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Ramified Structural Recursion and Corecursion

Goals: General

1 Study “poly-time” computation over data and codata.∗

(Data? Codata?? Definitions shortly.)
2 Proceed synthetically via restricted programming formalisms.
3 Be as simple and as general as we can manage.
4 Solve some problems. / Find new problems. / Explore!

Non-goals (for this paper)
8 Finding the “one true” notion of poly-time over data and codata.
8 Delving too deep into higher-types.

∗ Turing ’36 and Hartmanis and Stearns ’65 concern computation over streams.
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Goals: Technical

1 Keep the formalism as standard & straightforward as possible
. . . and see how far these choices carry us.

2 Build a platform for further exploration.

3 Avoid ad hoc choices and inventions!

4 . . . unless

we are driven to make a choice ( ), or

we need to protect goal 1.
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The foundation layer
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The foundation layer

L: a simply typed lambda calculus

Syntax E ::= () | (E, E) | (π1 E) | (π2 E)
| (ι1 E) | (ι2 E) | caseE of(ι1 X)⇒ E; (ι2 X)⇒ E
| X | (λX E) | (E E)

X ::= identifiers

Types T ::= unit | T× T | T + T | T → T

() ≡ the 0-tuple, only inhabitant of unit, & unit only L-base-type
+ ≡ tagged disjoint union, ι1 : A1 → A1 + A2, ι2 : A2 → A1 + A2

The L-types have standard set-theoretic interpretations.

simple type =def a type build from +, ×,→, and base types
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The foundation layer

• CCC’s

• ground type = level 0 type

• Each L type has finitely many inhabitants.

• Next: supply L with something to compute over.

Ramified Structural Recursion and Corecursion

“Classical” formalism #1: S− = L + inductive data

Inductive data declarations: data τ = µt.σ

Examples

datanat = µt.(unit + t)

Alt: datanat = Zero of unit [] Succ of nat
Elms: Zero, Succ(Zero), Succ(Succ(Zero)), . . .

data tree = µt.(unit + t× t)

Alt: data tree = Leaf of unit [] Fork of tree× tree
Elms: Leaf, Fork(Leaf, Leaf), Fork(Fork(Leaf, Leaf), Leaf), . . .

datanatLst = µt.(unit + nat× t)

Alt: datanatLst = Null of unit [] Cons of nat× natLst
Elms: Null, Cons(Zero,Null), Cons(Succ(Zero),Cons(Zero,Null)), . . .
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“Classical” formalism #1: S− = L + inductive data

Inductive data declarations: data τ = µt.σ

Details
σ a simple type over t, unit, and previously defined base types
τ’s signature functor: Fτt = σ
E.g.: Fnat X = unit + X. FnatLst X = unit + nat×X.
The declaration introduces:

a constructor cτ : Fττ → τ
Zero = cnat(ι1()). Succn = cnat(ι2(n)).

a destructor dτ : τ → Fτ

dnat(Zero) = ι1(). dnat(Succn) = ι2(n).
a recursor foldτ : (∀σ)[(Fτσ→ σ)→ τ → σ].

Semantics of τ: a smallest set X with dτ : X ∼= FτX.
foldτ = τ-structural recursion: (foldτ f ) ◦ cτ = f ◦ F(foldτ f ).
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“Classical” formalism #1:
S− = L + inductive data

Other notions of data include

• mutually recursive types

• parameterized defs

• and more type constructors E.g.,

– X 7→ X∗ — finite lists
– X 7→ Pfin(X) — finite power sets
– X 7→ (W → X) — functions from prior types

• See Adámek, Milius, & Moss and Rutten for more examples

Ramified Structural Recursion and Corecursion

“Classical” formalism #1: S− = L + inductive data

Recall: datanat = µt.(unit + t). Zero = cnat(ι1()). Succ x = cnat(ι2(x)).

Example: plus : nat→ nat→ nat

plus x y = foldnat

(
λz case z of(ι1 w)⇒ y; (ι2 w)⇒ (cnat(ι2 w)

)
x

= let f (ι1 w) = y; f (ι2 w) = (Succw) in (foldnat f x)

Using (foldτ f ) ◦ cτ = f ◦ F(foldτ f ), the definition of f above, etc.:

plus Zero y = foldnat f Zero = y

plus (Succ x) y = foldnat f (Succ x) = Succ(foldnat f x) = Succ(plus x y)

foldτ = structural/primitive recursion on τ-data
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“Classical” formalism #1: S− = L + inductive data

More examples (sugared and not)
// times x y = x · y
times x Zero = Zero times x (Succ y) = plus x (times x y)

// sqrLst [n0, . . . , nk] = [n2
0, . . . , n2

k ]

sqrLst Null = Null sqrLst (Cons(x, ys)) = Cons((times x x), sqrLst ys)

// The Péter-Robinson-Ackermann function (with very little sugar)
acker m n

= let∗ iter f k = let g(ι1()) = (f (Succ Zero)); g(ι2(w)) = f (w)

in (foldnat g k) // iter f k = f (k+1)(1)
h(ι1()) = (λk (Succ k)); h(ι2(f )) = λk (iter f k)

in ((foldnat h m) n)

S− ≈ System T over inductive data
Jim Royer | Syracuse University | 12 November 2013 9 / 37
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Credits on inductive data
Our approach is fairly standard.
For example, see these surveys and tutorials:

J. Adámek, S. Milius, and L.S. Moss, Initial Algebras and Terminal
Coalgebras: a Survey (2010) draft.
www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf

J. Gibbons, “Calculating Functional Programs,” in Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction,
LNCS 2297, Springer (2002) 151–203.

J. Rutten, “Universal coalgebra: A theory of systems,” Theoretical
Computer Science 249 (2000) 3–80.

However, we do not use initial F-algebras.
(Ramification breaks them.)
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“Classical” formalism #2: S = S− + coinductive data

Coinductive data declarations: codata τ = νt.σ

Examples

codataSeqτ = νt.(τ × t)
Alt: codataSeqτ = Ĉonstrτ of τ × Seqτ

Elms: infinite lists of τ’s

codataSeq′τ = νt.(unit + τ × t)

Alt: codataSeq′τ = N̂ull
′
τ of unit [] Ĉonstr

′
τ of τ × Seq′τ

Elms: infinite and finite lists of τ’s

codata treeτ = νσ.(τ × σ× σ)
Elms: Infinite trees with τ labels

Computations (traces)
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“Classical” formalism #2: S = S− + coinductive data

Coinductive data declarations: codata τ = νt.σ

Details
σ a simple type over t, unit, and previously defined base types

τ’s signature functor: Fτt = σ

The declaration introduces:
a constructor ĉτ : Fττ → τ ĉτ is a lazy constructor!
a destructor d̂τ : τ → Fτ d̂τ forces ĉτ-expressions.
a co-recursor unfoldτ : (∀σ)[(σ→ Fτσ)→ σ→ τ].

Semantics of τ: a largest set X with dτ : X ∼= FτX.

unfoldτ = τ-structural corecursion = τ-primitive corecursion:
d̂τ ◦(unfoldτ f ) = Fτ(unfoldτ f ) ◦ f .
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“Classical” formalism #2: S = S− + coinductive data

Our running example: codataSeqnat = νt.(nat× t) ≡ natω

d̂ = d̂Seqnat
ĉ = ĉSeqnat

Seqnat

d̂

�
ĉ

nat× Seqnat (d̂)−1 = ĉ.

Unpacking: d̂ ◦ (unfoldSeqnat
f ) = FSeqnat

(unfoldSeqnat
f ) ◦ f

⇓ f : σ→ nat× σ

unfoldSeqnat
f = ĉ ◦ FSeqnat

(unfoldSeqnat
f ) ◦ f . σ ≈ type of seeds

= ĉ ◦ (idnatS × (unfoldSeqnat
f )) ◦ f .

⇓
unfoldSeqnat

f s = ĉ
(
((idnatS × (unfoldSeqnat

f )) ◦ f ) s
)
. s ≡ a seed

≈ ĉ
(
(n,unfoldSeqnat

f s′)
)

where f (s) = (n, s′).
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“Classical” formalism #2: S = S− + coinductive data

unfoldSeqnat
f s ≈ ĉ

(︸︷︷︸
lazy

(n,unfoldSeqnat
f s′)

)
, where f (s) = (n, s′).

Abbreviation: n :: xs ≈ ĉ( (n, xs) )

Example: pos = 1 :: 2 :: 3 :: 4 :: 5 :: . . .

pos = unfoldSeqnat

f︷ ︸︸ ︷
λs (s, s + 1) 1

= 1 :: (unfoldSeqnat
f 2)

= 1 :: 2 :: (unfoldSeqnat
f 3)

= 1 :: 2 :: 3 :: (unfoldSeqnat
f 4)

...
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“Classical” formalism #2: S = S− + coinductive data

head (n1 :: n2 :: . . . ) = n1 tail (n1 :: n2 :: . . . ) = (n2 :: . . . )

Example: everyOther (x0 :: x1 :: x2 :: . . . ) = x0 :: x2 :: x4 :: . . .

xs = x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: . . .

everyOther xs = unfoldSeqnat

f︷ ︸︸ ︷
(λys (head ys, tail(tail ys))) xs

= x0 :: unfoldSeqnat
f (x2 :: x3 :: x4 :: . . . )

= x0 :: x2 :: unfoldSeqnat
f (x4 :: x5 :: x6 :: . . . )

= x0 :: x2 :: x4 :: unfoldSeqnat
f (x6 :: x7 :: x8 :: . . . )
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“Classical” formalism #2: S = S− + coinductive data

pos = 1 :: 2 :: 3 :: 4 :: 5 :: . . .
everyOther (x0 :: x1 :: x2 :: . . . ) = x0 :: x2 :: x4 :: . . .

Example: powers ≈ 20 :: 21 :: 22 :: 23 :: 24 :: . . . via a sieve

powers = unfoldSeqnat

f︷ ︸︸ ︷
(λys (head ys, everyOther(tail ys))) pos

= 1 :: unfoldSeqnat
f (2 :: 4 :: 6 :: 8 :: 10 :: . . . )

= 1 :: 2 :: unfoldSeqnat
f (4 :: 8 :: 12 :: 16 :: . . . )

= 1 :: 2 :: 4 :: unfoldSeqnat
f (8 :: 16 :: 24 :: 32 :: . . . )

= 1 :: 2 :: 4 :: 8 :: unfoldSeqnat
f (16 :: 32 :: 48 :: 64 :: . . . )

S ≈ System T + inductive and conductive data fold vs. unfold
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Credits on coinductive data
Our approach to this is also standard.
For example, see these (same) surveys and tutorials:

J. Adámek, S. Milius, and L.S. Moss, Initial Algebras and Terminal
Coalgebras: a Survey (2010) draft.
www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf

J. Gibbons, “Calculating Functional Programs,” in Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction,
LNCS 2297, Springer (2002) 151–203.

J. Rutten, “Universal coalgebra: A theory of systems,” Theoretical
Computer Science 249 (2000) 3–80.

However, we do not use final F-coalgebras.
(Ramification breaks them too.)

Larry Moss tells us that we (D&R) may be the first ones to write down S.
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Problem

On our modest foundations

S− and S give us this

But we really want
something like this
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Step 1 to a solution: Low level details about S−

1 Data is represented by directed acyclic graphs (dags).

(Recall tree = µt.(unit + t× t) ≈ Leaf : unit [] Fork : tree× tree.)

let∗ t0 = Leaf; t1 = Fork(t0, t0); t2 = Fork(t1, t1) in t2

t2

ctree��
��
����

ι2��
��

(, )��
��

- -

t1

ctree��
��
����

ι2��
��

(, )��
��

- -
1

q

t0

ctree��
��
����

ι1��
��

()��
��

- -
1

q

2 Data-size = the number of data-constructor cells
E.g.: |t2| = 3.
|v| = Θ(the total number of data-, ι1-, ι2-, (,)-, and ()-cells in v)
(The constant is program dependent.)
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Step 1 to a solution: Low level details about
S−

• Our choice may be ad hoc, but it is a really popular ad hoc choice.

• Pola project: M. Burrell, R. Cockett, and B. Redmond

• Pola: in Fork(a, b) no sharing between a and b

– “one-use” not enough
– Spacial logic: ∗ and −∗

Ramified Structural Recursion and Corecursion

Step 1 to a solution: Low level details about S−

3 Evaluating fold-recursions: a dynamic programming problem

Dynamic programming = sensible structural recursion on dags.

So in a foldtree-recursion on t2,
there are three steps to the recursion, not seven!!!

t2

ctree��
��
����

ι2��
��

(, )��
��

- -

t1

ctree��
��
����

ι2��
��

(, )��
��

- -
1

q

t0

ctree��
��
����

ι1��
��

()��
��

- -
1

q

(See reference to U. Dal Lago, S. Martini, and M. Zorzi (2010) later on.)
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Step 1 to a solution: Low level details about S−

4 The cost of an S− computation:
The evaluation semantics for S− are given by a collection of
structural operational semantics rules. E.g.:

Val:
vθ ↓ vθ

(vθ is a
value

)
Env:

xθ ↓ vθ′
(
θ(x) = vθ′

)

λ-App:
e0θ ↓ (λx e′0)θ0 e1θ ↓ v1θ1 e′0θ0[x 7→ v1θ1] ↓ vθ′

(e0 e1)θ ↓ vθ′

An S−-computation ≈ a derivation tree (using these rules)
Define: The cost of an S−-derivation = the number of nodes (rule
applications) the tree. ••• Each rule application has cost 1.

Claim
Any sensible way of assigning costs to S−-computations will be
polynomially-related to ours.

Jim Royer | Syracuse University | 12 November 2013 21 / 37



Step 1 to a solution: Low level details about S−

4 The cost of an S− computation:
The evaluation semantics for S− are given by a collection of
structural operational semantics rules. E.g.:

Val:
vθ ↓ vθ

(vθ is a
value

)
Env:

xθ ↓ vθ′
(
θ(x) = vθ′

)

λ-App:
e0θ ↓ (λx e′0)θ0 e1θ ↓ v1θ1 e′0θ0[x 7→ v1θ1] ↓ vθ′

(e0 e1)θ ↓ vθ′

An S−-computation ≈ a derivation tree (using these rules)
Define: The cost of an S−-derivation = the number of nodes (rule
applications) the tree. ••• Each rule application has cost 1.

Claim
Any sensible way of assigning costs to S−-computations will be
polynomially-related to ours.

20
13

-1
1-

12
Ramified Structural Recursion and Corecursion

Step 1 to a solution: Low level details about
S−

• S− and S will be our “universal” models of computation + cost.

• Not Turing complete, but that is not really a problem.

• Shares the DP approach of evaluating fold’s.

Ramified Structural Recursion and Corecursion

Step 2 to a solution: Ramify the data-types

Why ramify?
To break vicious circles, e.g., huge recursions (& corecursions).

What flavor of ramification?

Normal/Safe based on Bellantoni and Cook’s BC formalism
(not B!!) and Leivant’s 1995 formalism.

data τ = µt.σ introduces
the normal type τ with cτ : Fττ → τ and dτ : τ → Fττ as before.
the safe type τS with cτS : (Fττ)S → τS and dτS τS → (Fττ)S.(

(σ× ξ)S = σS × ξS. (σ + ξ)S = σS + ξS. ()S = ().
)

foldSτ : (∀σ σ is safe)[(Fτσ→ σ)→ τ → σ] Replaces foldτ .
(foldSτ and foldτ : different typing, but the same op. semantics.)

N.B. The normal/safe distinction applies to just ground (level 0) types.
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Step 2 to a solution: Ramify the data-types
normal ≈ values that can drive a recursion

safe ≈ values resulting from a recursion

Examples (with just a little sugar)
plus : nat→ natS → natS

plus x y = let f (ι1 w) = y; f (ι2 w) = (SuccS w) in (foldSnat f x)

times : nat→ nat→ natS

times x y = let f (ι1 w) = ZeroS; f (ι2 w) = (plus x w) in (foldSnat f y)

sumLst : natLst→ natS

sumLst xs = let g(ι1 w) = ZeroS; g(ι2(x, t)) = (plus x t) in (foldSnatLst g xs)

Non-Example
cube = λx (times x

wrong type!︷ ︸︸ ︷
(times x x) )
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Step 2 to a solution: Ramify the data-types

Up-I:
Γ ` e : τ

Γ ` (up e) : τS
(†)

Down-I:
Γ ` e : τS

Γ ` (down e) : τ
(?)

Examples
cube : nat→ natS

cube =
λx (times x (down (times x x)))

cube′ : nat→ nat

cube′ = λx (down(cube x))

(†) τ is a normal base type.

(?) (†) & each x ∈ freeVars(e) occurs
in a normal-type subterm of e.

(up v) = a safe-version of v

(down v) = a normal-version of v

Down-I is a λ-calculus adaptation
of Bellantoni and Cook’s raising
rule.

The raising rule ≈
a specialization of Whitehead and
Russell’s axiom of reducibility.

Really?
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RS−1 : The ramified version of S−

RS−1 = S− with normal/safe ramified data types
+ up and down

+ case-expressions, +-types, and
×-types restricted to ground level

(for simplicity)

+ 2nd-order foldS’s (for sanity)

Theorem (RS−1 : Polynomial-time soundness)

Given an RS−1 term x1 : γ1, . . . , xk : γk ` e : γ0 where each γi is normal or

safe, one can construct a polynomial p over { |xi| γi is normal } such that:

evaluation-cost(eθ) ≤ pθ, for each variable environment θ.

N.B. e may contain subterms of arbitrarily high type levels.

Notes on the proof
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RS−1 : The ramified version of S−

RS−1 and incompleteness

Q: Can RS−1 compute the depth of a tree?
What is the problem?

How to compute the max of the depth of two branches?

Q: For nat-labeled trees:
Can RS−1 test whether such a tree has a repeated label?

Why feasible? Distinct labels =⇒ distinct nodes

ä For branching data: We suspect RS−1 is incomplete.
ä For non-branching data: We strongly suspect RS−1 is complete

since representations are unique.

Q: How to fix incompleteness? (Later)
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Sample credits related to RS−1 (Very incomplete)

S. Bellantoni and S. Cook, “A new recursion-theoretic characterization of the
polytime functions,” Computational Complexity 2 (1992) 97–110.

D. Leivant, “Ramified recurrence and computational complexity I: Word
recurrence and poly-time,” Feasible Mathematics II, Birkhäuser (1995) 320–343.

U. Dal Lago, S. Martini, and M. Zorzi, “General Ramified Recurrence is Sound
for Polynomial Time,” Electronic Proceedings in Theoretical Computer Science 23
(2010) 47–62.

M. Burrell, R. Cockett, and B. Redmond, “Safe recursion revisited I:
Categorical semantics for lower complexity,” TCS (2013)
http://dx.doi.org/10.1016/j.tcs.2013.09.034

...
N. Danner and J. Royer, “Adventures in time and space,” Logical Methods in
Computer Science 3 (2007) 1–53.
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Step 3: Ramify the codata types

Declaring codata τ = νt.σ introduces

the normal type τ with ĉτ : Fττ → τ and d̂τ : τ → Fττ as before.

the safe type τS with ĉτS : (Fττ)S → τS and d̂τS τS → (Fττ)S.

unfoldSτ : (∀σ σ is safe)[(σ→ Fτσ)→ σ→ τS ] Replaces unfoldτ.
(unfoldSτ and unfoldτ : different typing, but the same op. semantics.)

!! The τS in the typing of unfoldSτ is restrictive trouble.
But τ in place of τS leads to infeasibility.

!! And there are other troubles . . .
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Step 3: Ramify the codata types

As things stand, the following are allowed:

4 pos : SeqS
nat // ≈ [1, 2, 3, 4, . . . ]

pos = unfoldSSeqnat
(λk (k,SuccS k)) (SuccS ZeroS)

? everyOther : SeqS
nat → SeqS

nat // [x0, x1, x2, . . . ] 7→ [x0, x2, x4, . . . ]
everyOther = λxs unfoldSSeqnat

(λys (head ys, tail(tail︸ ︷︷ ︸
(?)

ys))) xs

8 powers : SeqS
nat // ≈ [20, 21, 22, 23, . . . ]

powers = unfoldSSeqnat
(λys (head ys, everyOther(tail ys))) pos

(?) Nested d̂SeqS
nat

’s ; stream speed-ups
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Step 3: Ramify the codata types

Definition

(a) (unfoldSσ step seed) is speeding if step (in n.f.) contains a nested
application of safe-codata destructors.

(b) A stepwise expression is one without any speeding unfoldS’s.

The stepwise side-condition for unfoldS

unfoldSτ-I:
Γ ` f : σ→ Fτσ Γ ` e : σ

Γ ` unfoldSτ f e : τS
(?)

(?) τ is a normal codata type with signature functor Fτ ,
σ is safe, and f is stepwise.
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Step 3: Ramify the codata types

Safe-streams are reasonably powerful: Thunk parades

stepsi : SeqS
nat → SeqS

nat // stepsi[. . . , xk, . . . ] = [. . . , xk +

(
k
i

)
, . . . ]

steps0 xs = unfoldSSeqnat

(
(SuccS × idSeqS

nat
) ◦ d̂SeqS

nat

)
xs

stepsi+1 xs = unfoldSSeqnat

(
(idnatS × stepsi ) ◦ d̂SeqS

nat

)
xs

Details

But . . .
since codata are lazy, to reach far
into a codatum one still needs a
foldS driven by a normal-datum.
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RS1: The ramified version of S

RS1 = S with normal/safe ramified data types
+ RS−1 ’s changes

+ the stepwise side-condition on (2nd-order) unfoldS’s

Theorem (RS1: Polynomial-time soundness)

Given x1 : γ1, . . . , xk : γk R̀S−1
e : γ0 where each γi is normal or safe,

we can construct a poly p over { |xi|, (|xi|) γi is normal } such that:

evaluation-cost(eθ) ≤ pθ, for each variable environment θ.

(|x|) = the codata size of x ≈ Kapron-Cook 1st-order size
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RS1: The ramified version of S

RS1 and incompleteness: Normal maps are missing.
E.g.:

map : (nat→ nat)→ Seqnat → Seqnat

map f [. . . , nk, . . . ] = [. . . , f nk, . . . ]

These are unproblematically feasible, but . . .
RS1 cannot define them.

Q: Normal-maps + RS1 = a kind of completeness?
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So what does our solution (RS1) solve?

RS1

= S

+ normal/safe ramified types

+ dags/DP-foldS’s

+ up and down

+ stepwise unfoldS’s

+ 2nd-order foldS’s & unfoldS’s

polytime sound

incomplete over codata

likely incomplete over data

Re: feasible computation over
data & codata (1st order)

It gives an uncluttered look at
the territory.

It lets us compute quite a lot.

It exposes some clear problems.

It’s soundness proofs provide
analysis tools. (Not in this talk.)

It provides a platform for
further exploration, either

to build on
or to reject.

Jim Royer | Syracuse University | 12 November 2013 35 / 37

Ramified Structural Recursion and Corecursion

Some specific open problems

replacing and/or supplementing foldS

(tree-compressions, but higher-rank data = trouble)

unfoldS + normal-maps over codata = ??

fancier notions of data and codata / higher-order foldS’s and unfoldS’s

restrict types and lazy data. E.g.,

Restricting to nat + 0-1-streams yields logspace stream functions
restricting to nat + lazy 0-1-strings would yield logspace functions

algebraic/categorical foundations of data and codata

Basis for Bird-style program transformations for optimizations.
Broken by ramification
Do how things break tell us something? turn What is recoverable?
How does it tie to optimization?
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Some specific open problems

• Aehlig-Cook-Nguyen and two sorted complexity classes

Ramified Structural Recursion and Corecursion

Enough! We are done!!
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Footnotes
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fold and unfold / S− and S

foldτ :
(∀σ)[(Fτσ→ σ)→ τ → σ]

(foldτ f ) ◦ cτ =
f ◦ Fτ(foldτ f )

foldτ tears down a τ-value
to build a σ-value.

Fτ-algebras

nat→ nat S−-functions =
PA-provably total functions

& those w/ type-level 1 defs =
primitive recursive functions

unfoldτ :
(∀σ)[(σ→ Fτσ)→ σ→ τ]

d̂τ ◦(unfoldτ f ) =
Fτ(unfoldτ f ) ◦ f

unfoldτ builds a τ-value
from a seed σ-value.

Fτ-coalgebras

nat→ nat S-functions =
PA-provably total functions

& those w/ type-level 1 defs =
PA-provably total functions

Back
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fold and unfold / S− and S

• S is one reading of David Turner’s “total functional programming.”
Although it is probably too spare and too ML-ish for him.

• The reason type-level 1 S-functions are so powerful is that, for each
ordinal α < ε0, one can use codata to implement a notation system for
the ordinals < α.

Ramified Structural Recursion and Corecursion

Warning: Making sense of W&R on this stuff is vexing

Bellantoni and Cook, 1992, §5
One further adds the following “Raising” rule: if function f (~x; ) of all
normal inputs is in the class with safe type output, then the function f ν is in
the class with normal type output defined by f ν(~x; ) = f (~x; ).

Whitehead and Russell, PM 1/e, Vol. 1, 1910, page 174
Let f u be a function, of any order, of an argument u, which may itself be
either an individual or a function of any order. If f is a matrix, we write the
function of the form f !u; in such a case we call f a predicative function.

matrix ≈ no (free) apparent variables real/apparent variables

Back
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Notes on the proof of RS−1 poly-time boundedness

Bellantoni & Cook’s poly-max bounds
;

poly-heap bounds (to account for structure sharing)

to deal with the (internal) higher-types:
D&R’s time complexity semantics

Higher-type terms have two sorts of complexity
cost = cost to evaluate the term to a value
potential = costs associated with using the higher-type value
(Also see Sands, Gurr, Shultis, van Stone, . . . )

Back
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Details for steps1

xs = x0 :: x1 :: x2 :: x3 :: x4 :: . . .

steps0 xs = unfoldSSeqnat

(
(SuccS × idSeqS

nat
) ◦ d̂SeqS

nat

)
xs

= (x0 + 1) :: (x1 + 1) :: (x2 + 1) :: (x3 + 1) :: (x4 + 1) :: . . .

steps1 xs = unfoldSSeqnat

f︷ ︸︸ ︷(
(idnatS × steps0 ) ◦ d̂SeqS

nat

)
xs

= x0 :: unfoldSSeqnat
f (steps0(x1 :: x2 :: . . . ))

= x0 :: (x1 + 1) :: unfoldSSeqnat
f (steps(2)0 (x2 :: x3 :: . . . ))

= x0 :: (x1 + 1) :: (x2 + 2) :: unfoldSSeqnat
f (steps(3)0 (x3 :: x4 :: . . . ))

...

Back
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