

The product of computable compact sets is computable compact.

(日) (同) (三) (三) (三) (○) (○)

Computable Tychonoff on the class of effectiv topological spaces

Definition Products of eff. top. spaces $\mathbf{X}_i = (X_i, \tau_i, \beta_i, \nu_i)$ $X_1 \times X_2 := (X_1 \times X_2, \tau, \beta, \nu), \quad \nu(u_1 u_2) := \nu_1(u_1) \times \nu_2(u_2)$ $\mathbf{X}_1 \times \ldots \times \mathbf{X}_n \times \mathbf{X}_{n+1} := (\mathbf{X}_1 \times \ldots \times \mathbf{X}_n) \times \mathbf{X}_{n+1}$ $X_1 \times X_2 \times \ldots := \mathbf{Y} := (Y, \tau_{\mathbf{Y}}, \beta_{\mathbf{Y}}, \nu_{\mathbf{Y}})$ where $Y := X_1 \times X_2 \times \ldots$ $\nu_{\mathbf{Y}}\langle u_1, \ldots, u_k \rangle := \nu_1(u_1) \times \nu_2(u_2) \times \ldots \times \nu_k(u_k) \times X_{k+1} \times X_{k+2} \times \ldots$ $\tau_{\mathbf{Y}}$:= the topology on **Y** generated by range($\nu_{\mathbf{Y}}$).

Multi-representation of all eff. top. spaces

The concrete data of an eff. top. space $\mathbf{X} = (X, \tau, \beta, \nu)$:

- the characteristic function of $dom(\nu)$ and

- an enumeration of some set S such that

 $\nu(u) \cap \nu(v) = \bigcup \{\nu(w) \mid (u, v, w \in S\}.$

Definition (Multi-representation $\Delta : \Sigma^{\omega} \rightrightarrows \mathcal{T}$ of the class \mathcal{T} of all effective topological spaces)

 $X = (X, \tau, \beta, \nu) \in \Delta \langle r, s \rangle$ iff

- r enumerates the graph of the characteristic function of $dom(\nu)$

- *s* enumerates a subset $S \subseteq (dom(\nu))^3$ such that $\nu(u) \cap \nu(v) = \bigcup \{\nu(w) \mid (u, v, w \in S\}$

Remark Spaces with the same name may be not homeomorphic. $\Delta(p)$ has a maximal element \mathbf{X}_p .

Definition For multi-representations $\delta_i : \Sigma^{\omega} \rightrightarrows Z_i$: $[\delta_1, \delta_2, \ldots]^+ (1^n 0 \langle p_1, \ldots, p_n \rangle) := \{n\} \times \delta_1(p_1) \times \ldots \times \delta_n(p_n),$ $[\delta_1, \delta_2, \ldots] \langle p_1, p_2, \ldots \rangle := \delta_1(p_1) \times \delta_2(p_2) \times \ldots$

Theorem (products of spaces) $(X_1, X_2) \mapsto X_1 \times X_2$ is (Δ, Δ, Δ) -computable $(n, X_1, X_2, ...) \mapsto X_1 \times X_2, \times ... \times X_n$ is $([\Delta, \Delta, ...]^+, \Delta)$ -computable, $(X_1, X_2, ...) \mapsto X_1 \times X_2, \times ...$ is $([\Delta, \Delta, ...], \Delta)$ -computable.

Definition

Multi-representation of the class of all compact subsets of effective topological spaces:

 $(\mathbf{X},K)\in\kappa^{\Delta}\langle p,q
angle\iff\mathbf{X}\in\Delta(p) ext{ and }K\in\kappa_{\mathbf{X}}(q)$

 $\begin{array}{l} \textbf{Theorem (computable Tychonoff)} \\ ((\textbf{X}_1, K_1), (\textbf{X}_2, K_2)) \mapsto (\textbf{X}_1 \times \textbf{X}_2, K_1 \times K_2) \\ \text{is } (\kappa^{\Delta}, \kappa^{\Delta}, \kappa^{\Delta})\text{-computable.} \\ (n, (\textbf{X}_1, K_1), (\textbf{X}_2, K_2), \ldots) \mapsto (\textbf{X}_1 \times \ldots \times \textbf{X}_n, K_1 \times \ldots \times K_n) \\ \text{is } ([\kappa^{\Delta}, \kappa^{\Delta}, \ldots]^+, \kappa^{\Delta})\text{-computable.} \\ ((\textbf{X}_1, K_1), (\textbf{X}_2, K_2), \ldots) \mapsto (\textbf{X}_1 \times \textbf{X}_2 \times \ldots, K_1 \times K_2 \times \ldots) \\ \text{is } ([\kappa^{\Delta}, \kappa^{\Delta}, \ldots], \kappa^{\Delta})\text{-computable.} \end{array}$

Corollaries . . .

Products of sets and Tychonoff for mincover

Definition Mincover representation of compact sets

- For $\mathbf{X} = (X, \tau, \beta, \nu)$, and compact $K \subseteq X$, $K \in \widetilde{\kappa}_{\mathbf{X}}(p)$ iff p is (encodes) a list of all sets $\{u_1, \ldots, u_k\}$ such that $K \subseteq \nu(u_1) \cup \ldots \cup \nu(u_k)\}$ and $(\forall i) K \cap \nu(u_i) \neq \emptyset$.

$$-(\mathbf{X}, \mathbf{K}) \in \widetilde{\kappa}^{\Delta} \langle p, q \rangle$$
 iff $\mathbf{X} \in \delta(p)$ and $\mathbf{K} \in \widetilde{\kappa}_{\mathbf{X}}(q)$.

Computable Tychonoff also for mincover?

For effective topological space $\mathbf{X} = (X, \tau, \beta, \nu)$

Definition (multi-representation of 2^X :) $A \in \widetilde{\psi}_{\mathbf{X}}(p) \iff p$ is a list of all u such that $A \cap \nu(u) \neq \emptyset$.

Remark for open U:

$$\begin{array}{l} A \cap U \neq \emptyset \iff \overline{A} \cap U \neq \emptyset \\ A \in \widetilde{\psi}_{\mathbf{X}}(p) \iff \overline{A} \in \widetilde{\psi}_{\mathbf{X}}(p) \end{array}$$

 $\widetilde{\psi}_{\mathbf{X}}$ generalizes the positive representation ψ^+ of the set of closed sets.

There is a computable T_1 -space with non-closed compact sets.

Definition

Multi-representation of the class of all subsets of all effective topological spaces:

 $(\mathbf{X}, A) \in \widetilde{\psi}^{\Delta} \langle p, q \rangle \iff \mathbf{X} \in \Delta(p) \text{ and } A \in \widetilde{\psi}_{\mathbf{X}}(q)$

Theorem (computable Cartesian products) $((\mathbf{X}_{1}, A_{1}), (\mathbf{X}_{2}, A_{2})) \mapsto (\mathbf{X}_{1} \times \mathbf{X}_{2}, A_{1} \times A_{2})$ is $(\widetilde{\psi}^{\Delta}, \widetilde{\psi}^{\Delta}, \widetilde{\psi}^{\Delta})$ -computable. $(n, (\mathbf{X}_{1}, A_{1}), (\mathbf{X}_{2}, A_{2}), \ldots) \mapsto (\mathbf{X}_{1} \times \ldots \times \mathbf{X}_{n}, A_{1} \times \ldots \times A_{n})$ is $([\widetilde{\psi}^{\Delta}, \widetilde{\psi}^{\Delta}, \ldots]^{+}, \widetilde{\psi}^{\Delta})$ -computable. $((\mathbf{X}_{1}, A_{1}), (\mathbf{X}_{2}, A_{2}), \ldots) \mapsto (\mathbf{X}_{1} \times \mathbf{X}_{2} \times \ldots, A_{1} \times A_{2} \times \ldots)$ is $([\widetilde{\psi}^{\Delta}, \widetilde{\psi}^{\Delta}, \ldots], \widetilde{\psi}^{\Delta})$ -computable.

Corollaries . . .

Lemma $\widetilde{\kappa}^{\Delta} \equiv \kappa^{\Delta} \wedge \widetilde{\psi}^{\Delta}$

where $(\kappa^{\Delta} \wedge \widetilde{\psi}^{\Delta}) \langle p, q
angle := \kappa^{\Delta}(p) \cap \widetilde{\psi}^{\Delta}(q)$

By this lemma and the above theorems for κ^{Δ} and $\widetilde{\psi}^{\Delta}$:

Theorem (computable Tychonoff for mincover)

 $((\mathbf{X}_1, \mathcal{K}_1), (\mathbf{X}_2, \mathcal{K}_2)) \mapsto (\mathbf{X}_1 \times \mathbf{X}_2, \mathcal{K}_1 \times \mathcal{K}_2)$ is $(\widetilde{\kappa}^{\Delta}, \widetilde{\kappa}^{\Delta}, \widetilde{\kappa}^{\Delta})$ -computable.

 $(n, (\mathbf{X}_1, K_1), (\mathbf{X}_2, K_2), \ldots) \mapsto (\mathbf{X}_1 \times \ldots \times \mathbf{X}_n, K_1 \times \ldots \times K_n)$ is $([\widetilde{\kappa}^{\Delta}, \widetilde{\kappa}^{\Delta}, \ldots]^+, \widetilde{\kappa}^{\Delta})$ -computable.

 $((\mathbf{X}_1, K_1), (\mathbf{X}_2, K_2), \ldots) \mapsto (\mathbf{X}_1 \times \mathbf{X}_2 \times \ldots, K_1 \times K_2 \times \ldots)$ is $([\widetilde{\kappa}^{\Delta}, \widetilde{\kappa}^{\Delta}, \ldots], \widetilde{\kappa}^{\Delta})$ -computable.

Corollaries . . .

Accordingly multi-representations of other classes of structures:

effective Banach spaces, effective metric spaces, effective Hilbert spaces, effective measure spaces, etc.

References:

K. Weihrauch and T. Grubba, Elementary computable topology, Journal of Universal Computer Science (JUCS), 2009

 R. Rettinger and K. Weihrauch, Products of effective topological spaces and a uniformly computable Tychonoff Theorem, Logical Methods in Computer Science (LMCS), 2013.