Ramified Structural Recursion and Corecursion

Goals: General

1 Study "poly-time" computation over data and codata.* (*Data? Codata?? Definitions shortly.*)

2 Proceed synthetically via restricted programming formalisms.

3 Be as simple and as general as we can manage.

4 Solve some problems. / Find new problems. / Explore!

Non-goals (for this paper)

✗ Finding the "one true" notion of poly-time over data and codata. **✗**

✗ Delving too deep into higher-types.

* Turing '36 and Hartmanis and Stearns '65 concern computation over streams.

Jim Royer | Syracuse University | 12 November 2013

2 / 37

Ramified Structural Recursion and Corecursion

Jim Royer

Syracuse University

12 November 2013

Joint work with Norman Danner (Wesleyan University)

Jim Royer | Syracuse University | 12 November 2013

1 / 37

Ramified Structural Recursion and Corecursion

Goals: Technical

- 1 Keep the formalism as standard & straightforward as possible ... and see how far these choices carry us.
- **2** Build a platform for further exploration.
- 3 Avoid *ad hoc* choices and inventions!
- 4 ...unless
 - we are driven to make a choice (Υ) , or
 - we need to protect goal 1.

Ramified Structural Recursion and Corecursion

The foundation layer

The foundation layer

L: a simply typed lambda calculus

Syntax $E ::= () \mid (E,E) \mid (\pi_1 E) \mid (\pi_2 E) \mid (\iota_1 E) \mid (\iota_2 E) \mid$ case $E \text{ of } (\iota_1 X) \Rightarrow E; \ (\iota_2 X) \Rightarrow E \mid X \mid (\lambda X.E) \mid (E E) \mid$ X ::= identifiersTypes $T ::= \text{unit} \mid T \times T \mid T + T \mid T \to T$

- \blacksquare () \equiv the 0-tuple, only inhabitant of **unit**, & **unit** only *L*-base-type
- $+ \equiv$ tagged disjoint union, $\iota_1: A_1 \rightarrow A_1 + A_2$, $\iota_2: A_2 \rightarrow A_1 + A_2$
- The *L*-types have standard set-theoretic interpretations.
- simple type $=_{def}$ a type build from +, \times , \rightarrow , and base types

Jim Royer | Syracuse University | 12 November 2013

5 / 37

Ramified Structural Recursion and Corecursion

"Classical" formalism #1: $S^- = L + \text{inductive data}$

Inductive data declarations: **data** $\tau = \mu t.\sigma$

Examples

data nat = μt .(unit + t)

Alt: data nat = Zero of unit [Succ of nat]Elms: Zero, Succ(Zero), Succ(Succ(Zero)), ...

a data tree = μt .(unit + $t \times t$)

Alt: data tree = Leaf of unit [] Fork of tree \times tree Elms: Leaf, Fork(Leaf, Leaf), Fork(Fork(Leaf, Leaf), ...

data $natLst = \mu t.(unit + nat \times t)$

Alt: $data \, natLst = Null \, of \, unit \, \| \, Cons \, of \, nat \times natLst$ Elms: Null, Cons(Zero, Null), Cons(Succ(Zero), Cons(Zero, Null)), ... Ramified Structural Recursion and Corecursion

2013-11-12

└─The foundation layer

E: a simply typed lambda calculus Syntax $E := () \mid (E, E) \mid (\pi_1 E) \mid (\pi_2 E) \mid$ $\mid (\pi_1 E) \mid (\pi_2 E) \mid (\pi_2 E) \mid$ $\mid X \mid (AX, E) \mid (E, E) \mid$ $X := \text{detail}(\pi_1 X) \mid (E, E) \mid$ $X := \text{detail}(\pi_1 X) \mid (X, E) \mid (E, E) \mid$

u () = the 0-tuple, only inhabitant of unit, & unit only L-base $\mathbf{u} + \equiv \text{tagged disjoint union}, \ \iota_1 \colon A_1 \to A_1 + A_2, \ \ \iota_2 \colon A_2 \to A_1$ \mathbf{u} The L-types have standard set-theoretic interpretations.

u simple type $=_{def}$ a type build from $+, \times, \rightarrow$, and base

- CCC's
- ground type = level 0 type
- Each *L* type has finitely many inhabitants.
- Next: supply *L* with something to compute over.

Ramified Structural Recursion and Corecursion

"Classical" formalism #1: $S^- = L + \text{inductive data}$

Inductive data declarations: $data \tau = \mu t.\sigma$

Details

- \bullet σ a simple type over t, unit, and previously defined base types
- τ 's signature functor: $F_{\tau}t = \sigma$

E.g.: $F_{\text{nat}} X = \text{unit} + X$. $F_{\text{natLst}} X = \text{unit} + \text{nat} \times X$.

- The declaration introduces:
 - a constructor c_{τ} : $F_{\tau}\tau \to \tau$

Zero = $c_{nat}(\iota_1())$. Succ $n = c_{nat}(\iota_2(n))$.

■ a destructor $d_{\tau} : \tau \to F_{\tau}$

 $d_{\mathbf{nat}}(\mathsf{Zero}) = \iota_1().$ $d_{\mathbf{nat}}(\mathsf{Succ}\,n) = \iota_2(n).$

- a recursor $\mathsf{fold}_{\tau} \colon (\forall \sigma)[(F_{\tau}\sigma \to \sigma) \to \tau \to \sigma].$
- Semantics of τ : a *smallest* set X with d_{τ} : $X \cong F_{\tau}X$.
- $\mathbf{fold}_{\tau} = \tau$ -structural recursion: $(\mathbf{fold}_{\tau}f) \circ c_{\tau} = f \circ F(\mathbf{fold}_{\tau}f)$.

Ramified Structural Recursion and Corecursion

"Classical" formalism #1: $S^- = L + inductive data$

Other notions of data include

- mutually recursive types
- parameterized defs
- and more type constructors E.g.,
 - $X \mapsto X^*$ finite lists
 - $X \mapsto P_{fin}(X)$ finite power sets
 - $-X \mapsto (W \to X)$ functions from prior types
- See Adámek, Milius, & Moss and Rutten for more examples

"Classical" formalism #1: $S^- = L + \text{inductive data}$

More examples (sugared and not)

// times $x y = x \cdot y$ times x Zero = Zerotimes x (Succ y) = plus x (times x y)

 $// sqrLst [n_0, ..., n_k] = [n_0^2, ..., n_k^2]$

 $sqrLst \ Null = Null \qquad sqrLst \ (Cons(x, ys)) = Cons((times x x), sqrLst \ ys)$

// The Péter-Robinson-Ackermann function (with very little sugar)

acker m n

= $let*iterf k = let g(\iota_1()) = (f(Succ Zero)); g(\iota_2(w)) = f(w)$ in (fold_{nat} g(k) // iter $f(k) = f^{(k+1)}(1)$ $h(\iota_1()) = (\lambda k \cdot (\operatorname{Succ} k)); \ h(\iota_2(f)) = \lambda k \cdot (iter f k)$ in $((fold_{nat} h m) n)$

 $S^- \approx \text{System } T \text{ over inductive data}$

Ramified Structural Recursion and Corecursion

$S^- = L + inductive data$ "Classical" formalism #1:

Recall: **data nat** = μt .(**unit** + t). Zero = $c_{nat}(\iota_1())$. Succ $x = c_{nat}(\iota_2(x))$.

Example: $plus: \mathbf{nat} \rightarrow \mathbf{nat} \rightarrow \mathbf{nat}$

 $plus x y = \mathbf{fold_{nat}} \left(\lambda z. \mathbf{case} z \, \mathbf{of}(\iota_1 w) \Rightarrow y; \, (\iota_2 w) \Rightarrow (c_{\mathbf{nat}}(\iota_2 w)) \right) x$ = let $f(\iota_1 w) = y$; $f(\iota_2 w) = (\operatorname{Succ} w)$ in $(\operatorname{fold}_{\operatorname{nat}} f x)$

Using $(\mathbf{fold}_{\tau}f) \circ c_{\tau} = f \circ F(\mathbf{fold}_{\tau}f)$, the definition of f above, etc.:

$$\boxed{plus \ \mathsf{Zero} \ y} = \mathbf{fold_{nat}} \ f \ \mathsf{Zero}$$

$$plus (Succ x) y = fold_{nat} f (Succ x) = Succ (fold_{nat} f x) = Succ (plus x y)$$

fold_{τ} = structural/primitive recursion on τ -data

im Royer | Syracuse University | 12 November 2013

lamified Structural Recursion and Corecursion

Credits on inductive data

- Our approach is fairly standard. For example, see these surveys and tutorials:
 - J. Adámek, S. Milius, and L.S. Moss, Initial Algebras and Terminal Coalgebras: a Survey (2010) draft.

www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf

- J. Gibbons, "Calculating Functional Programs," in Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, LNCS 2297, Springer (2002) 151-203.
- J. Rutten, "Universal coalgebra: A theory of systems," *Theoretical* Computer Science 249 (2000) 3-80.
- However, we do *not* use initial *F*-algebras. (Ramification breaks them.)

Coinductive data declarations: **codata** $\tau = \nu t.\sigma$

Examples

codata Seq $_{\tau} = \nu t.(\tau \times t)$

Alt: **codata** $\mathbf{Seq}_{\tau} = \widehat{\mathsf{Constr}}_{\tau} \mathbf{of} \ \tau \times \mathbf{Seq}_{\tau}$

Elms: infinite lists of τ 's

codata Seq $_{\tau}' = \nu t.(\mathbf{unit} + \tau \times t)$

Alt: **codata** $\mathbf{Seq}_{\tau}' = \widehat{\mathsf{Null}}_{\tau}'$ **of unit** $\|\widehat{\mathsf{Constr}_{\tau}} \mathbf{of} \, \tau \times \mathbf{Seq}_{\tau}'$

Elms: infinite and finite lists of τ 's

codata tree $_{\tau} = \nu \sigma. (\tau \times \sigma \times \sigma)$

Elms: Infinite trees with τ labels

■ *Computations (traces)*

m Royer | Syracuse University | 12 November 2013

"Classical" formalism #2: $S = S^- + \text{coinductive data}$

Our running example: **codata** Seq_{nat} = νt .(**nat** \times t)

$$\widehat{d} = \widehat{d}_{\mathbf{Seq}_{\mathbf{nat}}}$$
 $\widehat{c} = \widehat{c}_{\mathbf{Seq}_{\mathbf{nat}}}$ $\mathbf{Seq}_{\mathbf{nat}} \overset{\widehat{d}}{\underset{\widehat{c}}{\rightleftarrows}} \mathbf{nat} \times \mathbf{Seq}_{\mathbf{nat}}$ $(\widehat{d})^{-1} = \widehat{c}.$

Unpacking: $\widehat{d} \circ (\mathbf{unfold_{Seq_{nat}}} f) = F_{\mathbf{Seq_{nat}}}(\mathbf{unfold_{Seq_{nat}}} f) \circ f$ $f \colon \sigma \to \mathbf{nat} \times \sigma$ $=\widehat{c}\circ(id_{\mathbf{nat}^{\mathsf{S}}}\times(\mathbf{unfold_{\mathsf{Seq}_{\mathsf{nat}}}}f))\circ f.$ $\mathbf{unfold_{Seq_{nat}}}\,f\,s=\widehat{c}\big(((\mathit{id}_{\mathbf{nat}^{\mathsf{S}}}\times(\mathbf{unfold_{Seq_{nat}}}\,f))\circ f)\,s\big).$ $s \equiv a \text{ seed}$ $\approx \widehat{c}((n, \mathbf{unfold_{Seg_{nat}}} f s'))$ where f(s) = (n, s').

"Classical" formalism #2: $S = S^- + \text{coinductive data}$

Coinductive data declarations: **codata** $\tau = \nu t.\sigma$

Details

- \bullet σ a simple type over t, **unit**, and previously defined base types
- $\mathbf{\tau}$'s signature functor: $F_{\tau}t = \sigma$
- The declaration introduces:
 - \blacksquare a constructor $\hat{c}_{\tau} : F_{\tau} \tau \to \tau$ \hat{c}_{τ} is a lazy constructor!
 - a destructor \hat{d}_{τ} : $\tau \to F_{\tau}$ \hat{d}_{τ} forces \hat{c}_{τ} -expressions.
 - a co-recursor **unfold**_{τ}: $(\forall \sigma)[(\sigma \to F_{\tau}\sigma) \to \sigma \to \tau]$.
- Semantics of τ : a *largest* set X with d_{τ} : $X \cong F_{\tau}X$.
- unfold_{τ} = τ -structural corecursion = τ -primitive corecursion: $\hat{d}_{\tau} \circ (\mathbf{unfold}_{\tau} f) = F_{\tau}(\mathbf{unfold}_{\tau} f) \circ f.$

Im Royer | Syracuse University | 12 November 2013

"Classical" formalism #2: $S = S^- + \text{coinductive data}$

Abbreviation: $n :: xs \approx \widehat{c}((n, xs))$

Example:
$$pos = 1 :: 2 :: 3 :: 4 :: 5 :: ...$$

$$pos = \mathbf{unfold_{Seq_{nat}}} \overbrace{\lambda s.(s, s+1)}^{f} 1$$

$$= 1 :: (\mathbf{unfold_{Seq_{nat}}} f 2)$$

$$= 1 :: 2 :: (\mathbf{unfold_{Seq_{nat}}} f 3)$$

$$= 1 :: 2 :: 3 :: (\mathbf{unfold_{Seq_{nat}}} f 4)$$

$$\vdots$$

"Classical" formalism #2: $S = S^- + \text{coinductive data}$

$head(n_1 :: n_2 :: ...) = n_1$ $tail(n_1 :: n_2 :: ...) = (n_2 :: ...)$

Example: $everyOther(x_0 :: x_1 :: x_2 :: ...) = x_0 :: x_2 :: x_4 :: ...$

$$xs = x_0 :: x_1 :: x_2 :: x_3 :: x_4 :: x_5 :: \dots$$

$$everyOther \ xs = \mathbf{unfold_{Seq_{nat}}} \ \widehat{(\lambda ys.(head \ ys, tail(tail \ ys)))} \ xs$$

$$= x_0 :: \mathbf{unfold_{Seq_{nat}}} \ f \ (x_2 :: x_3 :: x_4 :: \dots)$$

$$= x_0 :: x_2 :: \mathbf{unfold_{Seq_{nat}}} \ f \ (x_4 :: x_5 :: x_6 :: \dots)$$

$$= x_0 :: x_2 :: x_4 :: \mathbf{unfold_{Seq_{nat}}} \ f \ (x_6 :: x_7 :: x_8 :: \dots)$$

Jim Royer | Syracuse University | 12 November 2013

15 / 37

Ramified Structural Recursion and Corecursion

Credits on coinductive data

- Our approach to this is also standard. For example, see these (same) surveys and tutorials:
 - J. Adámek, S. Milius, and L.S. Moss, *Initial Algebras and Terminal Coalgebras: a Survey* (2010) draft.

www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf

- J. Gibbons, "Calculating Functional Programs," in *Algebraic and Coalgebraic Methods in the Mathematics of Program Construction*, LNCS 2297, Springer (2002) 151–203.
- J. Rutten, "Universal coalgebra: A theory of systems," *Theoretical Computer Science* **249** (2000) 3–80.
- However, we do *not* use final *F*-coalgebras. (*Ramification breaks them too.*)
- Larry Moss tells us that we (D&R) may be the first ones to write down S.

Ramified Structural Recursion and Corecursion

"Classical" formalism #2: $S = S^- + \text{coinductive data}$

$$pos = 1 :: 2 :: 3 :: 4 :: 5 :: \dots$$

 $everyOther(x_0 :: x_1 :: x_2 :: \dots) = x_0 :: x_2 :: x_4 :: \dots$

Example: $powers \approx 2^0 :: 2^1 :: 2^2 :: 2^3 :: 2^4 :: ...$ via a sieve $powers = unfold_{Seq_{nat}} (\lambda ys.(head ys, everyOther(tail ys))) pos$ $= 1 :: unfold_{Seq_{nat}} f (2 :: 4 :: 6 :: 8 :: 10 :: ...)$ $= 1 :: 2 :: unfold_{Seq_{nat}} f (4 :: 8 :: 12 :: 16 :: ...)$ $= 1 :: 2 :: 4 :: unfold_{Seq_{nat}} f (8 :: 16 :: 24 :: 32 :: ...)$ $= 1 :: 2 :: 4 :: 8 :: unfold_{Seq_{nat}} f (16 :: 32 :: 48 :: 64 :: ...)$

 $S \approx$ System T + inductive and conductive data

fold vs. unfold

Jim Royer | Syracuse University | 12 November 2013

16 / 27

Ramified Structural Recursion and Corecursion

Problem

On our modest foundations

 \blacksquare S^- and S give us this

But we really want something like this

Jim Royer | Syracuse University | 12 November 2013

17 / 3

Jim Royer | Syracuse University | 12 November 2013

Step 1 to a solution: Low level details about S^-

1 Data is represented by directed acyclic graphs (dags).

2013-11-12

(Recall tree = μt .(unit + $t \times t$) \approx Leaf: unit || Fork: tree \times tree.)

let*
$$t_0 = \text{Leaf}$$
; $t_1 = \text{Fork}(t_0, t_0)$; $t_2 = \text{Fork}(t_1, t_1)$ in t_2

$$t_2 \qquad \qquad t_1 \qquad \qquad t_0$$

$$c_{\text{tree}} \qquad c_{\text{tree}} \qquad c_{\text{t$$

- 2 Data-size = the number of *data*-constructor cells
 - E.g.: $|t_2| = 3$.
 - $|v| = \Theta$ (the total number of data-, ι_1 -, ι_2 -, (,)-, and ()-cells in v) (*The constant is program dependent.*)

Jim Royer | Syracuse University | 12 November 2013

19 / 37

Ramified Structural Recursion and Corecursion

Step 1 to a solution: Low level details about S^-

3 Evaluating **fold**-recursions: a dynamic programming problem

Dynamic programming = *sensible* structural recursion on dags.

So in a **fold**_{tree}-recursion on t_2 ,

there are three steps to the recursion, not seven!!!

(See reference to U. Dal Lago, S. Martini, and M. Zorzi (2010) later on.)

Ramified Structural Recursion and Corecursion

└─Step 1 to a solution: Low level details about S[−]

Step 1 to a solution: Low level details about S: \blacksquare Data is represented by directed acyclic graphs (dags). We consider $a=\mu(a_0a_1+s+s)$ is useful with $\{b,a\}$ fine there is the a_0 test a_0 is $\{a_0\}$ fine the a_0 test $\{a_0\}$ fine $\{a_0\}$ for $\{a_0\}$ fine $\{a_0\}$ for $\{a_0\}$ for

- Our choice may be *ad hoc*, but it is a really popular *ad hoc* choice.
- Pola project: M. Burrell, R. Cockett, and B. Redmond
- Pola: in Fork(a, b) no sharing between a and b
 - "one-use" not enough
 - Spacial logic: * and -*

Ramified Structural Recursion and Corecursion

Step 1 to a solution: Low level details about S^-

- 4 The cost of an S^- computation:
 - The evaluation semantics for S^- are given by a collection of structural operational semantics rules. E.g.:

$$Val: \frac{}{v\theta \downarrow v\theta} \begin{pmatrix} v\theta \text{ is a} \\ \text{value} \end{pmatrix} \qquad Env: \frac{}{x\theta \downarrow v\theta'} \begin{pmatrix} \theta(x) = v\theta' \end{pmatrix}$$

$$\lambda \text{-}App: \frac{e_0\theta \downarrow (\lambda x.e_0')\theta_0 \quad e_1\theta \downarrow v_1\theta_1 \quad e_0'\theta_0[x \mapsto v_1\theta_1] \downarrow v\theta'}{(e_0 \ e_1)\theta \downarrow v\theta'}$$

- An S^- -computation \approx a derivation tree (using these rules)
- Define: The cost of an S^- -derivation = the number of nodes (rule applications) the tree.
 Each rule application has cost 1.

Claim

Any sensible way of assigning costs to S^- -computations will be polynomially-related to ours.

- S^- and S will be our "universal" models of computation + cost.
- Not Turing complete, but that is not really a problem.
- Shares the DP approach of evaluating fold's.

Step 2 to a solution: Ramify the data-types

normal \approx values that can drive a recursion safe \approx values resulting from a recursion

Examples (with just a little sugar)

plus:
$$\mathbf{nat} \to \mathbf{nat}^{S} \to \mathbf{nat}^{S}$$

plus $xy = \mathbf{let} f(\iota_{1} w) = y; f(\iota_{2} w) = (\operatorname{Succ}^{S} w) \mathbf{in} (\mathbf{fold}_{\mathbf{nat}}^{S} f x)$
times: $\mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}^{S}$

times
$$x y = \text{let } f(\iota_1 w) = \text{Zero}^S; f(\iota_2 w) = (plus x w) \text{ in } (\text{fold}_{\text{nat}}^S f y)$$

$$sumLst : \mathbf{natLst} \rightarrow \mathbf{nat}^{\mathsf{S}}$$

$$\mathit{sumLst}\,\mathit{xs} = \mathbf{let}\,\mathit{g}(\iota_1\,w) = \mathsf{Zero}^\mathsf{S};\, \mathit{g}(\iota_2(\mathit{x},\mathit{t})) = (\mathit{plus}\,\mathit{x}\,\mathit{t})\,\mathbf{in}\,(\mathbf{fold}^\mathsf{S}_{\mathbf{natLst}}\,\mathit{g}\,\mathit{xs})$$

Non-Example

$$cube = \lambda x \cdot (times x \ (times x x))$$

Step 2 to a solution: Ramify the data-types

■ Why ramify?

To break vicious circles, e.g., huge recursions (& corecursions).

■ What flavor of ramification?

Normal/Safe based on Bellantoni and Cook's BC formalism (not B!!) and Leivant's 1995 formalism.

- **data** $\tau = \mu t.\sigma$ introduces
 - the normal type τ with $c_{\tau} \colon F_{\tau}\tau \to \tau$ and $d_{\tau} \colon \tau \to F_{\tau}\tau$ as before.
 - the safe type τ^{S} with $c_{\tau S}: (F_{\tau}\tau)^{S} \to \tau^{S}$ and $d_{\tau S} \tau^{S} \to (F_{\tau}\tau)^{S}$. $((\sigma \times \xi)^{S} = \sigma^{S} \times \xi^{S}. \quad (\sigma + \xi)^{S} = \sigma^{S} + \xi^{S}. \quad ()^{S} = ().)$
 - $\mathbf{fold}_{\tau}^{\mathsf{S}}$: $(\forall \sigma \mid \sigma \text{ is safe})[(F_{\tau}\sigma \to \sigma) \to \tau \to \sigma]$ Replaces \mathbf{fold}_{τ} . $(\mathbf{fold}_{\tau}^{\mathsf{S}} \text{ and } \mathbf{fold}_{\tau}$: different typing, but the same op. semantics.)

N.B. The normal/safe distinction applies to just ground (level 0) types.

im Royer | Syracuse University | 12 November 2013

Ramified Structural Recursion and Corecursion

Step 2 to a solution: Ramify the data-types

Up-I:
$$\frac{\Gamma \vdash e \colon \tau}{\Gamma \vdash (\mathbf{up} \, e) \colon \tau^{\mathsf{S}}} \quad (\dagger)$$

Down-I:
$$\frac{\Gamma \vdash e \colon \tau^{\mathsf{S}}}{\Gamma \vdash (\mathsf{down}\, e) \colon \tau} \quad (\star)$$

- (†) τ is a normal base type.
- (\star) (†) & each $x \in freeVars(e)$ occurs in a normal-type subterm of *e*.
- $\mathbf{u} (\mathbf{u} \mathbf{p} v) =$ a safe-version of v
- **(down** v) = a normal-version of v

Examples

$$cube : \mathbf{nat} \to \mathbf{nat}^{\mathsf{S}}$$
 $cube =$

$$\lambda x \cdot (times x (\mathbf{down} (times x x)))$$

$$cube'$$
: nat \rightarrow nat

$$cube' = \lambda x \cdot (\mathbf{down}(cube \, x))$$

- **Down-I** is a λ -calculus adaptation of Bellantoni and Cook's raising rule.
- The raising rule \approx a specialization of Whitehead and Russell's axiom of reducibility.

RS_1^- : The ramified version of S^-

 $RS_1^- = S^-$ with normal/safe ramified data types + up and down (for simplicity) + case-expressions, +-types, and ×-types restricted to ground level + 2nd-order **fold**^S's (for sanity)

Theorem (RS_1^- : Polynomial-time soundness)

Given an RS_1^- term $x_1: \gamma_1, \dots, x_k: \gamma_k \vdash e: \gamma_0$ where each γ_i is normal or safe, one can construct a polynomial p over $\{|x_i| \mid \gamma_i \text{ is normal }\}$ such that: evaluation- $cost(e\theta) \le p\theta$, for each variable environment θ .

N.B. *e* may contain subterms of arbitrarily high type levels.

im Royer | Syracuse University | 12 November 2013

mified Structural Recursion and Corecursion

Sample credits related to RS_1^- (*Very incomplete*)

- S. Bellantoni and S. Cook, "A new recursion-theoretic characterization of the polytime functions," Computational Complexity 2 (1992) 97–110.
- D. Leivant, "Ramified recurrence and computational complexity I: Word recurrence and poly-time," Feasible Mathematics II, Birkhäuser (1995) 320–343.
- U. Dal Lago, S. Martini, and M. Zorzi, "General Ramified Recurrence is Sound for Polynomial Time," Electronic Proceedings in Theoretical Computer Science 23 (2010) 47-62.
- M. Burrell, R. Cockett, and B. Redmond, "Safe recursion revisited I: Categorical semantics for lower complexity," TCS (2013) http://dx.doi.org/10.1016/j.tcs.2013.09.034

■ N. Danner and J. Royer, "Adventures in time and space," Logical Methods in Computer Science 3 (2007) 1–53.

 RS_1^- : The ramified version of S^-

RS_1^- and incompleteness

Q: Can RS_1^- compute the depth of a **tree**? What is the problem? How to compute the max of the depth of two branches?

O: For **nat**-labeled trees: Can RS_1^- test whether such a tree has a repeated label? Why feasible? Distinct labels \implies distinct nodes

- \triangleright For branching data: We suspect RS_1^- is incomplete.
- \triangleright For non-branching data: We strongly suspect RS_1^- is complete since representations are unique.
- Q: How to fix incompleteness? (Later)

im Royer | Syracuse University | 12 November 2013

Ramified Structural Recursion and Corecursion

Step 3: Ramify the codata types

Declaring **codata** $\tau = \nu t.\sigma$ introduces

- the normal type τ with $\hat{c}_{\tau} \colon F_{\tau}\tau \to \tau$ and $\hat{d}_{\tau} \colon \tau \to F_{\tau}\tau$ as before.
- the safe type τ^{S} with $\hat{c}_{\tau^{S}}: (F_{\tau}\tau)^{S} \to \tau^{S}$ and $\hat{d}_{\tau^{S}}\tau^{S} \to (F_{\tau}\tau)^{S}$.
- unfold^S_{\tau}: $(\forall \sigma \mid \sigma \text{ is safe})[(\sigma \rightarrow F_{\tau}\sigma) \rightarrow \sigma \rightarrow \tau^{S}]$ Replaces unfold_{\tau}. $(unfold_{\tau}^{S})$ and $unfold_{\tau}$: different typing, but the same op. semantics.)
- !! The τ^{S} in the typing of **unfold**^S is restrictive trouble. But τ in place of τ^{S} leads to infeasibility.
- !! And there are other troubles . . .

Step 3: Ramify the codata types

As things stand, the following are allowed:

- ? everyOther: $\mathbf{Seq_{nat}^S} \to \mathbf{Seq_{nat}^S}$ // $[x_0, x_1, x_2, \dots] \mapsto [x_0, x_2, x_4, \dots]$ everyOther = $\lambda xs.$ unfold $_{\mathbf{Seq_{nat}}}^{\mathbf{S}} (\lambda ys.(head\ ys.(tail\ ys)))\ xs$
- (*) Nested $\hat{d}_{\mathsf{Seq}_{\mathsf{nat}}^{\mathsf{S}}}$'s \longrightarrow stream speed-ups

Jim Royer | Syracuse University | 12 November 2013

29 / 3

Ramified Structural Recursion and Corecursion

Step 3: Ramify the codata types

Safe-streams are reasonably powerful: Thunk parades

$$\begin{split} steps_i \colon \mathbf{Seq_{nat}^S} &\to \mathbf{Seq_{nat}^S} \quad /\!/ steps_i[\ldots, x_k, \ldots] = [\ldots, x_k + \binom{k}{i}, \ldots] \\ steps_0 \, xs &= \mathbf{unfold_{Seq_{nat}}^S} \, \left((\mathbf{Succ^S} \times id_{\mathbf{Seq_{nat}^S}}) \circ \widehat{d}_{\mathbf{Seq_{nat}^S}} \right) \, xs \\ steps_{i+1} \, xs &= \mathbf{unfold_{Seq_{nat}}^S} \, \left((id_{\mathbf{nat^S}} \times \underbrace{steps_i}) \circ \widehat{d}_{\mathbf{Seq_{nat}^S}} \right) \, xs \end{split}$$

But ...

since codata are lazy, to reach far into a codatum one still needs a **fold**^S driven by a normal-datum.

Step 3: Ramify the codata types

Definition

- (a) (unfold $_{\sigma}^{S}$ step seed) is speeding if step (in n.f.) contains a nested application of safe-codata destructors.
- (b) A stepwise expression is one without any speeding unfold s's.

The stepwise side-condition for **unfold**^S

$$\mathbf{unfold}_{\tau}^{\mathsf{S}}\text{-}I:\ \frac{\Gamma \vdash f\colon \sigma \to F_{\tau}\sigma \quad \Gamma \vdash e\colon \sigma}{\Gamma \vdash \mathbf{unfold}_{\tau}^{\mathsf{S}}f\,e\colon \tau^{\mathsf{S}}} \quad (\star)$$

(*) τ is a normal codata type with signature functor F_{τ} , σ is safe, and f is stepwise.

Jim Royer | Syracuse University | 12 November 2013

30 / 37

Ramified Structural Recursion and Corecursion

RS_1 : The ramified version of S

 $RS_1 = S$ with normal/safe ramified data types

 $+RS_1^-$'s changes

+ the stepwise side-condition on (2nd-order) **unfold**^S's

Theorem (RS_1 : Polynomial-time soundness)

Given $x_1: \gamma_1, \dots, x_k: \gamma_k \vdash_{RS_1^-} e: \gamma_0$ where each γ_i is normal or safe,

we can construct a poly p over $\{|x_i|, |(|x_i|)| \mid \gamma_i \text{ is normal }\}$ such that:

evaluation-cost($e\theta$) $\leq p\theta$, for each variable environment θ .

(|x|) = the codata size of $x \approx$ Kapron-Cook 1st-order size

Details

RS_1 : The ramified version of S

*RS*₁ and incompleteness: Normal maps are missing.

- E.g.: $map: (nat \rightarrow nat) \rightarrow Seq_{nat} \rightarrow Seq_{nat}$ $map f [\ldots, n_k, \ldots] = [\ldots, f n_k, \ldots]$
- These are unproblematically feasible, but ...
- \blacksquare RS_1 cannot define them.
- *Q*: Normal-maps + RS_1 = a kind of completeness?

im Royer | Syracuse University | 12 November 2013

im Royer | Syracuse University | 12 November 2013

Ramified Structural Recursion and Corecursion

So what does our solution (RS_1) solve?

 RS_1

- = S
 - + normal/safe ramified types
 - + dags/DP-fold^S's
 - + up and down
 - + stepwise unfold^S's
 - + 2nd-order fold^S's & unfold^S's
- polytime sound
- incomplete over codata
- likely incomplete over data

Re: feasible computation over data & codata (1st order)

- It gives an uncluttered look at the territory.
- It lets us compute quite a lot.
- It exposes some clear problems.
- It's soundness proofs provide analysis tools. (Not in this talk.)
- It provides a platform for further exploration, either
 - to build on
 - or to reject.

amified Structural Recursion and Corecursion

Credits related to RS₁

- M. Burrell, R. Cockett, and B. Redmond, "Safe recursion revisited I: Categorical semantics for lower complexity," TCS (2013) http://dx.doi.org/10.1016/j.tcs.2013.09.034
- H. Férée, E. Hainry, M. Hoyrup, and R. Péchoux, "Interpretation of stream programs: Characterizing type 2 polynomial time complexity," Algorithms and Computation, Springer LNCS 6506 (2010) 291–303.
- R. Ramyaa and D. Leivant, "Feasible functions over co-inductive data," Logic, Language, Information and Computation, Springer LNCS 6188 (2010) 191–203.
- R. Ramyaa and D. Leivant, "Ramified corecurrence and logspace," MFPS XXVII, ENTCS 276 (2011) 247-261.

Ramified Structural Recursion and Corecursion

Some specific open problems

- replacing and/or supplementing fold^S (tree-compressions, but higher-rank data = trouble)
- unfold^S + normal-maps over codata = ??
- fancier notions of data and codata / higher-order fold s and unfold s and unfold
- restrict types and lazy data. E.g.,
 - Restricting to **nat** + 0-1-streams yields logspace stream functions
 - restricting to **nat** + lazy 0-1-strings would yield logspace functions
- algebraic/categorical foundations of data and codata
 - Basis for Bird-style program transformations for optimizations.
 - Broken by ramification
 - Do how things break tell us something? turn What is recoverable? How does it tie to optimization?

Some specific open problems

- Aehlig-Cook-Nguyen and two sorted complexity classes

Ramified Structural Recursion and Corecursion

Enough! We are done!!

im Royer | Syracuse University | 12 November 2013

Ramified Structural Recursion and Corecursion

Footnotes

Ramified Structural Recursion and Corecursion

S^- and Sfold and unfold

$\mathsf{fold}_{ au}$:

$$(\forall \sigma)[(F_{\tau}\sigma \to \sigma) \to \tau \to \sigma]$$

- $(\operatorname{fold}_{\tau} f) \circ c_{\tau} =$ $f \circ F_{\tau}(\mathbf{fold}_{\tau}f)$
- **fold**_{τ} tears down a τ -value to build a σ -value.
- \blacksquare F_{τ} -algebras
- **nat** \rightarrow **nat** S^- -functions = PA-provably total functions
- & those w/ type-level 1 defs = primitive recursive functions

unfold $_{\tau}$:

$$(\forall \sigma)[(\sigma \to F_{\tau}\sigma) \to \sigma \to \tau]$$

- $\widehat{d}_{\tau} \circ (\mathbf{unfold}_{\tau} f) =$ $F_{\tau}(\mathbf{unfold}_{\tau} f) \circ f$
- **unfold** $_{\tau}$ builds a τ -value from a seed σ -value.
- \blacksquare F_{τ} -coalgebras
- **nat** \rightarrow **nat** *S*-functions = PA-provably total functions
- & those w/ type-level 1 defs = PA-provably total functions

 \sqsubseteq fold and unfold / S^- and S

- *S* is one reading of David Turner's "total functional programming." Although it is probably too spare and too ML-ish for him.
- The reason type-level 1 *S*-functions are so powerful is that, for each ordinal $\alpha < \epsilon_0$, one can use codata to implement a notation system for the ordinals $< \alpha$.

Ramified Structural Recursion and Corecursion

Notes on the proof of RS_1^- poly-time boundedness

- Bellantoni & Cook's poly-max bounds

 →

 poly-heap bounds (to account for structure sharing)
- to deal with the (internal) higher-types: D&R's time complexity semantics
 - Higher-type terms have two sorts of complexity
 - cost = cost to evaluate the term to a value
 - potential = costs associated with using the higher-type value
 - (Also see Sands, Gurr, Shultis, van Stone, ...)

Back

Ramified Structural Recursion and Corecursion

Warning: Making sense of W&R on this stuff is vexing

Bellantoni and Cook, 1992, §5

One further adds the following "Raising" rule: if function $f(\vec{x};)$ of all normal inputs is in the class with safe type output, then the function f^{ν} is in the class with normal type output defined by $f^{\nu}(\vec{x};) = f(\vec{x};)$.

Whitehead and Russell, PM 1/e, Vol. 1, 1910, page 174

Let fu be a function, of any order, of an argument u, which may itself be either an individual or a function of any order. If f is a matrix, we write the function of the form f!u; in such a case we call f a predicative function.

 $matrix \approx no$ (free) apparent variables real/apparent variables

Back

Jim Royer | Syracuse University | 12 November 2013

40 / 37

Ramified Structural Recursion and Corecursion

Details for *steps*.

$$xs = x_0 :: x_1 :: x_2 :: x_3 :: x_4 :: \dots$$

$$steps_0 xs = \mathbf{unfold}_{\mathbf{Seq}_{\mathbf{nat}}}^{\mathsf{S}} \left((\mathsf{Succ}^{\mathsf{S}} \times id_{\mathbf{Seq}_{\mathbf{nat}}^{\mathsf{S}}}) \circ \widehat{d}_{\mathbf{Seq}_{\mathbf{nat}}^{\mathsf{S}}} \right) xs$$

$$= (x_0 + 1) :: (x_1 + 1) :: (x_2 + 1) :: (x_3 + 1) :: (x_4 + 1) :: \dots$$

$$steps_{1} xs = \mathbf{unfold_{Seq_{nat}}^{S}} \underbrace{\left((id_{\mathbf{nat}^{S}} \times steps_{0}) \circ \widehat{d}_{\mathbf{Seq_{nat}^{S}}} \right)}_{f} xs$$

$$= x_{0} :: \mathbf{unfold_{Seq_{nat}}^{S}} f \left(steps_{0}(x_{1} :: x_{2} :: \dots) \right)$$

$$= x_{0} :: (x_{1} + 1) :: \mathbf{unfold_{Seq_{nat}}^{S}} f \left(steps_{0}^{(2)}(x_{2} :: x_{3} :: \dots) \right)$$

$$= x_{0} :: (x_{1} + 1) :: (x_{2} + 2) :: \mathbf{unfold_{Seq_{nat}}^{S}} f \left(steps_{0}^{(3)}(x_{3} :: x_{4} :: \dots) \right)$$

$$\vdots$$

Back