
Scalable Indexing of Highly Repetitive Data

Hector Ferrada

Travis Gagie

Tommi Hirvola

Simon J. Puglisi : University of Helsinki

• Indexing/searching highly repetitive data
– Problem, Motivation, What's been done

• “Solution”: Hybrid Indexing

• Some (preliminary) Experimental Results

• Future Directions

Outline

• Genomic Collections: 100's or 1000's of genomes of
individuals of the same species

• Multi-author Collections: Wikipedia archives; Source code
repositories

• Web crawls: copied/quoted/reused text and images;
boilerplate

• Archives: Backup facilities; Personal online storage (like Google
Drive)

Indexing Highly Repetitive Data

There are many indexes* for approximate pattern matching
(read alignment) in 1 genome, but they don't scale well to
1000s of genomes

*BFAST, Bowtie, BWA, CUSHAW, GASSST, MAQ, Novoalign, SeqAlto,
SeqMap, SHRiMP, Slider, Snap, SOAP, Stampy, Taipan, Velvet, etc.

Highly Repetitive Genomic Data

Find a way to scale current read aligners to multiple genomes
that is independent of the aligner itself.

Choose an aligner (your favorite aligner); we provide an
algorithmic tool to make it work for multiple genomes.

Aim (of this work)

We will cap – at index construction time –
– Maximum pattern (read) length M, and
– Maximum number of alignment errors, K

For many biological applications patterns are “small”: 10s to
100s of characters

One restriction...

Our index is based on two main algorithmic tools...
– LZ77 parsing (or factorization)

• Widely used in data compression (gzip and 7zip)
• We use it for compression AND pattern matching

– 2-dimensional, 2-sided range reporting
• A notion from computational geometry

Two Algorithmic Tools

The Hybrid Index...

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

Input

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

1 2 3 …... 1000

1. Concatenate genomes into one long string

Input

Indexing

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

1 2 3 …... 1000

1 2 3 …... 1000

1. Concatenate genomes into one long string

2. Compute LZ77 parsing

Input

Indexing

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

1 2 3 …... 1000

1 2 3 …... 1000

1 2 3 …... 1000

1. Concatenate genomes into one long string

2. Compute LZ77 parsing

3. Patches of length M+K around each LZ77 phrase

Input

Indexing

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

1 2 3 …... 1000

1 2 3 …... 1000

1 2 3 …... 1000

1. Concatenate genomes into one long string

2. Compute LZ77 parsing

3. Patches of length M+K around each LZ77 phrase

Input

Indexing

4. Build a regular index on this filtered input

1
2

1000

…...
1000

genomes

M : upper bound on read length; e.g. M = 100
K : maximum # of alignment errors; e.g. K = 3

1 2 3 …... 1000

1 2 3 …... 1000

1 2 3 …... 1000

1. Concatenate genomes into one long string

2. Compute LZ77 parsing

3. Patches of length M+K around each LZ77 phrase

Input

Indexing

5. Phrase source boundaries in a 2D
2-sided range reporting data structure4. Build a regular index on this filtered input

Lempel-Ziv Parsing...

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

Lempel and Ziv (1977)

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b a a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Source = (1,1)

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b a a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b a a b a b

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Source = (2,3)

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b a a b a b

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$

Lempel and Ziv (1977)

1 2 3 4 5 6 7 8 9 10 11

a b a a b a b a a b a

a b a a b a b a a b a

The Lempel-Ziv factorization (or parsing) breaks a string X of n
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred

at any position p
i
 < i in X

$$

$

Source = (3,6)

If our collection is highly repetitive
– LZ77 phrases will be long and so,
– z, the overall number of phrases, will be small

In every genome after the first, phrases will be very long, and
broken only by differences between individuals (usually SNPs)

LZ77 is automatically (and fairly efficiently) learning the
structure of the database

Compression

Pattern Matching...

We seek ALL the occurrences of a pattern R in a collection X

LZ77 allows us to talk about two different types of pattern occurrence
– Occurrences crossing a phrase boundary (PRIMARY)
– Occurrences wholly contained in a phrase (SECONDARY)

Strategy: find all the PRIMARY occurrences and use them and the
structure of the LZ77 parse to find the SECONDARYs

Pattern Matching (read alignment)

Primary occurrences cross a phrase boundary...

Finding Primary Occurrences

Primary occurrences cross a phrase boundary...

Our restriction on pattern length |R| < M affords us the following strategy:
– For each phrase boundary i take the patch of M+K symbols to the right and

left of it in X, i.e. X[i-M-K..i+M+K]
– Concatenate these patches to form a filtered string
– Index the filtered string with a regular read aligner

Finding Primary Occurrences

Primary occurrences cross a phrase boundary...

Our restriction on pattern length |R| < M affords us the following strategy:
– For each phrase boundary i take the patch of M+K symbols to the right and

left of it in X, i.e. X[i-M-K..i+M+K]
– Concatenate these patches to form a filtered string
– Index the filtered string with a regular read aligner

Finding Primary Occurrences

1 2 3 …... 1000

1 2 3 …... 1000

LZ77

Patches of length M+K
around each LZ77 phrase

Build a regular index
on this filtered input

Secondary Occurrences...

Phrase Sources

The source for an LZ phrase is a previous occurrence
of it's longest repeating prefix

1 2 3 4 5 6 7 8 9 10 11 12 13

a b a a b a b a a b a a b

(1,1) (2,3) (3,6) (2,2)

Intuition: we will use the phrase source structure to map primary
occurrences forward, and so locate secondary occurrences

Phrase Sources on a Grid

(1,1) (2,3) (2,2)(3,6)

Secondary Occurrences

Start with a primary occurrence of ba

(primary because it crosses a phrase boundary)

Secondary Occurrences

Are there any phrase sources covering this
primary occurrence?

Secondary Occurrences

We have a secondary occurrence of ba

(with each point on the grid we stored the starting
position of the corresponding phrase – 5 in this case)

Secondary Occurrences

Are there phrase sources covering this
secondary occurrence?

Secondary Occurrences

We have another secondary occurrence of ba

Secondary Occurrences

Are there phrase sources covering this
secondary occurrence?

Secondary Occurrences

Repeat for each primary occurrence of ba

Secondary Occurrences

Reporting secondary occurrences this way is fast
– O(loglogz) time per point in theory (predecessor + RMQ)
– Very fast in practice

Also space-efficient
– The grid stores z points, so we need only O(z) space
– 3z integers in practice: source start, source end, phrase start

2D, 2-sided Range Reporting

Reporting secondary occurrences this way is fast
– O(loglogz) time per point in theory (predecessor + RMQ)
– Very fast in practice

Also space-efficient
– The grid stores z points, so we need only O(z) space
– 3z integers in practice: source start, source end, phrase start

The structure assumes NOTHING about how we found the primaries
– We are free to use any method

2D, 2-sided Range Reporting

Performance...

Experimental Setup

Disclaimer: these results are proof-of-concept only

Collection: 37 individual genomes of Saccharomyces cerevisiae, totalling
440MB, from the Saccharomyces Genome Resequencing Project

Indexes:
– FM: a very fast FM-index by Gog and Petri (2013)
– Hybrid: FM used on filtered text, M+K = 100

Patterns: 3000 non-unary random patterns extracted from the collections,
of lengths 10, 20, 40, 80

Query times

Index Size vs. Collection Size

Filtered Text Size vs. (M+K)

M+K = 26

M+K = 55

M+K = 110

M+K = 220

Unfiltered

0 50 100 150 200 250 300 350 400 450 500

Unfiltered

M+K = 220

M+K = 110

M+K = 55

M+K = 26

Future directions...

1) Removing the restriction on M+K

Restricting M+K is right at the heart of our approach

To support longer patterns: break the pattern into multiple
pieces of length M then fuse the results of each small pattern

2) Alternatives to LZ77 parsing

LZ77 is very general – assumes nothing about collection
structure. This has advantages.

If we remove the blindfold, we can exploit collection structure
in (at least) two ways...

RLZ: only allow sources to be in the first genome
– Construction (parsing) is easier, index probably bigger

Alignment-based parsing: multiple alignment informs parsing
– Smaller index, much slower to construct

3) Parsing/Construction Bottleneck

Computing LZ77 for really large inputs has been a long-
standing open problem...
– ...and is the main reason experiments above were with only 440MB

Some breakthroughs here recently
– Joint work with Juha Karkkainen and Dominik Kempa
– (to be submitted to ALENEX next week)

32Gb input
(40 human genomes)
4Gb memory
<5 hours

4) Construction – external memory LZ parsing

genomes

Conclusion

• Hybrid indexing is a generic way to scale read aligners (or any
other pattern matching index)

• Only restriction is an upperbound on the pattern length, M
and the number of errors/edits allowed, K

• Code + preprint available:
– puglisi@cs.helsinki.fi

Fin

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

