An introduction to light logics, or Implicit complexity by taming the duplication

Patrick Baillot

CNRS / ENS Lyon

Shonan meeting on ICC and applications

November 6, 2013

Patrick Baillot An introduction to light logics, or Implicit complexity by taming

(日) (同) (三) (三)

Introduction

- Implicit computational complexity (ICC) : characterizing complexity classes by programming languages / calculi without explicit bounds, but instead by restricting the constructions
- either theory-oriented or certification-oriented
- often conveniently formulated by:
 (i) a general programming language, (ii) a criterion on programs

・ロト ・得ト ・ヨト ・ヨト

Various approaches to ICC

- ramified recursion (Leivant, Leivant-Marion) / safe recursion (Bellantoni-Cook)
- variants of linear logic (light logics) this talk
- interpretation methods
- . . .

ICC vs. complexity analysis

specificities of ICC w.r.t. automatic complexity analysis:

- complexity certificate (e.g. type)
- modular

but

- only rough complexity bounds
- less general analysis (specific programming discipline)

(日) (同) (三) (三)

The proofs-as-programs viewpoint

- our reference language here is λ-calculus untyped λ-calculus is Turing-complete
- type systems can guarantee termination ex: system F (polymorphic types)
- proofs-as-programs correspondence

 $\begin{array}{rcl} \mathsf{proof} & = & \mathsf{type} \ \mathsf{derivation} \\ \mathsf{normalization} & = & \mathsf{execution} \\ \mathsf{intuitionistic} \ \mathsf{logic} & \leftrightarrow & \mathsf{system} \ \mathsf{F} \end{array}$

 some characteristics of λ-calculus: higher-order types no distinction between data / program

Linear logic

• linear logic (LL):

fine-grained decomposition of intuitionistic logic duplication is controlled with a specific connective ! (exponential)

 variants of linear logic with different rules for ! have bounded complexity: light logics these logics (or subsystems) can be used as type systems for λ-calculus thus:

(i) general language= λ -calculus, (ii) criterion= typability

(日)

Outline of the talk

- ${\small \bigcirc} {} {\rm a \ recap \ on} \ \lambda {\rm -calculus \ and \ system \ F}$
- elementary linear logic (ELL): elementary complexity
- **Iight** linear logic (LLL): Ptime complexity
- other linear logic variants
- conclusion

・ロト ・同ト ・ヨト ・ヨト

λ -calculus

• λ -terms:

$$t, u ::= x \mid \lambda x.t \mid t \ u$$

notations: $\lambda x_1 x_2 . t$ for $\lambda x_1 . \lambda x_2 . t$ ($t \ u \ v$) for (($t \ u$) v) substitution: t[u/x]

• β -reduction:

 $\xrightarrow{1}$ relation obtained by context-closure of:

$$((\lambda x.t)u) \xrightarrow{1} t[u/x]$$

 \rightarrow reflexive and transitive closure of $\frac{1}{2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Typed λ -terms

system F types:

$$T, U ::= \alpha \mid T \to U \mid \forall \alpha. T$$

simple types: without \forall

simply typed terms, in Church-style:

$$x^{T} \qquad (\lambda x^{T} . M^{U})^{T \to U} \qquad ((M^{T \to U}) N^{T})^{U}$$

(日) (同) (三) (三)

Proofs-programs correspondence (Curry-Howard)

typed term \Rightarrow 2nd-order intuitionistic logic proof

type

formula

 M^B , with free variables $x_i : A_i$, $1 \le i \le n$

 β -reduction of term

proof of $A_1, \ldots, A_n \vdash B$

normalization of proof (cut elimination)

イロト イポト イヨト イヨト

Some types and data types

Polymorphic identity: $\lambda x^{\alpha}.x$:

$$\forall \alpha. (\alpha \rightarrow \alpha)$$

Church unary integers: $N^F = \forall \alpha.(\alpha \rightarrow \alpha)$ example $\underline{2} = \lambda f^{\alpha \rightarrow \alpha}.\lambda x^{\alpha}$ Church binary words: $W^F = \forall \alpha.(\alpha \rightarrow \alpha)$ example $< 1, 1, 0 > = \lambda s_0^{\alpha \rightarrow \alpha}.\lambda s_1^{\alpha}$

$$= \forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha)$$

$$= \lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . (f(f x)) : N^{F}$$

$$= \quad \forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha)$$

 $= \lambda s_0^{\alpha \to \alpha} . \lambda s_1^{\alpha \to \alpha} . \lambda x^{\alpha} . (s_1 \ (s_1 \ (s_0 \ x))) : W^F$

・ロト ・同ト ・ヨト ・ヨト

Iteration

For each inductive data type an associated iteration principle. For instance, for $N = \forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$, we can define an iterator *iter*:

$$iter = \lambda fxn. \ (n \ f \ x) \ : (A
ightarrow A)
ightarrow A
ightarrow N
ightarrow A, \quad ext{for any } A$$

then

(iter t $u \underline{n}$) \rightarrow (t (t ... (t u)...) (n times)

example:

 $\begin{array}{l} \text{double : } N \to N \\ \text{exp} = \lambda n.(\text{iter double } \underline{1} \ n) : N \to N \\ \text{tower} = \lambda n.(\text{iter exp } \underline{1} \ n) : N \to N \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples of terms

concatenation conc	$\lambda u^{W} . \lambda v^{W} . \lambda s_{0} . \lambda s_{1} . \lambda x . (u \ s_{0} \ s_{1}) (v \ s_{0} \ s_{1} \ x)$ $W \to W \to W$
length <i>length</i>	$\lambda u^{W} . \lambda f^{\alpha \to \alpha} . (u f f)^{\alpha \to \alpha}$ $W \to N$
repeated concatenation <i>rep</i>	$\lambda n^{N} . \lambda v^{W} . [n (conc v) \underline{nil}]^{W}$ $N \to W \to W$

<ロ> <同> <同> < 同> < 同>

System F and termination

Theorem (Girard)

If a term is well typed in F, then it is strongly normalizable.

Thus a type derivation can be seen as a termination witness. In particular, a term $t: W \to W$ represents a function on words which terminates on all inputs.

Can we refine this system in order to guarantee feasible termination, that is to say in polynomial time?

- 4 同 6 4 日 6 4 日 6

Linear logic

• Linear logic (LL) arises from the decomposition

 $A \Rightarrow B \equiv !A \multimap B$

- the ! modality accounts for duplication (contraction)
- ! satisfies the following principles:

$$|A \multimap |A \otimes |A \qquad \frac{A \vdash B}{|A \vdash |B} \qquad |A \multimap A \\ |A \otimes |B \multimap |(A \otimes B) \quad |A \multimap ||A$$

(日) (同) (三) (三)

Elementary linear logic (ELL)

[Girard95]

• Language of formulas:

$$A, B := \alpha \mid A \multimap B \mid !A \mid \forall \alpha. A$$

Denote $!^k A$ for k occurrences of !.

• The system is designed in such a way that the following principles are **not** provable

$$|A \multimap A, |A \multimap ||A$$

 Defined to characterize elementary time complexity, that is to say in time bounded by 2ⁿ_k, for arbitrary k.

Elementary linear logic rules

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x.t : A \multimap B} (Id)$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \multimap B} (-\circ i) \qquad \frac{\Gamma_1 \vdash t : A \multimap B \quad \Gamma_2 \vdash u : A}{\Gamma_1, \Gamma_2 \vdash (t \ u) : B} (-\circ e)$$

$$\frac{x_1 : !A, x_2 : !A, \Gamma \vdash t : B}{x : !A, \Gamma \vdash t [x/x_1, x/x_2] : B} (Cntr) \quad \frac{\Gamma \vdash t : A}{\Gamma, x : B \vdash t : A} (Weak)$$

$$\frac{x_1 : B_1, \dots, x_n : B_n \vdash t : A}{x_1 : !B_1, \dots, x_n : !B_n \vdash t : !A} (! i) \qquad \frac{\Gamma_1 \vdash u : !A \quad \Gamma_2, x : !A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t [u/x] : B} (! e)$$

イロン 不聞 とくほとう ほどう

Forgetful map from ELL to F

Consider $(.)^-$: *ELL* \rightarrow *F* defined by:

$$(!A)^{-} = A^{-}, \ (A \multimap B)^{-} = A^{-} \to B^{-}, \ (\forall \alpha.A)^{-} = \forall \alpha.A^{-}, \ \alpha^{-} = \alpha.$$

Proposition

If $\Gamma \vdash_{ELL} t$: A then t is typable in F with type A^- .

If $A^- = T$, say A is a decoration of T in ELL.

・ロト ・回ト ・ヨト ・ヨト

Data types in ELL

• Church unary integers

system F:

$$N^{F}$$
 $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$
 $\forall \alpha.!(\alpha \multimap \alpha) \multimap !(\alpha \multimap \alpha)$

Example: integer 2, in F:

$$\underline{2} = \lambda f^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (f(f x)) .$$

Church binary words
 system F: ELL:
 W^F W^{ELL}

 $\forall \alpha.(\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha) \qquad \forall \alpha.!(\alpha \multimap \alpha) \multimap !(\alpha \multimap \alpha) \multimap !(\alpha \multimap \alpha)$ Example: $w = \langle 1, 0, 0 \rangle$, in F:

 $\underline{w} = \lambda s_0^{(\alpha \to \alpha)} . \lambda s_1^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (s_1 (s_0 (s_0 x))) .$

イロト イポト イヨト イヨト 三日

Representation of functions

- a term t of type !^kN →!^lN, for some k, l, represents a function over unary integers
- some examples of terms

addition add = $\lambda nmfx.(n f) (m f x)$: $N \multimap N \multimap N$

multiplication		
mult	=	$\lambda nmf.(n(mf))$
	:	$N \multimap N \multimap N$
squaring		
square	=	$\lambda nf.(n(nf))$
	:	!N —∘ !N

-

Iteration in ELL

recall the iterator iter:

$$iter = \lambda f x n. (n f x) : !(A \multimap A) \multimap !A \multimap N \multimap !A$$

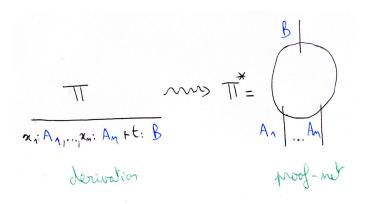
with (*iter* t
$$u \underline{n}$$
) \rightarrow (t (t ... (t u)...)) (n times)

examples:

double : $N \rightarrow N$ exp = (iter double <u>1</u>) : $N \rightarrow !N$ remark: exp cannot be iterated; tower = (iter exp <u>1</u>) non ELL typable.

- 4 同 6 4 日 6 4 日 6

From derivations to proof-nets



・ 同 ト ・ ヨ ト ・ ヨ ト

Elementary linear logic rules, again

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x.t : A \multimap B} (Id)$$

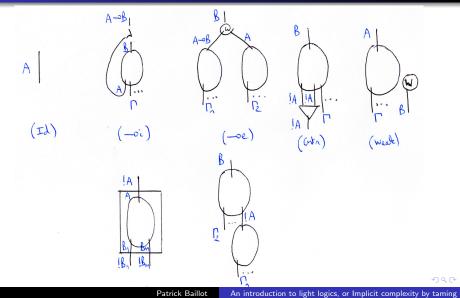
$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \multimap B} (-\circ i) \qquad \qquad \frac{\Gamma_1 \vdash t : A \multimap B \quad \Gamma_2 \vdash u : A}{\Gamma_1, \Gamma_2 \vdash (t \ u) : B} (-\circ e)$$

$$\frac{x_1 : !A, x_2 : !A, \Gamma \vdash t : B}{x : !A, \Gamma \vdash t[x/x_1, x/x_2] : B} (Cntr) \quad \frac{\Gamma \vdash t : A}{\Gamma, x : B \vdash t : A} (Weak)$$

$$\frac{x_1 : B_1, \dots, x_n : B_n \vdash t : A}{x_1 : !B_1, \dots, x_n : !B_n \vdash t : !A} (! i) \qquad \frac{\Gamma_1 \vdash u : !A \quad \Gamma_2, x : !A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t[u/x] : B} (! e)$$

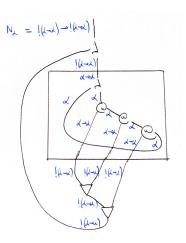
・ 同 ト ・ ヨ ト ・ ヨ ト

ELL Proof-Nets



ELL proof-net : example

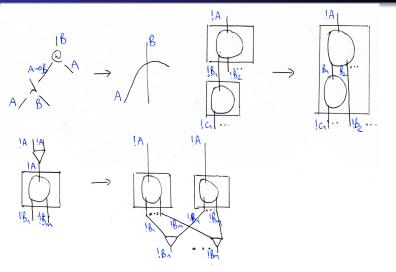
Church integer $\underline{3}$:



< 同 ▶

A B > A B >

ELL proof-net reduction



Methodology

- write programs with ELL typed λ -terms
- evaluate them by:

compiling them into proof-nets, and then performing proof-net reduction

- beware:
 - proof-net reduction does not exactly match β -reduction
 - ELL does not satisfy subject reduction

but that's all right for our present goal ...

More about that in tomorrow's talk, without proof-nets.

ELL proof-net reduction properties

• We have

Proposition (Stratification)

The depth of an edge does not change during reduction.

Consequence: the depth d of a proof-net does not increase during reduction.

• Level-by-level reduction strategy:

R proof-net of depth d perform reduction successively at depth 0, 1 ..., d.

< ロ > < 同 > < 回 > < 回 > .

Level-by-level reduction of ELL proof-nets

• let R be an ELL proof-net of depth d

 $|R|_i$ = size at depth *i*

|R| = total size

round *i*: reduction at depth *i*

there are d + 1 rounds for the reduction of R

- what happens during round i?
 - |R|i decreases at each step thus there are at most |R|i steps (size bounds time)
 - but $|R|_{i+1}$ can increase at each step, in fact it can double
 - hence round *i* can cause an exponential size increase
- on the whole we have a $2_d^{|R|}$ size increase
- this yields a $O(2_d^{|R|})$ bound on the number of steps

・ 同 ト ・ ヨ ト ・ ヨ ト

ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d, then it can be reduced to its normal form in $O(2_d^{|R|})$ steps.

Theorem (Representable functions)

The functions representable by a term of type $N - 0!^k N$, where $k \ge 0$, are exactly the elementary time functions.

・ロト ・得ト ・ヨト ・ヨト

Proof of the representability theorem

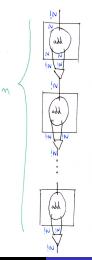
• \subseteq (soundness): if $t : N \multimap !^k N$ for some k, then t represents an elementary function f.

proof: compute $(t\underline{n})$ by proof-net reduction.

⊇ (completeness):
 if f : N → N is an elementary function, then there exists k and t : N → !^kN such that t represents f.
 proof: simulation of O(2ⁿ_i)-time bounded Turing machine, for any i.

・ロト ・得ト ・ヨト ・ヨト

Taming the exponential blow-up?



Patrick Baillot

An introduction to light logics, or Implicit complexity by taming

3

э

< 一型

Light linear logic (LLL)

[Girard95]

• Language of formulas:

$$A, B := \alpha \mid A \multimap B \mid \forall \alpha. A \mid !A \mid \S A$$

intuition: \S a new modality for non-duplicable boxes

• The following principles are still **not** provable

$$|A \multimap A, |A \multimap ||A$$

(日) (同) (日) (日) (日)

Light linear logic rules

• rules (Id), $(-\infty i)$, $(-\infty e)$, (Cntr), (Weak): as in ELL.

• new rules (! i), (! e), (§ i), (§ e):

$$\frac{x: B \vdash t: A}{x:!B \vdash t:!A} (! i) \qquad \frac{\Gamma_1 \vdash u:!A \quad \Gamma_2, x:!A \vdash t:B}{\Gamma_1, \Gamma_2 \vdash t[u/x]:B} (! e)$$

$$\frac{\Gamma, \Delta \vdash t : A}{!\Gamma, \S \Delta \vdash t : \S A} (\S i) \quad \frac{\Gamma_1 \vdash u : \S A \quad \Gamma_2, x : \S A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t[u/x] : B} (! e)$$

where if $\Gamma = x_1 : B_1, \dots, x_k : B_k$, $\dagger \Gamma = x_1 : \dagger B_1, \dots, x_k :: \dagger B_k$, for $\dagger = !, \S$.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Forgetful map from LLL to ELL

Consider $(.)^e : LLL \rightarrow ELL$ defined by:

$$(\S A)^e = !A^e, \quad (!A)^e = !A^e$$

and other connectives unchanged.

Proposition

If $\Gamma \vdash_{LLL} t : A$ then $\Gamma^e \vdash_{ELL} t : A^e$.

< ロ > < 同 > < 三 > < 三 > 、

Data types in LLL

• Church unary integers

system F:

$$N^{F}$$
 $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$
 $\forall \alpha.!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha)$

Example: integer 2, in F:

$$\underline{2} = \lambda f^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (f(f x)) .$$

Church binary words
 system F: LLL:
 W^F
 W^{LLL}

 $\forall \alpha.(\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha) \qquad \forall \alpha.!(\alpha \multimap \alpha) \multimap !(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha)$ Example: $w = \langle 1, 0, 0 \rangle$, in F:

$$\underline{w} = \lambda s_0^{(\alpha \to \alpha)} . \lambda s_1^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (s_1 \ (s_0 \ (s_0 \ x)))$$

(日)

Representation of functions

- a term t of type !^kN → §^lN, for some k, l, represents a function over unary integers
 !^kW → §^lW: function over binary words.
- some examples of terms

addition add = $\lambda nmfx.(n f) (m f x)$: $N \multimap N \multimap N$ double double = $\lambda nfx.(n f) (n f x)$: $!N \multimap \S N$ concatenation conc : $W \multimap W \multimap W$

(口) (同) (三) (三) …

-

Iteration in LLL

we can type the iterator *iter*:

iter =
$$\lambda fxn. (n f x) : !(A \multimap A) \multimap !A \multimap N \multimap \SA$$

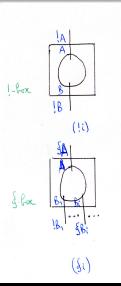
examples:

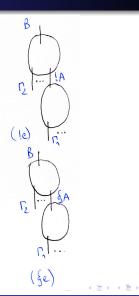
 $(add\underline{3}): N \multimap N$ can be iterated

double :! $N \multimap \S N$ cannot be iterated

thus some exponentially growing terms are not typable

LLL proof-nets



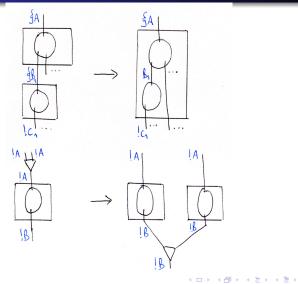


Patrick Baillot

An introduction to light logics, or Implicit complexity by taming

æ

LLL proof-net reduction



Level-by-level reduction of LLL proof-nets

- as in ELL we use a level-by-level strategy
- let R be an LLL proof-net of depth d round i: reduction at depth i there are d + 1 rounds for the reduction of R

• what happens during round i?

- |R|i decreases at each step thus there are at most |R|i steps (size bounds time)
- yet |R|_{i+1} can increase: during round i we can have a quadratic increase:

$$|R'|_{i+1} \le |R|_{i+1}^2$$

- this repeats *d* times, so on the whole we have a $|R|^{2^d}$ size increase
- this yields a $O(|R|^{2^d})$ bound on the number of steps

LLL complexity results

Theorem (Proof-net complexity)

If R is an LLL proof-net of depth d, then it can be reduced to its normal form in $O(|R|^{2^d})$ steps.

Thus at fixed depth d we have a polynomial bound.

Theorem (Representable functions)

The functions representable by a term of type $W \multimap \S^k W$, for $k \ge 0$, are exactly the functions of FP (polynomial time functions).

(日)

Further comments about LLL

• LLL and λ -calculus:

a proper type system for λ -calculus can be designed out of LLL, which ensures a strong polynomial time bound on β -reduction (and not only on proof-net reduction)

• about expressivity:

the completeness result is an extensional one but the intensional expressivity of LLL is quite limited indeed: rich features (higher-order, polymorphism) but "pessimistic" account of iteration ...

・ロト ・得ト ・ヨト ・ヨト

A glimpse of a linear logics zoo

• for P

- soft linear logic: [Lafont04]
 - a simple system, but with more constrained programming
- bounded linear logic: [GSS92]
 - $!_{P(\vec{x})}A$: more explicit, but more flexible
- for EXPTIME and k-EXPTIME
 - ELL again: see tomorrow's talk
- for PSPACE
 - STA_B [GMRdR08] : extends soft linear logic with a craftly typed conditional
- for LOGSPACE
 - IntML [DLS10]: evaluation by computation by interaction

Conclusions and perspectives

- while ramified recursion is based on a stratification of data, ELL / LLL are based on a stratification of programs
- they yield type systems for $\lambda\text{-calculus}$
- w.r.t. other ICC approaches:
 - handle higher-order computation
 - but limited intensional expressivity

relations with other ICC systems are still to explore

• light logics are languages for higher-order computation, but we only characterize first-order complexity classes . . . what about higher-order complexity?