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Introduction

Implicit computational complexity (ICC) :
characterizing complexity classes by programming languages /
calculi without explicit bounds,
but instead by restricting the constructions

either theory-oriented or certification-oriented

often conveniently formulated by:
(i) a general programming language, (ii) a criterion on
programs
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Various approaches to ICC

ramified recursion (Leivant, Leivant-Marion) / safe recursion
(Bellantoni-Cook)

variants of linear logic (light logics) this talk

interpretation methods

. . .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ICC vs. complexity analysis

specificities of ICC w.r.t. automatic complexity analysis:

complexity certificate (e.g. type)

modular

but

only rough complexity bounds

less general analysis (specific programming discipline)
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The proofs-as-programs viewpoint

our reference language here is λ-calculus
untyped λ-calculus is Turing-complete

type systems can guarantee termination
ex: system F (polymorphic types)

proofs-as-programs correspondence
proof = type derivation

normalization = execution
intuitionistic logic ↔ system F

some characteristics of λ-calculus:
higher-order types
no distinction between data / program
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Linear logic

linear logic (LL):
fine-grained decomposition of intuitionistic logic
duplication is controlled with a specific connective !
(exponential)

variants of linear logic with different rules for ! have bounded
complexity: light logics
these logics (or subsystems) can be used as type systems for
λ-calculus
thus:
(i) general language= λ-calculus, (ii) criterion= typability
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Outline of the talk

1 a recap on λ-calculus and system F

2 elementary linear logic (ELL): elementary complexity

3 light linear logic (LLL): Ptime complexity

4 other linear logic variants

5 conclusion
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λ-calculus

λ-terms:
t, u ::= x | λx .t | t u

notations: λx1x2.t for λx1.λx2.t
(t u v) for ((t u) v)
substitution: t[u/x ]

β-reduction:
1−→ relation obtained by context-closure of:

((λx .t)u)
1−→ t[u/x ]

→ reflexive and transitive closure of
1−→.
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Typed λ-terms

system F types:

T ,U ::= α | T → U | ∀α.T

simple types: without ∀

simply typed terms, in Church-style:

xT (λxT .MU)T→U ((MT→U)NT )U
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Proofs-programs correspondence (Curry-Howard)

typed term ⇒ 2nd-order intuitionistic
logic proof

type formula

MB , with proof of A1, . . . ,An ` B
free variables xi : Ai , 1 ≤ i ≤ n

β-reduction of term normalization of proof
(cut elimination)
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Some types and data types

Polymorphic identity:
λxα.x : ∀α.(α→ α)

Church unary integers:
NF = ∀α.(α→ α)→ (α→ α)
example
2 = λf α→α.λxα.(f (f x)) : NF

Church binary words:
W F = ∀α.(α→ α)→ (α→ α)→ (α→ α)
example
< 1, 1, 0 > = λsα→α

0 .λsα→α
1 .λxα.(s1 (s1 (s0 x))) : W F
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Iteration

For each inductive data type an associated iteration principle.
For instance, for N = ∀α.(α→ α)→ (α→ α), we can define an
iterator iter :

iter = λfxn. (n f x) : (A→ A)→ A→ N → A, for any A

then
(iter t u n)→ (t (t . . . (t u) . . . ) (n times)

example:
double : N → N
exp = λn.(iter double 1 n) : N → N
tower = λn.(iter exp 1 n) : N → N

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Examples of terms

concatenation
conc = λuW .λvW .λs0.λs1.λx .(u s0 s1) (v s0 s1 x)

: W →W →W

length
length = λuW .λf α→α.(u f f )α→α

: W → N
repeated concatenation
rep = λnN .λvW .[n (conc v) nil ]W

: N →W →W
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System F and termination

Theorem (Girard)

If a term is well typed in F , then it is strongly normalizable.

Thus a type derivation can be seen as a termination witness.
In particular, a term t : W →W represents a function on words
which terminates on all inputs.

Can we refine this system in order to guarantee feasible
termination, that is to say in polynomial time?
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Linear logic

Linear logic (LL) arises from the decomposition

A⇒ B ≡ !A ( B

the ! modality accounts for duplication (contraction)

! satisfies the following principles:

!A ( !A⊗ !A
A ` B

!A ` !B !A ( A
!A⊗ !B ( !(A⊗ B) !A ( !!A
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Elementary linear logic (ELL) [Girard95]

Language of formulas:

A,B := α | A ( B | !A | ∀α.A

Denote !kA for k occurrences of !.

The system is designed in such a way that the following
principles are not provable

!A ( A, !A (!!A

Defined to characterize elementary time complexity, that is to
say in time bounded by 2nk , for arbitrary k .
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Elementary linear logic rules

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)
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Forgetful map from ELL to F

Consider (.)− : ELL→ F defined by:

(!A)− = A−, (A ( B)− = A− → B−, (∀α.A)− = ∀α.A−, α− = α.

Proposition

If Γ `ELL t : A then t is typable in F with type A−.

If A− = T , say A is a decoration of T in ELL.
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Data types in ELL

Church unary integers

system F: ELL:
NF NELL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( !(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words

system F: ELL:
W F W ELL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( !(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .
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Representation of functions

a term t of type !kN (!lN, for some k, l , represents a
function over unary integers

some examples of terms

addition
add = λnmfx .(n f ) (m f x)

: N ( N ( N

multiplication
mult = λnmf .(n (m f ))

: N ( N ( N
squaring
square = λnf .(n (n f ))

: !N ( !N
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Iteration in ELL

recall the iterator iter :

iter = λf xn. (n f x) : !(A ( A) ( !A ( N ( !A

with (iter t u n)→ (t (t . . . (t u) . . . )) (n times)

examples:
double : N ( N
exp = (iter double 1) : N ( !N
remark: exp cannot be iterated; tower = (iter exp 1) non ELL
typable.
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From derivations to proof-nets
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Elementary linear logic rules, again

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)
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ELL Proof-Nets

depth of an edge: number of boxes it is contained in.
depth of proof-net: maximal depth of its edges.
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ELL proof-net : example

Church integer 3:
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ELL proof-net reduction
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Methodology

write programs with ELL typed λ-terms

evaluate them by:
compiling them into proof-nets, and then performing
proof-net reduction

beware:

proof-net reduction does not exactly match β-reduction
ELL does not satisfy subject reduction

but that’s all right for our present goal . . .
More about that in tomorrow’s talk, without proof-nets.
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ELL proof-net reduction properties

We have

Proposition (Stratification)

The depth of an edge does not change during reduction.

Consequence: the depth d of a proof-net does not increase
during reduction.

Level-by-level reduction strategy:
R proof-net of depth d
perform reduction successively at depth 0, 1 . . . , d .
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Level-by-level reduction of ELL proof-nets

let R be an ELL proof-net of depth d
|R|i = size at depth i
|R| = total size
round i : reduction at depth i
there are d + 1 rounds for the reduction of R

what happens during round i?
|R|i decreases at each step
thus there are at most |R|i steps (size bounds time)
but |R|i+1 can increase at each step, in fact it can double
hence round i can cause an exponential size increase

on the whole we have a 2
|R|
d size increase

this yields a O(2
|R|
d ) bound on the number of steps
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ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d , then it can be reduced to its

normal form in O(2
|R|
d ) steps.

Theorem (Representable functions)

The functions representable by a term of type N (!kN, where
k ≥ 0 , are exactly the elementary time functions.
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Proof of the representability theorem

⊆ (soundness):
if t : N (!kN for some k, then t represents an elementary
function f .

proof: compute (tn) by proof-net reduction.

⊇ (completeness):
if f : N→ N is an elementary function, then there exists k
and t : N (!kN such that t represents f .

proof: simulation of O(2ni )-time bounded Turing machine, for
any i .
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Taming the exponential blow-up?
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Light linear logic (LLL) [Girard95]

Language of formulas:

A,B := α | A ( B | ∀α.A | !A | §A

intuition: § a new modality for non-duplicable boxes

The following principles are still not provable

!A ( A, !A (!!A
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Light linear logic rules

rules (Id), (( i), (( e), (Cntr), (Weak): as in ELL.

new rules (! i), (! e), (§ i), (§ e):

x : B ` t : A
x :!B ` t :!A

(! i)
Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

Γ,∆ ` t : A

!Γ, §∆ ` t : §A (§ i)
Γ1 ` u : §A Γ2, x : §A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

where if Γ = x1 : B1, . . . , xk : Bk ,
†Γ = x1 : †B1, . . . , xk :: †Bk , for † =!, §.
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Forgetful map from LLL to ELL

Consider (.)e : LLL→ ELL defined by:

(§A)e =!Ae , (!A)e =!Ae

and other connectives unchanged.

Proposition

If Γ `LLL t : A then Γe `ELL t : Ae .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Data types in LLL

Church unary integers

system F: LLL:
NF NLLL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( §(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words

system F: LLL:
W F W LLL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( §(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .
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Representation of functions

a term t of type !kN ( §lN, for some k, l , represents a
function over unary integers
!kW ( §lW : function over binary words.

some examples of terms

addition
add = λnmfx .(n f ) (m f x)

: N ( N ( N

double
double = λnfx .(n f ) (n f x)

: !N ( §N
concatenation
conc : W ( W ( W
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Iteration in LLL

we can type the iterator iter :

iter = λfxn. (n f x) : !(A ( A) ( !A ( N ( §A

examples:
(add3) : N ( N can be iterated

double :!N ( §N cannot be iterated

thus some exponentially growing terms are not typable
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Level-by-level reduction of LLL proof-nets

as in ELL we use a level-by-level strategy

let R be an LLL proof-net of depth d
round i : reduction at depth i
there are d + 1 rounds for the reduction of R

what happens during round i?
|R|i decreases at each step
thus there are at most |R|i steps (size bounds time)
yet |R|i+1 can increase:
during round i we can have a quadratic increase:

|R ′|i+1 ≤ |R|2i+1

this repeats d times, so on the whole we have a |R|2d size
increase

this yields a O(|R|2d ) bound on the number of steps
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LLL complexity results

Theorem (Proof-net complexity)

If R is an LLL proof-net of depth d , then it can be reduced to its
normal form in O(|R|2d ) steps.

Thus at fixed depth d we have a polynomial bound.

Theorem (Representable functions)

The functions representable by a term of type W ( §kW , for
k ≥ 0, are exactly the functions of FP (polynomial time functions).
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Further comments about LLL

LLL and λ-calculus:
a proper type system for λ-calculus can be designed out of
LLL, which ensures a strong polynomial time bound on
β-reduction (and not only on proof-net reduction)

about expressivity:
the completeness result is an extensional one
but the intensional expressivity of LLL is quite limited

indeed: rich features (higher-order, polymorphism) but
”pessimistic” account of iteration . . .
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A glimpse of a linear logics zoo

for P

soft linear logic: [Lafont04]

a simple system, but with more constrained programming
bounded linear logic: [GSS92]

!P(~x)A : more explicit, but more flexible

for EXPTIME and k-EXPTIME

ELL again: see tomorrow’s talk

for PSPACE

STAB [GMRdR08] : extends soft linear logic with a craftly typed
conditional

for LOGSPACE

IntML [DLS10]: evaluation by computation by interaction
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Conclusions and perspectives

while ramified recursion is based on a stratification of data,
ELL / LLL are based on a stratification of programs

they yield type systems for λ-calculus

w.r.t. other ICC approaches:

handle higher-order computation
but limited intensional expressivity

relations with other ICC systems are still to explore

light logics are languages for higher-order computation, but
we only characterize first-order complexity classes . . .
what about higher-order complexity?
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