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Sorting function: O(n log(n)).
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First Order Constructors TRS

Three disjoint sets of function (f ∈ F), constructors (c ∈ C) and
variables (x ∈ V);

(Constructor terms) T (C) 3 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,V) 3 t ::= c | x | c(t1, · · · , tn) |

f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(rules) D 3 d ::= f(p1, · · · , pn )→ t

No defined symbols in patterns.

A program is a set of rules with a main symbol.
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Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).

redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.
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Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a
termination ordering.

Hint of proof

t > s iff t
+→s

Compatible with the rules by construction.

Monotonic by definition of redex/contractum.

Well-founded . . . because the system terminates!

l→ r implies l > r.

f(. . . , redex, . . .)→ f(. . . , contractum, . . .).

. . .
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Generic Termination Orderings

The existence of a termination ordering is undecidable.

Having different orderings for each system is inconvenient.

Problem

Find a termination ordering independently of the TRS but still
be able to prove termination of many systems.

Idea (RPO in a nutshell)

If f calls g and g never calls f, then going from f to g is a
step toward termination.

During a recursive call, something must decrease inside the
arguments.
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Recursive Path Ordering

t = f(t1, · · · , tn) ≺rpo g(s1, . . . , si , . . . , sm) = s

<F ordering of F ∪ C.
∃i, t �rpo si

t ≺rpo s

∀i, ti ≺rpo g(s1, · · · , sm) f <F g

t ≺rpo s

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s
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MPO, LPO, PPO

Comparing arguments of recursive calls.

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

MPO: multiset ordering.

LPO: lexicographic ordering.

PPO: product ordering.

Exercise

Prove that they all are termination orderings. . .

J.-Y. Moyen Interpretations
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Implicit Complexity

Theorem (Hofbauer, BMM)

PPO ≡ MPO ≡ PrimRec.

Systems terminating by PPO/MPO compute all the
PrimRec functions (extensional completeness, easy).

Systems terminating by PPO/MPO compute only the
PrimRec functions (soundness, hard).

No intensional completeness (quick sort).

Theorem (Weierman)

LPO ≡ Multiple recursive functions.
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Principle of Interpretations

Termination orderings are powerful but hard to invent (prove
noetherianity).
Idea: instead of trying to build orders on terms (complicated
structure), try to interpret terms in a well known ordered set.

J•K : T → (A,<) and then, t ≺ s iff JtK < JsK

(A,<) is well founded.

JtK > Jt′K implies Jf(. . . , t, . . .)K > Jf(. . . , t′, . . .)K.
For each rule l→ r, we have JlK > JrK.

Easy Use compositionality Hard

J.-Y. Moyen Interpretations
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Compositional Interpretations

For each symbol f of arity n, define a function
JfK : An → A.

Extend recursively Jf(t1, · · · , tn)K = JfK(Jt1K, . . . , JtnK).
Define t ≺ s iff JtK < JsK.

JfK has subterm property if JfK(X1, · · · , Xn) ≥ Xi.

Lemma

If each JfK is monotonic and has subterm property, then ≺ is
monotonic.

Ackermann

Ackermann’s function admit an interpretation over the ordinal
numbers.

J.-Y. Moyen Interpretations
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Polynomial Interpretations

Polynomial interpretation: JfK(X1, · · · , Xn) is a
polynomial (with positive integer coefficients).

A TRS admits a polynomial interpretation if JlK > JrK. It
defines a termination ordering.

A TRS admitting a polynomial interpretation terminates
uniformly.

Exponential

db(z) → z
db(S(x)) → S′(S′(db(x)))
exp(z) → S(z)

exp(S(x)) → db(exp(x))

JzK = 1 JSK(X) = 2X + 4 JS′K(X) = X + 1
JdbK(X) = 2X + 1 JexpK(X) = X + 2

J.-Y. Moyen Interpretations
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Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize
Exp2Time.

Where does the exponential come from?

JSK(X) = 2X hence JSn(z)K = 2n

JSK(X) = X3, JzK = 2 hence JSn(z)K = 23n

Observation

The interpretation of constructors is crucial for complexity.

J.-Y. Moyen Interpretations
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Interpretations of Constructors

The interpretation of a symbol is

Additive: JfK(X1, · · · , Xn) =
∑

Xi + a

Multiplicative: JfK(X1, · · · , Xn) has degree 1.

Polynomial: JfK(X1, · · · , Xn) is any polynomial.

Theorem (BCMT)

Depending on the interpretation of constructors, the TRS
admitting a polynomial interpretation characterize:

Additive ⇒ Ptime.

Multiplicative ⇒ Exptime.

Polynomial ⇒ Exp2Time.

J.-Y. Moyen Interpretations
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Interpretations are too large

Smallest polynomial interpretation for addition?

add(z, y) → y
add(S(x), y) → S(add(x, y))

JzK = 1 JSK(X) = X + 1 JaddK(X,Y ) = 2X + Y

If we take the more natural JaddK(X,Y ) = X + Y , then the
second rule is not strictly decreasing:
Jadd(S(x), y)K = X + Y + 1 = JS(add(x, y))K

J.-Y. Moyen Interpretations
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Quasi Interpretation

We relax the condition on rules: LlM ≥ LrM.
Termination is not assured: f(x)→ f(x). We need an extra
termination proof.

But a size bound is still assured: t
!→v implies LtM ≥ LvM.

Hence, if LtM is polynomial (in the inputs), all the value
handled during reduction also have polynomial size.

Theorem (BMM)

MPO+QI ≡ Ptime

TRS terminating by MPO and admitting an additive QI
characterize Ptime.

J.-Y. Moyen Interpretations
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Example: Longest Common Subsequence

lcs(x, ε) → z
lcs(ε, y) → z

lcs(i(x), i(y)) → S(lcs(x, y))
lcs(i(x), j(y)) → max(lcs(x, j(y)), lcs(i(x), y))

LlcsM(X,Y ) = LmaxM(X,Y ) = max(X,Y ) No interpretation.

Explicit complexity: O(2n).

Implicit complexity: O(n2).

We can use memoisation (automated dynamic
programming) to transform the program and reach the
good complexity.

Better expressivity than interpretations, but the method is
far from intensional completeness (divide and conquer
algorithms).

J.-Y. Moyen Interpretations
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Conclusion

Implicit computational complexity: syntactic criterions for
semantic properties.

Dream usage: certified compilation, proof carrying code.

Proofs are hard but many results have been obtained in the
past 20 years.

Interpretation methods give a guideline for finding new
characterizations.

Interpretations are not restricted to TRS.

Getting close to intensional completeness is extremely hard.

J.-Y. Moyen Interpretations
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