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Overview

I We would like to be use secure cryptographic primitives (e.g.,
block ciphers, hash functions) in schemes and protocols which
realize some security functionality

I Problem: how do we validate the correctness of these
constructions?

I Two traditional approaches: symbolic and computational

I Can we relate the two?

I Can implicit complexity help?
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Symbolic model

I Basic model: Dolev-Yao [Dolev Yao 82]

I Primitives achieve perfect security

I Adversaries are in total control of execution and
communication

1. May initiate any number of executions of a protocol in any role
with any party

2. Can intercept and modify any message, or send arbitrary
messages to active parties

I Adversaries are nondeterministic – concern is with the
existence of an attack

I No computational assumptions
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A well-known success story

Needham-Schroeder public-key protocol

1 A −→ B : {A.NA}kB
2 B −→ A : {NA.NB}kA
3 A −→ B : {NA}kB

At the end of this protocol, A and B might assume: (1) they
know with whom they have been interacting, (2) they agree on the
values Na and Nb and (3) no one else knows Na and Nb
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Lowe’s attack on NSPK

Using a model-checking approach in a Dolev-Yao framework, [Lowe
1996] demonstrated the following interleaving attack.
Oscar runs two copies α and β of this protocol concurrently (one
as the receiver with A and one as the initiator, impersonating A
with B).

α.1 A −→ O : {A.NA}kO
β.1 O(A) −→ B : {A.NA}kB
β.2 B −→ O(A) : {NA.NB}kA
α.2 O −→ A : {NA.NB}kA
α.3 A −→ O : {NB}kO
β.3 O(A) −→ B : {NB}kB
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Dolev-Yao model – pros and cons

I Simple symbolic model allows automated reasoning (theorem
proving or model checking) – useful for discovering flaws in
protocols

I Semantics is not clear – what does it mean when a protocol is
shown to be correct?

I Mismatch with computational cryptography – idealized
(perfect) primitives, adversaries are computationally
unbounded and nondeterministic.
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Computational security

I Cryptographic primitives are modeled as PPT algorithms,

I Security holds against poly-time adversaries.

I Security is formulated probabilistically – adversaries may have
some (small) chance of success

I Reduction paradigm: to show a scheme S built using
primitives P1, . . . ,P2 is secure, show that for any advesary A
which breaks S there is an adversary A′ which breaks one of
the Pi ’s

I Black-box reductions: A′ = MA for some poly-time OTM M
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Example – Asymptotic CPA security of encryption

I An encryption scheme is a triple 〈Gen,Enc ,Dec〉 where
Gen,Enc are PPT functions and Dec is a deterministic
poly-time function such that for any k ∈ Rng(Gen), and any
message m, Dec(k ,Enc(k ,m)) = m

I An adversary is a pair A = 〈Aq,Ac〉 where Aq is a poly-time
OTM and Ac is PPT
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CPA security continued

I Security is defined using the following game, which depends
on a security parameter n

1. k ← Gen(1n)
2. Aq is given oracle access to Enc(k , ·) and 1n as input and

outputs the transcript h of its interaction with the oracle, plus
a challenge pair m0,m1

3. Ac is given t and Enc(k ,mb) for a random b ∈ {0, 1} and
outputs a guess b′

I A’s advantage is Pr [b = b′]− 1
2

I The scheme is secure if there is a negligible function ν such
that every adversary’s advantage is bounded by ν(n)
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Computational approach – pros and cons

I Schemes and protocols are formulated in a compuational
model

I Security guarantees closely related to security achievable by
implementation (concrete approach offers quantifiable
guarantees)

I Definitions are complex – just defining security of a primitive
like encryption requires the use of OTMs

I Proofs are even more complex – involve reductions between
(ostensibly) type-2 functions, in a probabilistic setting

I Proof automation is difficult (but not impossible, e.g.,
[Blanchet 07],[Barthes et. al. 12])
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Relating the two views

Goal: Achieving the best of the two worlds.

One possible approach:

I Computational Soundness: computational security guarantees
from symbolic proofs.

I Typical form: Protocol Π is symbolically secure ⇒ generic
instantiations of Π (under exactly-defined secure primitives)
are computationally secure.

This enables:

I Doing proofs in a symbolic model (without explicitly dealing
with complexity-based notions), and

I obtaining computational security from (once and for all)
established computational soundness theorems.
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Symbolically secure encryption

I Abadi & Rogaway 2001: The first result of this kind. Limited
to eavesdropping adversaries and single-message protocols.
Many extensions since then in the eavesdropping setting
([Micciancio Warinschi 02], [Herzog 04], . . . )

I [MW 04] – security of trace-based properties (e.g.
authentication) against non-adaptive active adversaries,
messages cannot contain secret keys

I [Hajiabadi K 13] – extension to adaptive adversaries, reduced
restrictions on secret keys in messages
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Abadi-Rogaway model

I Expressions represent messages built using encryption and
simple data constructors, e.g., {{k1}k2 .k3}k4

I Adversarial knowledge is modeled inductively: Fkr (E ,K )
denotes the set of keys recoverable from E assuming keys in
K are already known

I We take the least fixed point of λK .Fkr (E ,K ) to obtain E ’s
recoverable keys – all other keys in E are hidden

I The pattern of E is obtained by replacing subexpressions of
the form {E ′}k , where k is hidden in E , by �.

I Expressions E ,F are equivalent (E ≡ F ) if they have the
same pattern, up to renaming of keys
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Abadi-Rogaway model

I If we interpret encryption computationally (e.g. by a
CPA-secure encryption scheme) then for any n, an expression
E has a natural interpretation [|E |] as a distribution over
{0, 1}p(n) for some polynomial p

I Distribution ensembles X = {X}n and Y = {Y }n are
computationally indistinguishable (X ≈ Y ) if for every n any
PPT adversary has negligible in n advantage in distinguishing
between a sample from Xn and one from Yn

I Abadi-Rogaway soundness result (roughly): if E ,F are
expressions with no key cycles, then E ≡ F =⇒ [|E |] ≈ [|F |]

I Original result formulated for a more restictive form of
encrpytion security
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A more foundational approach?

I Some drawbacks of the A-R model – specific to a particular
primitive and adversarial model, soundness proof follows the
pattern of a standard computational security proof (i.e.
reduction)

I Each time we introduce a variation of this logic, a new
computational soundness proof will be required

I We will consider a different approach with connections to ICC
(at least syntatic modeling of complexity)

I A logical analogue to cryptography based on generic
assumptions (OWF ⇒ PRG ⇒ PRF ⇒ CPA-encryption)

I One goal: soundness of A-R style logics via interpretation in a
more generic logic
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Formalizing computational indistinguishability

I This approach introduced by [Impagliazzo, K 03]

I A distribution ensemble is samplable if there is a there is a
poly time function which is given n uniform bits of
randomness and generates a sample from Xn

I We can just view samplable ensembles as PPT functions,
which can be presented by using a standard function algebra
(we used Cobham, but more implicit approaches would work
as well) with primitives for randomization – rand(n) and rs(n)

I Can give axioms and rules for f ≈ g

I Possible to define basic primitives, e.g., f is a PRG if
f (rs(n)) ≈ rs(n + 1)
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Formalizing computational soundness

I Can we prove the soundness of A-R by interpreting it in the
IK system?

I We are working on an approach which will prove soundness for
certain encryption schemes based on pseudorandom functions
(PRFs)

I Goal one: modeling PRFs (pseudorandom functions) and
using them to define encryption in the IK system

I Goal two: proving A-R soundness by interpretation

I Goal three (somewhat orthgonal): formally proving PRG ⇒
PRF (mimicking the construction of [Goldreich, Goldwasser,
Micali 86])
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Modeling PRFs

I Need to model state and interaction in a function algebra – a
natural candidate is BFF2. We’ll give a rough description of
how this is done. Let B = {0, 1}∗.

I An oracle (intensional function) is a pair f = 〈sf , af 〉 where
sf : Sf × B→ Sf and af : Sf × B→ B

I We assume that elements of SA just consist of A’s
randomness and its query history

I An adversary is a triple A = 〈qA, sA, eA〉 where qA : SA → B,
sA : SA × B→ B and eA : SA ⇀ B
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Modeling interaction

I For σ ∈ SA, τ ∈ Sf , Step(A, f , σ, τ) equals 〈σ′, τ ′〉 where
σ′ = sA(σ, a), 〈τ ′, a〉 = f (τ, q) and q = qA(σ).

I We can now use feasible iteration to define Step∗ so that if A
is polytime in its input, then for sufficiently large n,
eA(Step∗1(A, f , σ0(1n), τ0(1n), 1n)) is identically distributed to
Af (1n)

I This will allow us to define indistinguishability of intensional
functions f ∼ g – can “lift” axiomatiztion of ≈ to one for ∼
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Defining PRFs in this setting

Consider the intensional function ρ whose state consists of a
sequence of pairs of elements of B corresponding to the queries
that it has made. ρ is defined as follows: suppose
σ = (〈q1, a1〉, . . . , 〈qk , ak〉). If there is some j ≤ k with q = qj ,
then

ρ(σ, q) = 〈σ, ai 〉

where i = (µj ≤ k)(q = qj). Otherwise,

ρ(σ, q) = r ← rs(n).〈σ_〈q, r〉, r〉

Then for a length preserving f (i.e.|f (x)| = |x |,) f is a PRF if
f ∼ ρ.
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Conclusions and future work

I There are now a variety of computationally sound symbolic
systems for reasoning about security (in the A-R style. There
are many other approaches that we haven’t even mentioned.)

I Generic logics for computational indistinguishability could
provide a more basic framework for reasoning about security –
logics for specific primitives or security models proved sound
by interpretation

I Can model, e.g., PRFs

I To do: finish up Goals 2 and 3
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