
Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretation methods in ICC

Jean-Yves Moyen
Jean-Yves.Moyen@lipn.univ-paris13.fr

Université Paris 13 (LIPN)

November 2013

J.-Y. Moyen Interpretations

Jean-Yves.Moyen@lipn.univ-paris13.fr

Introduction

Implicit Computational Complexity
Termination Orderings

Interpretations

What this talk is about

What this is not about:
Collection of all results of ICC using interpretations.

What this is (probably) about:

Tentative definition of “ICC”.
From termination orderings to interpretations.
How interpretations help in ICC.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

What this talk is about

What this is not about:
Collection of all results of ICC using interpretations.

What this is (probably) about:

Tentative definition of “ICC”.
From termination orderings to interpretations.
How interpretations help in ICC.

J.-Y. Moyen Interpretations

Implicit Computational
Complexity

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Programs

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Programs

Set of programs Set of functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Programs

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Programs

Functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Programs

Good functions

Bad functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Programs

Good functions

Good functions

Bad functions

Set of functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Rejected programs

Accepted programs

Good functions

Bad functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Accepted programs
Rejected programs

Accepted programs

Good functions

Bad functions

Set of programs

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Rejected programs

Accepted programs

Good functions

Bad functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Computational Complexity
Decidable syntactic criterions for semantics properties.

ProgramsPrograms

Rejected programs

Accepted programs

Good functions

Bad functions

For each , there exists .

There is no .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Programs

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Programs

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Programs

Functions

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Programs

Good programs

Functions

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Programs

Good programs

Good functions

If there is , then .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Programs

Good programs

Good functions

Bad functions

If there is no , then .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Time Complexity

A function is Ptime iff it is computed by at least one polytime
program.

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

At least one witness for each .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W

No Some in each

S

No No

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W

No Some in each

S

No No

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W No

Some in each

S

No No

Soundness

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W No

Some in each

S No

No

Soundness

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W No

Some in each

S No

No

Soundness

Hard to prove

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W No

Some in each

S No No

Intensional completeness

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W No

Some in each

S No No

Intensional completeness

Undecidable!

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Properties of ICC Systems

ProgramsPrograms
Rejected programs

Accepted programs

Good programs

Good functions

Bad functions

F. pos. F. neg.

W No Some in each

S No No

Extensional completeness

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound Extensionally complete Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound Extensionally complete Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound

Extensionally complete Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound

Extensionally complete

Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound

Extensionally complete

Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound

Extensionally complete

Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound Extensionally complete Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound Extensionally complete Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Examples

Syntactic criterion Semantic property

A program without loops always terminate.

Some total functions need loops.

A prim. rec. program computes a prim. rec. function.

Each prim. rec. function is computed by a prim. rec.
program.

A Loop program computes a prim. rec. function.

Each prim. rec. function is computed by a Loop program.

Sound Extensionally complete Incomplete

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Complexity of a Function

Each program has a complexity.

Each function is computed by several programs.

The complexity of a function is the smallest complexity of
programs computing it.

Example (sorting):

Insertion sort: O(n2).

Quick sort: O(n log(n)).

Sorting function: O(n log(n)).

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Complexity of a Function

Each program has a complexity.

Each function is computed by several programs.

The complexity of a function is the smallest complexity of
programs computing it.

Example (sorting):

Insertion sort: O(n2).

Quick sort: O(n log(n)).

Sorting function: O(n log(n)).

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Complexity

Each program has a complexity.

Each program computes one function.

The complexity of the function may be smaller than the
complexity of the program.

Example (insertion sort):

Insertion sort: O(n2), sorting function: O(n log(n)).

Explicit complexity: O(n2).

Implicit complexity: O(n log(n)).

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

ICC systems
Examples
Implicit complexity of programs

Implicit Complexity

Each program has a complexity.

Each program computes one function.

The complexity of the function may be smaller than the
complexity of the program.

Example (insertion sort):

Insertion sort: O(n2), sorting function: O(n log(n)).

Explicit complexity: O(n2).

Implicit complexity: O(n log(n)).

J.-Y. Moyen Interpretations

Termination Orderings

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

First Order Constructors TRS

Three disjoint sets of function (f ∈ F), constructors (c ∈ C) and
variables (x ∈ V);

(Constructor terms) T (C) 3 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,V) 3 t ::= c | x | c(t1, · · · , tn) |

f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(rules) D 3 d ::= f(p1, · · · , pn)→ t

No defined symbols in patterns.

A program is a set of rules with a main symbol.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

First Order Constructors TRS

Three disjoint sets of function (f ∈ F), constructors (c ∈ C) and
variables (x ∈ V);

(Constructor terms) T (C) 3 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,V) 3 t ::= c | x | c(t1, · · · , tn) |

f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(rules) D 3 d ::= f(p1, · · · , pn)→ t

No defined symbols in patterns.

A program is a set of rules with a main symbol.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

First Order Constructors TRS

Three disjoint sets of function (f ∈ F), constructors (c ∈ C) and
variables (x ∈ V);

(Constructor terms) T (C) 3 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,V) 3 t ::= c | x | c(t1, · · · , tn) |

f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(rules) D 3 d ::= f(p1, · · · , pn)→ t

No defined symbols in patterns.

A program is a set of rules with a main symbol.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).

redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Strict monotonicity: ti < t′i implies f(. . . , ti, . . .) < f(. . . , t′i, . . .).

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).

redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).

redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).

redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).

redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).
redex > contractum because the rules are ordered.

f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).
redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.

No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule
l→ r, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(. . . , redex , . . .) reduces to f(. . . , contractum , . . .).
redex > contractum because the rules are ordered.
f(. . . , redex , . . .) > f(. . . , contractum , . . .) by monotonicity.
No infinite reduction by noetherianity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a
termination ordering.

Hint of proof

t > s iff t
+→s

Compatible with the rules by construction.

Monotonic by definition of redex/contractum.

Well-founded . . . because the system terminates!

l→ r implies l > r.

f(. . . , redex, . . .)→ f(. . . , contractum, . . .).

. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a
termination ordering.

Hint of proof

t > s iff t
+→s

Compatible with the rules by construction.

Monotonic by definition of redex/contractum.

Well-founded . . . because the system terminates!

l→ r implies l > r.

f(. . . , redex, . . .)→ f(. . . , contractum, . . .).

. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a
termination ordering.

Hint of proof

t > s iff t
+→s

Compatible with the rules by construction.

Monotonic by definition of redex/contractum.

Well-founded . . . because the system terminates!

l→ r implies l > r.

f(. . . , redex, . . .)→ f(. . . , contractum, . . .).

. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a
termination ordering.

Hint of proof

t > s iff t
+→s

Compatible with the rules by construction.

Monotonic by definition of redex/contractum.

Well-founded . . . because the system terminates!

l→ r implies l > r.

f(. . . , redex, . . .)→ f(. . . , contractum, . . .).

. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a
termination ordering.

Hint of proof

t > s iff t
+→s

Compatible with the rules by construction.

Monotonic by definition of redex/contractum.

Well-founded . . . because the system terminates!

l→ r implies l > r.

f(. . . , redex, . . .)→ f(. . . , contractum, . . .).

. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Generic Termination Orderings

The existence of a termination ordering is undecidable.

Having different orderings for each system is inconvenient.

Problem

Find a termination ordering independently of the TRS but still
be able to prove termination of many systems.

Idea (RPO in a nutshell)

If f calls g and g never calls f, then going from f to g is a
step toward termination.

During a recursive call, something must decrease inside the
arguments.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Generic Termination Orderings

The existence of a termination ordering is undecidable.

Having different orderings for each system is inconvenient.

Problem

Find a termination ordering independently of the TRS but still
be able to prove termination of many systems.

Idea (RPO in a nutshell)

If f calls g and g never calls f, then going from f to g is a
step toward termination.

During a recursive call, something must decrease inside the
arguments.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Generic Termination Orderings

The existence of a termination ordering is undecidable.

Having different orderings for each system is inconvenient.

Problem

Find a termination ordering independently of the TRS but still
be able to prove termination of many systems.

Idea (RPO in a nutshell)

If f calls g and g never calls f, then going from f to g is a
step toward termination.

During a recursive call, something must decrease inside the
arguments.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Recursive Path Ordering

t = f(t1, · · · , tn) ≺rpo g(s1, . . . , si , . . . , sm) = s

<F ordering of F ∪ C.
∃i, t �rpo si

t ≺rpo s

∀i, ti ≺rpo g(s1, · · · , sm) f <F g

t ≺rpo s

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Recursive Path Ordering

t = f(t1, · · · , tn) ≺rpo g(s1, . . . , si , . . . , sm) = s

<F ordering of F ∪ C.

∃i, t �rpo si

t ≺rpo s

∀i, ti ≺rpo g(s1, · · · , sm) f <F g

t ≺rpo s

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Recursive Path Ordering

t = f(t1, · · · , tn) ≺rpo g(s1, . . . , si , . . . , sm) = s

<F ordering of F ∪ C.
∃i, t �rpo si

t ≺rpo s

∀i, ti ≺rpo g(s1, · · · , sm) f <F g

t ≺rpo s

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Recursive Path Ordering

t = f(t1, · · · , tn) ≺rpo g(s1, . . . , si , . . . , sm) = s

<F ordering of F ∪ C.
∃i, t �rpo si

t ≺rpo s

∀i, ti ≺rpo g(s1, · · · , sm) f <F g

t ≺rpo s

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

MPO, LPO, PPO

Comparing arguments of recursive calls.

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

MPO: multiset ordering.

LPO: lexicographic ordering.

PPO: product ordering.

Exercise

Prove that they all are termination orderings. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

MPO, LPO, PPO

Comparing arguments of recursive calls.

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

MPO: multiset ordering.

LPO: lexicographic ordering.

PPO: product ordering.

Exercise

Prove that they all are termination orderings. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

MPO, LPO, PPO

Comparing arguments of recursive calls.

∀i, ti ≺rpo s {t1, · · · , tn} ≺r
rpo {s1, · · · , sn} f ≈F g

t ≺rpo s

MPO: multiset ordering.

LPO: lexicographic ordering.

PPO: product ordering.

Exercise

Prove that they all are termination orderings. . .

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Implicit Complexity

Theorem (Hofbauer, BMM)

PPO ≡ MPO ≡ PrimRec.

Systems terminating by PPO/MPO compute all the
PrimRec functions (extensional completeness, easy).

Systems terminating by PPO/MPO compute only the
PrimRec functions (soundness, hard).

No intensional completeness (quick sort).

Theorem (Weierman)

LPO ≡ Multiple recursive functions.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Implicit Complexity

Theorem (Hofbauer, BMM)

PPO ≡ MPO ≡ PrimRec.

Systems terminating by PPO/MPO compute all the
PrimRec functions (extensional completeness, easy).

Systems terminating by PPO/MPO compute only the
PrimRec functions (soundness, hard).

No intensional completeness (quick sort).

Theorem (Weierman)

LPO ≡ Multiple recursive functions.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Terms Rewriting Systems
Termination Orderings
Recursive Path Ordering

Implicit Complexity

Theorem (Hofbauer, BMM)

PPO ≡ MPO ≡ PrimRec.

Systems terminating by PPO/MPO compute all the
PrimRec functions (extensional completeness, easy).

Systems terminating by PPO/MPO compute only the
PrimRec functions (soundness, hard).

No intensional completeness (quick sort).

Theorem (Weierman)

LPO ≡ Multiple recursive functions.

J.-Y. Moyen Interpretations

Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove
noetherianity).
Idea: instead of trying to build orders on terms (complicated
structure), try to interpret terms in a well known ordered set.

J•K : T → (A,<) and then, t ≺ s iff JtK < JsK

(A,<) is well founded.

JtK > Jt′K implies Jf(. . . , t, . . .)K > Jf(. . . , t′, . . .)K.
For each rule l→ r, we have JlK > JrK.

Easy Use compositionality Hard

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove
noetherianity).
Idea: instead of trying to build orders on terms (complicated
structure), try to interpret terms in a well known ordered set.

J•K : T → (A,<) and then, t ≺ s iff JtK < JsK

(A,<) is well founded.

JtK > Jt′K implies Jf(. . . , t, . . .)K > Jf(. . . , t′, . . .)K.
For each rule l→ r, we have JlK > JrK.

Easy Use compositionality Hard

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove
noetherianity).
Idea: instead of trying to build orders on terms (complicated
structure), try to interpret terms in a well known ordered set.

J•K : T → (A,<) and then, t ≺ s iff JtK < JsK

(A,<) is well founded.

JtK > Jt′K implies Jf(. . . , t, . . .)K > Jf(. . . , t′, . . .)K.
For each rule l→ r, we have JlK > JrK.

Easy

Use compositionality Hard

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove
noetherianity).
Idea: instead of trying to build orders on terms (complicated
structure), try to interpret terms in a well known ordered set.

J•K : T → (A,<) and then, t ≺ s iff JtK < JsK

(A,<) is well founded.

JtK > Jt′K implies Jf(. . . , t, . . .)K > Jf(. . . , t′, . . .)K.
For each rule l→ r, we have JlK > JrK.

Easy Use compositionality

Hard

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove
noetherianity).
Idea: instead of trying to build orders on terms (complicated
structure), try to interpret terms in a well known ordered set.

J•K : T → (A,<) and then, t ≺ s iff JtK < JsK

(A,<) is well founded.

JtK > Jt′K implies Jf(. . . , t, . . .)K > Jf(. . . , t′, . . .)K.
For each rule l→ r, we have JlK > JrK.

Easy Use compositionality Hard

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Compositional Interpretations

For each symbol f of arity n, define a function
JfK : An → A.

Extend recursively Jf(t1, · · · , tn)K = JfK(Jt1K, . . . , JtnK).
Define t ≺ s iff JtK < JsK.

JfK has subterm property if JfK(X1, · · · , Xn) ≥ Xi.

Lemma

If each JfK is monotonic and has subterm property, then ≺ is
monotonic.

Ackermann

Ackermann’s function admit an interpretation over the ordinal
numbers.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Compositional Interpretations

For each symbol f of arity n, define a function
JfK : An → A.

Extend recursively Jf(t1, · · · , tn)K = JfK(Jt1K, . . . , JtnK).
Define t ≺ s iff JtK < JsK.

JfK has subterm property if JfK(X1, · · · , Xn) ≥ Xi.

Lemma

If each JfK is monotonic and has subterm property, then ≺ is
monotonic.

Ackermann

Ackermann’s function admit an interpretation over the ordinal
numbers.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Compositional Interpretations

For each symbol f of arity n, define a function
JfK : An → A.

Extend recursively Jf(t1, · · · , tn)K = JfK(Jt1K, . . . , JtnK).
Define t ≺ s iff JtK < JsK.

JfK has subterm property if JfK(X1, · · · , Xn) ≥ Xi.

Lemma

If each JfK is monotonic and has subterm property, then ≺ is
monotonic.

Ackermann

Ackermann’s function admit an interpretation over the ordinal
numbers.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Polynomial Interpretations

Polynomial interpretation: JfK(X1, · · · , Xn) is a
polynomial (with positive integer coefficients).

A TRS admits a polynomial interpretation if JlK > JrK. It
defines a termination ordering.

A TRS admitting a polynomial interpretation terminates
uniformly.

Exponential

db(z) → z
db(S(x)) → S′(S′(db(x)))
exp(z) → S(z)

exp(S(x)) → db(exp(x))

JzK = 1 JSK(X) = 2X + 4 JS′K(X) = X + 1
JdbK(X) = 2X + 1 JexpK(X) = X + 2

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Polynomial Interpretations

Polynomial interpretation: JfK(X1, · · · , Xn) is a
polynomial (with positive integer coefficients).

A TRS admits a polynomial interpretation if JlK > JrK. It
defines a termination ordering.

A TRS admitting a polynomial interpretation terminates
uniformly.

Exponential

db(z) → z
db(S(x)) → S′(S′(db(x)))
exp(z) → S(z)

exp(S(x)) → db(exp(x))

JzK = 1 JSK(X) = 2X + 4 JS′K(X) = X + 1
JdbK(X) = 2X + 1 JexpK(X) = X + 2

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize
Exp2Time.

Where does the exponential come from?

JSK(X) = 2X hence JSn(z)K = 2n

JSK(X) = X3, JzK = 2 hence JSn(z)K = 23n

Observation

The interpretation of constructors is crucial for complexity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize
Exp2Time.

Where does the exponential come from?

JSK(X) = 2X hence JSn(z)K = 2n

JSK(X) = X3, JzK = 2 hence JSn(z)K = 23n

Observation

The interpretation of constructors is crucial for complexity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize
Exp2Time.

Where does the exponential come from?

JSK(X) = 2X hence JSn(z)K = 2n

JSK(X) = X3, JzK = 2 hence JSn(z)K = 23n

Observation

The interpretation of constructors is crucial for complexity.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Interpretations of Constructors

The interpretation of a symbol is

Additive: JfK(X1, · · · , Xn) =
∑

Xi + a

Multiplicative: JfK(X1, · · · , Xn) has degree 1.

Polynomial: JfK(X1, · · · , Xn) is any polynomial.

Theorem (BCMT)

Depending on the interpretation of constructors, the TRS
admitting a polynomial interpretation characterize:

Additive ⇒ Ptime.

Multiplicative ⇒ Exptime.

Polynomial ⇒ Exp2Time.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Interpretations of Constructors

The interpretation of a symbol is

Additive: JfK(X1, · · · , Xn) =
∑

Xi + a

Multiplicative: JfK(X1, · · · , Xn) has degree 1.

Polynomial: JfK(X1, · · · , Xn) is any polynomial.

Theorem (BCMT)

Depending on the interpretation of constructors, the TRS
admitting a polynomial interpretation characterize:

Additive ⇒ Ptime.

Multiplicative ⇒ Exptime.

Polynomial ⇒ Exp2Time.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Interpretations are too large

Smallest polynomial interpretation for addition?

add(z, y) → y
add(S(x), y) → S(add(x, y))

JzK = 1 JSK(X) = X + 1 JaddK(X,Y) = 2X + Y

If we take the more natural JaddK(X,Y) = X + Y , then the
second rule is not strictly decreasing:
Jadd(S(x), y)K = X + Y + 1 = JS(add(x, y))K

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Interpretations are too large

Smallest polynomial interpretation for addition?

add(z, y) → y
add(S(x), y) → S(add(x, y))

JzK = 1 JSK(X) = X + 1 JaddK(X,Y) = 2X + Y

If we take the more natural JaddK(X,Y) = X + Y , then the
second rule is not strictly decreasing:
Jadd(S(x), y)K = X + Y + 1 = JS(add(x, y))K

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Interpretations are too large

Smallest polynomial interpretation for addition?

add(z, y) → y
add(S(x), y) → S(add(x, y))

JzK = 1 JSK(X) = X + 1 JaddK(X,Y) = 2X + Y

If we take the more natural JaddK(X,Y) = X + Y , then the
second rule is not strictly decreasing:
Jadd(S(x), y)K = X + Y + 1 = JS(add(x, y))K

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Quasi Interpretation

We relax the condition on rules: LlM ≥ LrM.
Termination is not assured: f(x)→ f(x). We need an extra
termination proof.

But a size bound is still assured: t
!→v implies LtM ≥ LvM.

Hence, if LtM is polynomial (in the inputs), all the value
handled during reduction also have polynomial size.

Theorem (BMM)

MPO+QI ≡ Ptime

TRS terminating by MPO and admitting an additive QI
characterize Ptime.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Quasi Interpretation

We relax the condition on rules: LlM ≥ LrM.
Termination is not assured: f(x)→ f(x). We need an extra
termination proof.

But a size bound is still assured: t
!→v implies LtM ≥ LvM.

Hence, if LtM is polynomial (in the inputs), all the value
handled during reduction also have polynomial size.

Theorem (BMM)

MPO+QI ≡ Ptime

TRS terminating by MPO and admitting an additive QI
characterize Ptime.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Quasi Interpretation

We relax the condition on rules: LlM ≥ LrM.
Termination is not assured: f(x)→ f(x). We need an extra
termination proof.

But a size bound is still assured: t
!→v implies LtM ≥ LvM.

Hence, if LtM is polynomial (in the inputs), all the value
handled during reduction also have polynomial size.

Theorem (BMM)

MPO+QI ≡ Ptime

TRS terminating by MPO and admitting an additive QI
characterize Ptime.

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Example: Longest Common Subsequence

lcs(x, ε) → z
lcs(ε, y) → z

lcs(i(x), i(y)) → S(lcs(x, y))
lcs(i(x), j(y)) → max(lcs(x, j(y)), lcs(i(x), y))

LlcsM(X,Y) = LmaxM(X,Y) = max(X,Y) No interpretation.

Explicit complexity: O(2n).

Implicit complexity: O(n2).

We can use memoisation (automated dynamic
programming) to transform the program and reach the
good complexity.

Better expressivity than interpretations, but the method is
far from intensional completeness (divide and conquer
algorithms).

J.-Y. Moyen Interpretations

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Example: Longest Common Subsequence

lcs(x, ε) → z
lcs(ε, y) → z

lcs(i(x), i(y)) → S(lcs(x, y))
lcs(i(x), j(y)) → max(lcs(x, j(y)), lcs(i(x), y))

LlcsM(X,Y) = LmaxM(X,Y) = max(X,Y) No interpretation.

Explicit complexity: O(2n).

Implicit complexity: O(n2).

We can use memoisation (automated dynamic
programming) to transform the program and reach the
good complexity.

Better expressivity than interpretations, but the method is
far from intensional completeness (divide and conquer
algorithms).

J.-Y. Moyen Interpretations

Conclusion

Implicit Computational Complexity
Termination Orderings

Interpretations

Interpretations for Termination
Interpretations for Complexity

Conclusion

Implicit computational complexity: syntactic criterions for
semantic properties.

Dream usage: certified compilation, proof carrying code.

Proofs are hard but many results have been obtained in the
past 20 years.

Interpretation methods give a guideline for finding new
characterizations.

Interpretations are not restricted to TRS.

Getting close to intensional completeness is extremely hard.

J.-Y. Moyen Interpretations

	Implicit Computational Complexity
	ICC systems
	Examples
	Implicit complexity of programs

	Termination Orderings
	Terms Rewriting Systems
	Termination Orderings
	Recursive Path Ordering

	Interpretations
	Interpretations for Termination
	Interpretations for Complexity

