Formal Security Proofs with ICC

David Nowak

LIFL, CNRS & Lille 1 University

Joint work with Sylvain Heraud and Yu Zhang

Shonan Meeting on Implicit Computational Complexity and applications: Resource control, security, real-number computation

November 4-7, 2013 http://shonan.nii.ac.jp/seminar/033/

Formal security proofs in the computational model

Bellantoni-Cook

SLR

 CSLR

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

The problem with security proofs in cryptography

Wrong proofs often find their way into top-level conferences.

An infamous example: RSA-OAEP Industry-wide standard (PKCS#1 V2, IEEE P1363)

- It was supposedly proved highly secure (Eurocrypt'94).
- ▶ In fact, the proof had important holes (Crypto'01).
- Those holes were finally(?) fixed by Pointcheval in 2005.
- Sometimes there are hidden assumption used in the proofs, but not stated in the theorem
- Some other a subtle point is underestimated by an author: "One sees that...", "trivial" or "The reader may easily supply the details."

Formal security proofs within a proof assistant

 $\begin{array}{cccc} function & \sqsubseteq & algorithm & \sqsubseteq & program \\ true statement & \sqsubseteq & proof & \sqsubseteq & formal proof \end{array}$

Formal security proofs in proof assistants:

 In Coq [Affeldt et al. 2007, Nowak 2007, 2008, Barthe et al. 2009]

Formal security proof for RSA-OAEP [Barthe et al., 2011]

In Isabelle [Berg, 2013]

But none of the above frameworks deals with complexity.

The proof assistant Coq

- Based on a kernel which checks that: a given proof term p is really a proof of a given statement H.
- A tactic language (metalanguage) for building proofs incrementically
- Decision procedures and heuristics
- Notations, implicit parameters, coercions....
- A standard library: arithmetic, analysis, polymorphic lists...
- The kernel is the only critical part: it will reject wrong proof terms.

The computational model

- Cf. Tuesday's talk by Bruce.
- Bruce's talk on Tuesday was on the computational soundness:
 Under which condition do we have the following?
 security in the symbolic model (Dolev-Yao) by logicians
 security in the computational model by cryptographers
- In this talk, I am talking about security proofs made directly in the computational model by cryptographers.

Security in the computational model

 An adversary is a function computable in probabilistic polynomial time (PPT),

i.e., executable on a Turing machine extended with a read-only tape that has been filled with random bits, and working in worst-case polynomial time.

- A cryptographic scheme is a set of PPT functions. They are PPT:
 - ► for usability,
 - and also because they might be used by the adversary which has to be PPT.
- A security property is modeled as a probabilistic algorithm, i.e., a challenge that is to be solved by the adversary.

Example: ElGamal public-key encryption scheme

ElGamal consists of the three following algorithms:

$$\mathsf{keygen}() = x \stackrel{R}{\leftarrow} \mathbb{Z}_q; \ pk \leftarrow \gamma^x; \ sk \leftarrow x; \ \mathsf{return}(sk, pk)$$

 $encrypt(pk,m) = y \stackrel{R}{\leftarrow} \mathbb{Z}_q$; $c \leftarrow (\gamma^y, pk^y * m)$; return c

$$ext{decrypt}(sk,(c_1,c_2)) = m \leftarrow rac{c_2}{c_1^{sk}}; ext{ return } m$$

- Correctness is obvious: decryption indeed undoes encryption.
- Security is not so obvious. In fact, what do we mean by security?

Example: Semantic security

► In English: The challenger says to the adversary

"Give me two plaintexts; I will select one by flipping a coin, encrypt it, and give you the resulting cyphertext; You must then guess which of the two plaintexts I have encrypted."

As a probabilistic algorithm:

$$(pk, sk) \leftarrow \text{keygen}();$$

$$r \stackrel{R}{\leftarrow} R;$$

$$(m_1, m_2) \leftarrow A_1(r, pk);$$

$$b \stackrel{R}{\leftarrow} \{1, 2\};$$

$$c \leftarrow \text{encrypt}(pk, m_b);$$

$$\hat{b} \leftarrow A_2(r, pk, c);$$

$$return \hat{b} \stackrel{?}{=} b$$

The cryptographic scheme is said "semantically secure" if for any adversary (A_1, A_2) , the probability that this game returns true is negligibly close to $\frac{1}{2}$. Security proofs in the computational model

A security proof rely on a computational hypothesis, i.e., a problem that is believed not to be solvable in polynomial time.

> **Example:** Decisional Diffie-Hellman (DDH) No efficient algorithm can distinguish between triples of the form $(\gamma^x, \gamma^y, \gamma^{xy})$ and $(\gamma^x, \gamma^y, \gamma^z)$ where x, y and z are chosen randomly in \mathbb{Z}_q .

Security proofs are done by contradiction:

You assume an adversary A that can break the scheme (e.g., win the semantic security game).

And, by using A, you build (usually, by game-hopping) another adversary that can break the computational hypothesis.

Why ICC?

- If you want to entirely formalize the proof in a proof assistant, you must formally prove that the newly built adversary is PPT.
- We do not want to count explicitly the number of steps in a precise execution model such as a Turing machine.
- We are interested in the complexity class, independently of the execution model.
- The right approach is ICC:

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

The complexity class FP

A function problem:

Given an input x, output y such that x R y.

- ► A function problem is solvable in polynomial time if there exists a deterministic Turing machine *M* and a polynomial *p* such that:
 - On an input x, machine M halts after at most p(|x|) steps, and

•
$$M(x) = y$$
 iff $x R y$

FP is the set of function problems that can be solved by a deterministic Turing machine in polynomial time.

Turing machines in Coq?

- It is not difficult to define Turing machines in Coq.
- But it is difficult to find a definition that will be usable.
- Even on paper, authors adapt the definition to their purpose
 - Moving head: $\{L, R\}$ or $\{L, R, N\}$?
 - One or more tapes?
 - ▶ ...
- We need an alternative definition of FP.

An alternative definition of FP

▶ FP by Cobham (1964):

i. Constant 0

ii. Projection
$$\pi_j^n(x_1,\ldots,x_n)=x_j$$

- iii. Successors $s_i(x) = xi$ for $i \in \{0, 1\}$
- iv. smash $2^{|x_1|.|x_2|}$

v. Recursion
$$f(0,\overline{x}) = g(\overline{x})$$

 $f(yi,\overline{x}) = h_i(y,\overline{x}, f(y,\overline{x}))$ for $yi \neq 0$
 $|f(y,\overline{x})| \leq |j(y,\overline{x})|$ (rec_bounded)
where g , h_0 , h_1 and j are in this class

vi. Composition $f(\overline{x}) = h(\overline{r}(\overline{x}))$ where h and \overline{r} are in this class

$\mathsf{Cobham} = \mathsf{FP}$

- This is exactly the class of functions computable in polynomial time on a deterministic Turing machine.
- The proof by Cobham uses a particular class of Turing machines but it is incidental. The results also holds with:
 - more than one tape,
 - multi-dimensional tapes,
 - instruction to erase the whole tape,
 - intruction to reset a scanning head.
 - ▶ ...
- We take Cobham's definition for FP.

A syntactic characterization of FP

- ▶ FP by Bellantoni and Cook (1992):
 - i. Constant 0
 - ii. **Projection** $\pi_j^{m,n}(x_1, ..., x_m; x_{m+1}, ..., x_{m+n}) = x_j$

iii. Successors $s_i(; a) = ai$ for $i \in \{0, 1\}$

- iv. Predecessor p(; 0) = 0 and p(; ai) = a
- v. Recursion $f(0, \overline{x}; \overline{a}) = g(\overline{x}; \overline{a})$ $f(y_i, \overline{x}; \overline{a}) = h_i(y, \overline{x}; \overline{a}, f(y, \overline{x}; \overline{a}))$ for $y_i \neq 0$ where g, h_0 and h_1 are in this class
- vi. Composition $f(\overline{x};\overline{a}) = h(\overline{r}(\overline{x};);\overline{t}(\overline{x};\overline{a}))$ where h, \overline{r} and \overline{t} are in this class
- There are two kind of variables separated by a semicolon:

$$f(\underbrace{x_1,\ldots,x_n}_{\text{normal}};\underbrace{a_1,\ldots,a_s}_{\text{safe}})$$

Why Bellantoni-Cook is more convenient than Cobham

When defining a recursive function f with Cobham, one has to exhibit a Cobham function j such that

$$|f(y,\overline{x})| \ll |j(y,\overline{x})|$$

In other words, there is a proof obligation.

No such bound has to be proved with Bellantoni-Cook: This is a purely syntactic characterization of FP.

Bellantoni-Cook in Coq [Heraud and Nowak, 2011]

- Deep embedding of Cobham and Bellantoni-Cook classes
- Differences with the paper proof:
 - Fully constructive and tighter translations in both directions
 - We consider function on bitstrings instead of positive integers: As in cryptography, we distinguish bitstrings such as 010 and 00010.

Integration with Certicrypt

 Although Bellantoni-Cook is a purely syntactic charaterization of polytime functions, it lacks features as a programming language: For example, for binary addition we would like to change the carry bit in the recursive call.

Formal security proofs in the computational model

Bellantoni-Cook

SLR

CSLR

SLR: Generalization to higher order

- SLR (Hofmann, 1997): a simply-typed lambda calculus with:
 - ▶ an S4 modality \Box , and
 - ► linear function spaces (--∞).
- It generalizes Bellantoni and Cook's scheme to higher-order.
 - A function with *m* normal and *n* safe variables has type:

$$(\Box N)^m \to N^n \to N$$

It denotes a function f whose size is bounded:

$$|f(\overline{x};\overline{a})| \leq P(|\overline{x}|) + max(|\overline{a}|)$$

- Linear functions are not needed to characterize polytime: They are an additional feature.
- ▶ Subtyping: $A \multimap B$ <: $A \rightarrow B$ <: $\Box A \rightarrow B$
- There is a type inference algorithm.

Examples of SLR functions and their inferred types

$$\lambda x^{A}.x : A \multimap A$$

$$:$$

$$\lambda f^{A \to B}.\lambda x^{A}.f x : (A \to B) \multimap A \to B$$

$$:$$

$$\lambda f^{\Box A \to B}.\lambda x^{A}.f x : (\Box A \to B) \multimap \Box A \to B$$

$$:$$

$$\lambda f^{\Box A \to B}.\lambda g^{A \to A}.\lambda x^{A}.f(g x) : (\Box A \to B) \multimap \Box (A \to A) \to \Box A \to B$$

Safe recursion in SLR

SLR comes with a safe recursor:

 $\mathsf{saferec}_A$: $\Box N \to A \to (\Box N \to A \to A) \to A$

Its semantics is:

saferec_A 0 g h = g saferec_A n g h = h n (saferec_A $\lfloor n/2 \rfloor$ g h) when $n \neq 0$

• Example: sq x computes a value in the order of x^2 :

 $sq: \Box N \to N = \lambda x^N.saferec_N \times 1 (\lambda y^N.\lambda q^N.s_0(s_0q))$

- We can iterate $sq: \lambda x^N . sq(sq x) : \Box N \to N$
- But the following exponentially-growing function is ill-typed:

$$\lambda x^{\mathsf{N}}.\mathsf{saferec}_{\mathsf{N}} \times 1 \ (\lambda y^{\mathsf{N}}.\lambda x^{\mathsf{N}}.\mathsf{sq} \ x)$$

Relation between Bellantoni and Cook's class and SLR

- 1. Define the category ${\mathcal C}$ of Bellantoni and Cook's functions.
 - Objects are pair of natural numbers (meant to be numbers of normal and safe arguments)
 - A morphisms from (m, n) to (m', n') is a pair of Bellantoni and Cook's functions ((f₁^{m,0},..., f_{m'}^{m,0}), (f₁^{m,n},..., f_{n'}^{m,n}))
- Embed C in the category C of presheaves over C (i.e., the category of contravariant functors from C to Set). It is a standard application of Yoneda Lemma to embed first-order functions into a model of a higher-order typed language.

$$\begin{bmatrix} N \end{bmatrix} = \operatorname{Hom}_{\mathcal{C}}(-, (0, 1))$$
$$\begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} A \multimap B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \Rightarrow \begin{bmatrix} B \end{bmatrix}$$
$$\begin{bmatrix} \Box A \to B \end{bmatrix} = \begin{bmatrix} \Box A \multimap B \end{bmatrix} = \Box \begin{bmatrix} A \end{bmatrix} \Rightarrow \begin{bmatrix} B \end{bmatrix}$$

 Theorem (Hofmann) There is a bijection between the set of natural transformations from [[N]]^m × [[N]]ⁿ to [[N]] and the set of (m, n)-ary functions in Bellantoni and Cook's class.

$\mathsf{SLR} \text{ in } \mathsf{Coq}$

Bellantoni-Cook's class and its	Yes (cf. Part 1)
link to the complexity class FP	
SLR and its type system	Yes, but without linear types
Type inference	No
The category $\mathcal C$ of polytime	Yes
functions	
Embedding of $\mathcal C$ into the cate-	Yes
gory $\widehat{\mathcal{C}}$ of presheaves	
Set-theoretic semantics	Yes
Presheaf semantics	Yes
Logical relation between the	In progress, but Coq is too slow
two semantics	

Lessons learned from the formalization

 Category theory provides a very concise and abstract language for formal mathematics:

Abstraction allows to factorize and thus reduce the development effort.

- When writing a statement in category theory, a lot of details are omitted because they can be recovered by the reader without ambiguity.
- Coq also can automatically recover the missing details thanks to mechanisms such as: implicit arguments, coercions...
- However, with category theory you need to push Coq to its limits:
 - Concise terms on screen can give rise to huge terms internally that will slow down Coq.
 - In some cases, the coercion mechanism needs type annotations.
 - You must keep track of universes to avoid universe inconsistencies.

Formal security proofs in the computational model

Bellantoni-Cook

SLR

 CSLR

Adding a 0,1-valued oracle

- (Mitchell et al., 1998) extend SLR with a 0,1-valued oracle. Another standard categorical technique is used: The Kleisli construction
- OSLR characterizes probabilistic polytime functions.
- The oracle is a kind of side-effect: The resulting value depends of the evaluation strategy.
- ► It makes difficult to build a logic upon the language.
- A standard solution used by (Zhang, 2009) is to hide the side-effect with a monadic type.

CSLR

▶ CSLR (Zhang, 2009) extend OSLR with monadic types:

$$\tau ::= \cdots \mid \mathsf{T}\tau$$

They distinguish at type level between deterministic and probabilistic computations.

- ► The type *N* is replaced by the type Bits for bitstrings.
 - 0 and 00 (for example) are different bitstrings in CLSR but were identified to the nu mber 0 in SLR.
- Expressions are extended with probabilistic computations:

$$e ::= \cdots \mid \mathsf{rand} \mid \mathsf{return}(e) \mid x \stackrel{\$}{\leftarrow} e_1; e_2$$

It allows to build a logic for reasoning about computational indistinguishability.

An example of CSLR function

- To ease the reading of CSLR terms, we use syntactic sugar
 - ▶ In particular, a term F defined recursively by $\lambda n \cdot \text{rec}_{\tau}(e_1, e_2, n)$ is written:

$$F \stackrel{\text{def}}{=} \lambda n \text{.if } n \stackrel{?}{=} \text{nil then } e_1 \text{ else } e_2(n, F(\textbf{tail}(n))),$$

The random bitstring generation:

$$rs \stackrel{\text{def}}{=} \lambda n. \text{if } (n \stackrel{?}{=} \text{nil}) \\ \text{then return(nil)} \\ \text{else } b \stackrel{\$}{\leftarrow} \text{rand}; \ u \stackrel{\$}{\leftarrow} rs(tail(n)); \ \text{return}(b \bullet u)$$

- Input: a bitstring
 Output: a random bitstring of the same length
- One can check that $\vdash \mathbf{rs} : \Box Bits \rightarrow TBits$

Pseudo-uniform sampling

- In theoretical proofs, arbitrary uniform sampling are used. (for example, x ∈_R Z^{*}_n)
 - But in practice, computers are based on binary digits: The cardinal of a uniform distribution has to be a power of 2.
 - The complexity class PPT is defined with probabilistic Turing machines.

But probabilistic Turing machines deal with random bits only.

Pseudo-uniform sampling in CSLR:

$$\begin{aligned} \textbf{zrand} \stackrel{\text{def}}{=} \lambda n . \lambda t . \text{if } t \stackrel{?}{=} \text{nil} \\ \text{then return}(0^{|n|}) \\ \text{else } v \stackrel{\$}{\leftarrow} \textbf{rs}(n); \\ \text{if } v \ge n \\ \text{then } \textbf{zrand}(n, \textbf{tail}(t)) \\ \text{else return}(v) \end{aligned}$$

Tries to sample a value between 0 and *n*. After a timeout |t|, it returns the default value $0^{|n|}$.

Indistinguishability

► Two CSLR terms f_1 and f_2 are computationally indistinguishable (written as $f_1 \simeq f_2$) if for every term \mathcal{A} such that $\vdash \mathcal{A}$: \Box Bits $\rightarrow \tau \rightarrow$ TBits and every positive polynomial P, there exists some $N \in \mathbb{N}$ such that for all bitstring η with $|\eta| \ge N$

$$|\mathsf{Pr}[\llbracket \mathcal{A}(\eta, f_1(\eta)) \rrbracket \rightsquigarrow 1] - \mathsf{Pr}[\llbracket \mathcal{A}(\eta, f_2(\eta)) \rrbracket \rightsquigarrow 1]| < \frac{1}{P(|\eta|)}$$

1

 Two CSLR terms g₁ and g₂ are game indistinguishable (written as g₁ ≈ g₂) if for every term A such that
 ⊢ A : □Bits → Tτ, and every positive polynomial P, there exists some N ∈ N such that for all bitstring η with |η| ≥ N,

$$|\mathsf{Pr}[\llbracket g_1(\eta,\mathcal{A}) \rrbracket \rightsquigarrow 1] - \mathsf{Pr}[\llbracket g_2(\eta,\mathcal{A}) \rrbracket \rightsquigarrow 1]| < \frac{1}{P(|\eta|)}$$

Uniform sampling

We also show that the standard practice of cryptographers, ignoring that polynomial-time Turing machines cannot generate all uniform distributions, is actually sound.

- ► CSLR^{\$} extends CSLR with a uniform sampling primitive sample of type Bits — TBits.
- We prove that we can freely replace the approximate uniform sampling *zrand* by the truly uniform sampling sample or vice versa in sampling-based CSLR programs, without affecting the computational indistinguishability.

Superpolynomial constants

- Game-hopping does not preclude the possibility of introducing games that perform superpolynomial-time computations.
- They are just idealized constructions that are used to define security notions but are not meant to make their way into implementations.
- CSLR^{\$}_π extends CSLR^{\$} with a set π of superpolynomial-time primitives.

Conclusions

- In Coq, we currently have:
 - a formalization of Bellantoni-Cook, and
 - an almost finished formalization of SLR.
- We propose an extension of CSLR into CSLR^{\$}_π [Nowak and Zhang, 2013] that allows for convenient formalization of game-hopping security proofs taking into account complexity issues.

Thank you!