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Today's talk 

 LB3D: A Fast Indexing Algorithm for Protein 3-D 
Structure Searching 
 𝑂(𝑛 log 𝑛) preprocessing 

 𝑂(𝑛) space for indexing  

 Just a sorted array (like the suffix array) 

 Practically very fast query 
 Average-case 𝑂(𝑚 + 𝑛

𝑚� )-time query 

 analyzed based on the FJC model 

 Practically faster than previous searching algorithms even if we include 
the preprocessing time 

 though theoretically worse than the best-known 𝑂 𝑚 + 𝑛
𝑚1−𝜀⁄ −time 

searching bound   [Shibuya 2010] 

Genki Terashi, Tetsuo Shibuya, and Mayuko Takeda-Shitaka (2012) “LB3D: A Protein Three-Dimensional Substructure 
Search Program Based on the Lower Bound of a Root Mean Square Deviation Value,” J. Comput. Biol., 19(5). 

𝑛: database size (#bases)  
𝑚: query size (#bases) 



Protein Structure 
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 A protein 
 A chain molecule consisting of 

20 kinds of amino acids 

 Folded into some structure 

 Primitive 3-D structure 
Representation 
 A sequence of 3-D coordinates 

of the Cα atoms (or the 
backbone atoms)  



Motivation 

 Structurally similar proteins 

 Tend to have similar functions even if not similar at the 
residue level 

 Important for functional analysis 

 PDB (Protein Data Bank) 

 94,000~ entries (Sep 24, 2013) 
 Increasing rapidly (by 20% per year) 

          → Faster searching algorithms desired! 

A B C 

Query: Protein structure Protein Structure Database 

It's similar! 



How to Compare Two Structures? 

 RMSD: Root Mean Square Deviation  
 The most widely-used similarity measure for protein 

structures 

 Computable in O(n) time using SVD  [Kabsch '76][Umeyama '91] 

 n: chain length 

 Correspondence of atoms is given 
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The Most Fundamental Problem 

 Database 

 Protein 3-D structures in a database 

 Query 

 A (sub)structure 

 Output 

 All the similar substructures in the database 

 i.e., RMSD ≤ some given bound c 
 No insertions/deletions 

A B C 

It's similar! 
(i.e. RMSD≤c) 

Search! 
Protein Structure Database 

Query 

a protein (sub)structure 



History of the problem 

 Naive O(nm) algorithm 
 Compute RMSDs for all the 𝑛 − 𝑚 + 1 substructures of length m in the database 

 Theoretical worst-case O(n log m) algorithm [Schwartz et al. '87] 

 Utilized the FFT-based convolution technique 

 Practically not so faster than the naive algorithm 

 Average-case O(n) algorithm  [Shibuya RECOMB 2009] 

 Worst-case: O(nm) 
 Practically 5-100 times faster than the above algorithms 

 Average-case 𝑂 𝑚 + 𝑛
𝑚1−𝜀⁄  algorithm [Shibuya 2010] 

 Average-case complexity analyzed based on the FJC model 

 Worst-case: O(nm) 
 Not a practical algorithm, though 

𝑛: database size (#bases)  
𝑚: query size (#bases) 



Previous Indexing Algorithms 

 PSIST [Gao, Zaki 2005] 

 Utilizing the suffix tree, but cannot deal with the RMSD 

 Geometric suffix tree [Shibuya, J.ACM 2010] 

 An extension of the suffix tree that supports the 3-D protein structure 
searching based on the RMSD 

 Too large construction time: O(n2) 

 Some theoretical insights [Shibuya 2009] 

 Average-case 𝑂(𝑚 + 𝑛
𝑚� )-time query after O(n log n) preprocessing 

 Not a practical algorithm, though 

 Theoretically worse than the later 𝑂 𝑚 + 𝑛
𝑚1−𝜀⁄  algorithm [Shibuya 2010] 

Today's talk 
the same 

bound 

A practical algorithm that supports average-case 𝑂(𝑚 + 𝑛
𝑚� )-time 

query after O(n log n) preprocessing 



Shibuya's O(n) Algorithm 

 Filtering-based expected linear time algorithm 
 Compute lower bounds of the RMSDs (instead of hash values) 

 Compute the actual RMSD for only the substructures with small enough 
lower bounds 

Pattern Structure P  

A Structure T in the Database 

[A lowerbound of RMSD(T[0..|P|-1], P)] 
[A lowerbound of RMSD(T[0..|P|-1], P)]  ≤ c 

[A lowerbound of RMSD(T[0..|P|-1], P)] 

Comput-
able in 

O(1) 
time 

for each 

Compute the RMSD only when the lower bound is ≤ c 

Candidate! 

[Shibuya, RECOMB 2009] 

c.f. Karp-Rabin algorithm for ordinary strings 



Keys to the O(n) 

 Lower bound computation 
 should be done in linear time (in total) 

 Expected number of candidates after filtration 
 should be less than O(n/m) 

 as checking requires O(m) time 

 Model: FJC Model 

c.f. Karp-Rabin (1981) 

hash(x[0..n-1]) = (x[0]dn-1 +  x[1]dn-2 +  x[2]dn-3 + … +  x[n-1]) mod q 

Pattern P → hash(P) 

A text of alphabetical characters 

hash(T[0..|P|-1])  
hash(T[1..|P|]) = hash(P) 

hash(T[2..|P|+1])  

Compu
t-able 

in O(1) 
time 

for 
each 

(q: some large prime number) 

Candidate! 

 Text: A random string 

 Hash values is 
computable in linear 
time in total 

 Checking requires only 
O(1) time 



Model of 'Random' Chain-Molecule Structures 

 Freely-jointed chain (FJC) model 
 The most basic model of chain molecules in molecular 

physics 
 Also called the 'Ideal chain model' or the 'Random-walk model'.  

 It explains behaviors of chain molecules very well, though it ignores 
many physical/chemical limitations 

 Collisions, edge angle limitation, existence of alpha helix/beta 
sheet, etc. 

Random walk 



D1: A Lower Bound of the RMSD 

 D1(P,Q) 

 |H(P) - H(Q  )| /2 
 where H(P) = |G(P[1..m/2]) - G(P[m/2+1..m])|    (m: even number) 
 G(S)  is the centroid (center of mass) of structure S 
 Consider n as an even number (to simplify the discussion) 

 It is always smaller than or equal to RMSD(P, Q) 

1/2 of the difference of  
these two distances (= D1) 



D1 can be Computed in Linear Time! 

 The centroid of each substructure can be 
computed in O(1) time! 
 O(n) in total  (n: text length) 

v w 

3-D Coordinates 

Centroid G1 

Centroid G2 

/)(12 vwGG −+=
: substructure length 







Dk : Extension of D1  

 D2(P,Q) = [{(D1(P1,Q1)2+D1(P2,Q2)2)}/2]1/2 
 P1, P2 : The first/second half of P 

 Q1, Q2 :The first/second half of Q 

  is also a lower bound of RMSD(P, Q)  

 Easily extendable to Dk (k>2) 
 by dividing each structure into 2k parts → Dk 

D1(P1,Q1) D1(P2,Q2) 

P1 
Q1 P2 

Q2 

D2 

|P|, |Q| is assumed to be multiples of 4  
(to simplify the discussion) 

Computable in O(n) time in total 
(k=const) 



The Complexity of the Dk-Based Algorithm 

 Lower bound computation 
 O(n) 

 Expected number of candidates 
 O(n/mk/2) 

 under the FJC model 

 Total expected time complexity 
 O(n)  for any constant  𝑘 ≥ 2 

 𝑂(𝑛 𝑚) in case 𝑘 = 1 



Experimental Results 
 Target database： The whole PDB (September 5th, 2008) 

 52,821 entries / 244,719 chains / 38,267,694 a.a. 

 Query 

 100 random substructures of each specified length, taken from PDB 

 Threshold: 1Å 

 Computation Time (sec) 

 Average computation time of 100 random queries 

 on 1 CPU of 1200MHz UltraSPARC III on SunFire 15K 

Query Length 40 80 120 160 200 

#Substructures 33,722,208 21,692,707 16,134,096 12,362,509 9,559,056 

#Hits 38.1 32.9 27.3 16.0 23.2 

D1 98.9 92.4 75.6 59.4 60.0 

D2 58.9 36.4 32.8 27.3 25.7 

D3 74.5 25.5 17.3 14.2 12.9 

Naive 447.0 442.0 415.2 378.9 342.5 

FFT 531.9 463.1 399.8 330.6 293.0 
(sec) 

[Shibuya 2009] 



Keys to Faster Query 

 Sort structures to enable binary search! 
 Like the suffix arrays for strings 

 Use better lower bounds to reduce the 
number of candidates 
 Still should be computable in linear time, though 

[Terashi, Shibuya, Takeda-Shitaka 2012] 



Sorting Structures 

 D1-based candidates can be 

searched with binary search! 
 on a sorted array of centroid-

centroid distances H(T[i..i+m-1]) 

D1 = |H(P) - H(Q) | / 2 

P 

Q 

H(Q) 

H(P) 

Text Structure 

Query Pattern Structure 



Lower Bound Variations 

 If you divide each (sub)structures into 6 parts, 
there are many ways to compute lower 
bounds 

𝑙15 𝑙𝑙15 

𝑙23 

𝑙46 𝑙𝑙23 

𝑙𝑙46 

LB(1,5)(2,3)(4,6) = { 𝑙15 − 𝑙𝑙15 2 + 𝑙23 − 𝑙𝑙23 2 + 𝑙46 − 𝑙𝑙46 2}/3 

Various possible combinations, here! 

An example of a lower bound 



Better Lower bounds 

 We can use the maximum value among all 
the 15 different lower bounds! 
 Computable in linear time (very fast!) 

 D3 is just one of these 15 lower bounds 

Nearly 
tight! 



LB3D Algorithm 

 Preprocessing (= Indexing) 
 Just sort all the substructures by the l16 value 

 O(n log n) time 

 Query 
 Find candidates whose LB(1,6) < c 

 Binary search using the above index 

 #remaining candidates: 𝑂( 𝑛
𝑚

) 

 Compute all the 15 (=constant) lower bounds for the candidates 

 𝑂(𝑚 + 𝑛
𝑚

) time 

 If all the lower bounds are smaller than the threshold, check the RMSD 
value 

 #remaining candidates: 𝑂( 𝑛
𝑚1.5) → 𝑂(𝑚 + 𝑛

𝑚
) time in total 



Results 

 Target database： The whole SCOP 1.75 database 

 110,799 entries / 20,429,263 a.a. 

 Query 

 100 random substructures of each specified length, taken from PDB 

 Threshold: 1Å 

 Computation Time (sec) 

 Average computation time of 100 random queries 

 Including the preprocessing time (negligible, in fact) 

 on Intel Xeon E5506 CPU at 2.13 GHz / 12GByte Memory 

Query Length 40 80 120 160 200 

#Substructures 16,139,532 12,009,140 8,606,303 6,179,494 4,433040 

#Hits 62.6 44.2 37.6 33.6 29.0 

D3 4.755 1.168 0.620 0.564 0.460 

LB3D 0.114 0.058 0.040 0.029 0.020 

 2-50 time faster than the D3-based algorithm 

 20-1,000 times faster than the naive algorithm 

[Terashi, Shibuya, Takeda-Shitaka, 2012] 



Summary 

 Linear-time protein 3-D structure searching 
algorithm  
 5-100 times faster than the naive algorithm 

 which has been the only choice for long years 

 LB3D: Practically even faster 3-D structure 
searching algorithm 
 2-50 times faster than the above linear-time algorithm 

 20-1,000 times faster than the naïve algorithm 
 Including the index construction time 

[Shibuya 2009] 

[Terashi, Shibuya, Takeda-Shitaka 2012] 



Future Work 

 Improvement 
 Better lower bounds 

 Practical algorithm with better theoretical bounds 

 Worst-case linear-time algorithm 

 Incorporating indels 
 A theoretical linear-time algorithm exists [Shibuya, Jansson, Sadakane 2010] 

 Application to other data 
 Motion data, audio data, music data, stock data, etc. 



Thank you! 


	A Fast Indexing Method for Protein 3-D Structure Searching
	Today's talk
	Protein Structure
	Motivation
	How to Compare Two Structures?
	The Most Fundamental Problem
	History of the problem
	Previous Indexing Algorithms
	Shibuya's O(n) Algorithm
	Keys to the O(n)
	Model of 'Random' Chain-Molecule Structures
	D1: A Lower Bound of the RMSD
	D1 can be Computed in Linear Time!
	Dk : Extension of D1 
	The Complexity of the Dk-Based Algorithm
	Experimental Results
	Keys to Faster Query
	Sorting Structures
	Lower Bound Variations
	Better Lower bounds
	LB3D Algorithm
	Results
	Summary
	Future Work
	Thank you!

