
Certifying and reasoning about

cost annotations of

functional programs

Roberto M. Amadio

Université Paris Diderot

Joint work with Yann Régis-Gianas,

in the framework of the EU Project CerCo,

2010-2013, U. Bologna, Edinburgh, and Paris.

1

Motivating question for (half of) this audience

How could ICC have an impact on programming practice?

For the other half, think of the question:

How could computable analysis have an impact on

numerical computation?

2

Requirements

1. An area where people care about resource bounds.

2. Bounds should be provided for the standard programming

environment (for the area).

3. Bounds should be concrete and certified and possibly

automated.

3

A success story: WCET for embedded programs

• Nowadays programs running on embedded processors are often

written in C and then compiled to assembly.

• Standard technology estimated WCET by testing.

• New technology (e.g. AbsInt for EADS) builds an abstract

model of the processor that predicts WCET.

• Validation is peformed by extensive testing: reject models

which fail one test or are too far from reality.

4

CerCo’s goals

• Build a certified compiler for C that given a program

produces valid (and precise) upper bounds on the cost of

executing each block (a loop free fragment of the code) on a

given architecture.

• Use the derived information on the cost of the blocks to

produce a synthetic and certified assertion on the cost of

executing the program.

5

This talk

• Recall results obtained for a C compiler.

• Discuss how these results could be lifted to a compiler for a

higher-order functional language.

6

Recap previous work on C
(FMICS 2012, with N. Ayache and Y. Régis-Gianas)

7

A compilation chain from C to binary

C → Clight → Cminor → RTLAbs (front end)

↓
8051,Mips ← LIN ← LTL ← ERTL ← RTL (back-end)

• Moderate optimisations: instruction selection, register allocation,

dead-code elimination,. . . (a bit more efficient than gcc0 for Mips).

• Architecture is quite close to and inspired by CompCert.

• Prototype compiler used in a master-level course on Compilation.

8

Main steps

• All languages are enriched with labelled instructions

generating labelled transitions.

• The erasure functions are just functions that remove all

labelling instructions.

• The compilation functions are extended to the labelled
languages.

C
C` → Binary`

↓ er ↓ er
C → Binary

C

Prove that the compiled code simulates the source code (with

labelled transitions) and that the compilation commutes with

the label erasure.

9

• A labelling of the source language is just a function L which is

the right inverse of the erasure function er ◦ L = id .

A good labelling is a labelling that guarantees that we can

associate a cost cost(`) to each label ` so that:

If C(L(P)) ⇓ `1 · · · `n then the cost of running C(P) is

cost(`1) + · · ·+ cost(`n).

C
C` → Binary`

L ↑ ↓ er ↓ er
C → Binary

C

10

• Define an instrumentation function I that replaces each

label ` with an increment cost = cost + cost(`) of a global

variable. Then we have:

If I(L(P)) ⇓ c then the cost of running P is (bounded by) c.

C

↑ I C
C` → Binary`

L ↑ ↓ er ↓ er
C → Binary

C

NB Because I(L(P)) is again a program in the source

language (C), we can use tools built for C to reason on the cost

of the program (in our case Frama-C, CEA).

11

• We developed heuristics to generate automatically

annotations on the cost of running a C function as a function

of the size of the input.

• The generated annotations are then passed to Frama− C that

tries to prove them. The process is completely automatic for

simple programs:

– C programs generated by a Lustre compiler (no loops!).

– Functions with simple loops (sorting, basic cryptographic

functions).

NB If the automatic mechanism fails, the user can still rely on

a general purpose environment to reason about the complexity

of the compiled program.

12

Cost plugin in action (1/2)

int is sorted (int *tab, int size) {
int i, res = 1;

for (i = 0 ; i < size-1 ; i++)

if (tab[i] > tab[i+1])

res = 0;

return res;

}

13

Cost plugin in action (2/2)

int cost = 0;

/*@ ensures (cost ≤ \old(cost)+(101+(0<size-1?(size-1)*195:0))); */

int is sorted (int *tab, int size) {
int i, res = 1, cost tmp0;

cost += 97; cost tmp0 = cost;

/* @ loop invariant (0 < size-1) ⇒ (i ≤ size-1);

@ loop invariant (0 ≥ size-1) ⇒ (i ≡ 0);

@ loop invariant (cost ≤ cost tmp0 + i * 195);

@ loop variant (size-1)-i; */

for (i = 0; i < size-1; i++) {
cost += 91;

if (tab[i] > tab[i+1]) { cost += 104; res = 0; }
else cost += 84; }

cost += 4; return res; }

14

Some experiments

File Type Description LOC VCs

3-way.c C Three way block cipher 144 34

a5.c C A5 stream cipher, used in GSM cellular 226 18

array sum.c S Sums the elements of an integer array 15 9

fact.c S Factorial function, imperative implementation 12 9

is sorted.c S Sorting verification of an array 8 8

LFSR.c C 32-bit linear-feedback shift register 47 3

minus.c L Two modes button 193 8

mmb.c C Modular multiplication-based block cipher 124 6

parity.lus L Parity bit of a boolean array 359 12

random.c C Random number generator 146 3

S: standard algorithm C: cryptographic function

L: C generated from a Lustre file

15

Additional work

• Partially (!) machine-checked proof with Matita (a variant

of Coq) of the whole compilation chain (Bologna+Edinburgh).

• Adapt the methodology to more advanced loop optimisations

that duplicate code and thus labels (P. Tranquilli).

• Handle programs with pointers (F. Bobot).

The whole approach relies on the hypothesis

that the WCET of a block is rather precisely predictable.

16

Looking at functional programs
Extended abstract in FOPARA 2012

Long version available in HAL and to appear in

Higher order and symbolic computation.

17

Common wisdom

A Lisp programmer knows the value of everything,

but the cost of nothing.

A. Perlis

We question this common wisdom following the approach

described for C. So far a thought experiment not targeting any

particular application scenario.

18

Overall picture

λM λ`
Ioo Ccps //

er

		

λ`cps

Cvn --

er

��

λ`cps,vnRkk
Ccc //

er

��

λ`cc,vn
Ch //

er

��

λ`h,vn

er

��
λ

L

II

Ccps //Ccps // λcps
Cvn --

λcps,vnRkk
Ccc // λcc,vn

Ch // λh,vn

The target language is essentially isomorphic to the RTLAbs

language considered in the C compiler. We’ll call it RTL λ-calculus

for short. Starting from there we rely on the back-end of the C

compiler.

NB Similar compilation chains studied by Morriset et al. 1999 (typing

preservation) and Chlipala 2010 (simulation proofs in Coq).

19

Main issues

1. What is a good labelling for programs?

2. How do we instrument programs?

3. How do we reason on the instrumentation?

4. How do we account for the cost of heap management?

(something we did not do for C).

20

Good labelling

• What is the source labelled language?

• Where do we put the labels?

Explication by example. . .

21

Source code: function composition

fun (f,g) ->

fun (x) ->

f(g(x))

CPS code

halt (fun (f,g,k) -> (* halt initial continuation *)

k(fun (x,k) ->

g(x,(fun x ->

f(x,k)))))

CPS value named code

let x_1 = fun (f,g,k) -> (* a name for each value *)

let x_2 = fun (x,k) ->

let x_3 = fun (x) -> f (x,k) (* tcall 3 *)

in g (x,x_3) (* tcall 2 *)

in k(x_2) (* tcall 1 *)

in halt(x_1) (* main *)

22

Closure conversion

let c_1 = fun (e_1,f,g,k) -> (* fun 1, fv = empty *)

let c_2 = fun (e_2,x,k) -> (* fun 2, fv = {f,g} *)

let (f,g)= e_2 in

let c_3 = fun (e_3,x) -> (* fun 3, fv = {f,k} *)

let (f,k) = e_3 in

let (c,e) = f in

c(e,x,k) in (* tcall 3 *)

let e_3 = (f,k) in

let x_3 = (c_3,e_3) in

let (c,e)= g in

c(e,x,x_3) in (* tcall 2 *)

let e_2 = (f,g) in

let x_2 = (c_2,e_2) in

let (c,e)= k in

c(e,x_2) in (* tcall 1 *)

let e_1 = () in (* main *)

let x_1 = (c_1,e_1) in

halt(x_1)

23

Hoisted code (RTL level)

let c_3 = fun (e_3,x) -> (* fun 3 *)

let (f,k) = e_3 in

let (c,e) = f in

c(e,x,k) in

let c_2 = fun (e_2,x,k) -> (* fun 2 *)

let (f,g) = e_2 in

let e_3 = (f,k) in

let x_3 = (c_3,e_3) in

let (c,e) = g in

c(e,x,x_3)

let c_1 = fun (e_1,f,g,k) -> (* fun 1 *)

let e_2 = (f,g) in

let x_2 = (c_2,e_2) in

let (c,e) = k in

c(e,x_2) in

let e_1 = () in (* main *)

let x_1 = (c_1,e_1) in

halt(x_1)

24

Labelled hoisted code (RTL level)

let c_3 = fun (e_3,x) -> LAB3> (* fun 3 *)

let (f,k) = e_3 in

let (c,e) = f in

c(e,x,k) in

let c_2 = fun (e_2,x,k) -> LAB2> (* fun 2 *)

let (f,g) = e_2 in

let e_3 = (f,k) in

let x_3 = (c_3,e_3) in

let (c,e) = g in

c(e,x,x_3)

let c_1 = fun (e_1,f,g,k) -> LAB1> (* fun 1 *)

let e_2 = (f,g) in

let x_2 = (c_2,e_2) in

let (c,e) = k in

c(e,x_2) in

LAB0 > let e_1 = () in (* main *)

let x_1 = (c_1,e_1) in

halt(x_1)

25

Back to labelled CPS

LAB0> halt (fun (f,g,k) -> LAB1>

k(fun (x,k) -> LAB2>

g(x,(fun x -> LAB3>

f(x,k)))))

And to labelled source

LAB0>fun (f,g) -> LAB1>

fun (x) -> LAB2>

f(g(x)> LAB3) (* post-labelling *)

26

The good initial labelling

The source language has two labelling instructions:

• ` > M : emits ` before reducing M (pre-labelling)

• M > `: reduces M to a value and then emits `

(post-labelling).

The good initial labelling associates a distinct:

• pre-labelling to every function abstraction.

• post-labelling to every application which is not immediately

sourrounded by an abstraction.

The ‘post-labelling’ takes care of the functions created by the

CPS translation while ensuring the commutation property

(which would fail if we considered M > ` as syntactic sugar for

(λx.` > x)M).

27

Instrumentation

In C we add a ‘cost variable’, but we would rather stay in the

functional world. We rely on a simple monadic

transformation (Gurr).

ψ(x) = x

ψ(λx.M) = λx.I(M)

I(V) = (0, ψ(V))

I(@(M,N)) = let (m0, x0) = I(M), (m1, x1) = I(N), (m2, x2) = @(x0, x1) in

(m0 ⊕m1 ⊕m2, xn+1)

I(` > M) = let (m,x) = I(M) in (m` ⊕m,x)

I(M > `) = let (m,x) = I(M) in (m⊕m`, x)

If π1(I(L(M))) ⇓ m then m is the cost of running M .

28

Reasoning on the instrumentation

We rely on a higher-order Hoare logic (Régis-Gianas & Pottier 2008).

1. Annotate the functional program with logic assertions.

2. Compute a set of proof obligations implying the validity of

these assertions.

3. Prove these proof obligations.

29

Reasoning, in practice

The monadic interpretation of the functional program is not

human-friendly.

• Logic assertions are written directly on source code as if the

program was in monadic form.

• An implicit variable cost is automatically added to the logical

environment.

• The monadic transformation is applied just before the

Verification Condition Generator.

30

The cost of a higher-order function

type list = Nil | Cons (nat, list) type bool = BTrue | BFalse

logic {

Definition bound (p : nat --> (nat * bool)) (k : nat) : Prop :=

forall x m: nat, forall r: bool, post p x (m, r) => m <= k.

Definition k0 := costof_lm + costof_lnil.

Definition k1 := costof_lm + costof_lp + costof_lc + costof_lf + costof_lr.

}

let rec pexists (p : nat -> bool, l: list) { forall x, pre p x } : bool {

((result = BTrue) <=> (exists x c: nat, mem x l /\ post p x (c, BTrue))) /\

(forall k: nat, bound p k /\

(result = BFalse) => cost <= k0 + (k + k1) * length (l))

} = _lm> match l with

| Nil -> _lnil> BFalse

| Cons (x, xs) -> _lc> match p (x) > _lp with

| BTrue -> BTrue

| BFalse -> _lf> (pexists (p, xs) > _lr)

Of 53 proof obligations, 46 are discharged automatically and 7 proved in Coq.

31

Account for the cost of heap management

Non-solution ‘Real-time’ GC (see Bacon et al. 2003).

How do you go from an experimental and amortized

O(1) cost to a proved and useful O(1) WCET

cost?

Chosen approach Type and effect system to guarantee safe

deallocation in constant time.

A very important property of our implementation scheme is

that programs are executed ‘as they are written’, with no

additional costs of unbounded size (...). The memory

management directives which are inserted are each constant

time operations.

Tofte and Talpin 1997.

This amounts to add one more step to a typed compilation

chain.

32

Typing of the compilation chain

• Typing of CPS is preserved by a standard double negation

translation.

• Typing of the closure conversion relies on the introduction of

existential types to hide the details of the environment

representation (Hannah, Minamide et al. 95-96).

• Value naming and hosting transformations do not affect

the typing.

A λ-term typed with simple types compiles to a

RTL λ-term typed with simple and existential types.

33

A region enriched RTL λ-calculus

Additional operations:

• Allocate a region.

• Allocate a value to a region.

• Dispose a region (with all the values allocated there).

• Region abstraction and application.

These operations correspond to simple sequences of instructions

which are inserted by the compiler. The labelling technology takes

their cost into account automatically.

34

A type and effect system

In the region enriched RTL λ-calculus types depend on regions

(and effects).

RTL types Regions enriched RTL types

1 1

A→ R ∀r1, . . . , rn.A
e→ R

A×B (A×B)at(r)

∃t.A (∃t.A)at(r)

The type and effect system guarantees that when disposing a

region r: (i) no value allocated in r is accessed and (ii) no further

disposal of the region r occurs in the rest of the computation.

35

Compilation as type inference

• The last compilation step amounts to infer region

allocations and deallocations which are legal according to

the type and effect system.

• A trivial solution is always possible.

• We rely on previous work (Aiken et al. in particular, PDLI

2005), for effective methods based on constraint solving to find

more interesting solution.

36

Summary for the functional case

Good labelling Done.

Instrumentation Done.

Reasoning Requires (more) user interaction.

Cost of heap management Region-based so far.

37

Tentative conclusion

• The approach developed for C can be lifted to a ML-like

language.

• It remains to be seen whether there is any real interest in

bounding the resources of an ML-like language (our

requirement 1). So far this is a thought experiment.

• Going on with the thought experiment, there should be a

connection with ICC (seen as a provider of synthetic

bounds for (higher-order) functional programs).

• Notice that the integration of ICC insights rises non-trivial

problems. Bounds should be:

– tight and concrete.

– robust enough to be propagated down the compilation

chain and be machine checked.

38

