
Venkatesh Raman

IMSc, Chennai, India

(Joint work with Timothy Chan and Ian 
Munro, University of Waterloo)

Shonan Meeting, September 28, 2013

Improved Selection Algorithms
for

Integers
in

Read-only Memory 
and

Restore Models



Problem

• The Classical Selection Problem:  Given a list of n    
elements (from a totally ordered set), find their median 
or the k-th smallest element.

• Can be solved in < 3n comparisons even using O(1) 
storage cells. 

• Find the median without changing the input permutation

• Motivation: Another program may need the original 
permutation.



Outline

• Read-only Memory

--- Early work

--- New for integers

• Restore Model selection

--- for integers

• Model 

-- The usual RAM model

-- Space is the number of extra variables/cells



One (initial) approach

• Assume that the input is in Read-Only Memory





The Munro-Paterson Paper [FOCS’78]

• P-pass streaming alg'm for exact median (or 
selection) with O(n1/P log2 n) words of space

• lower bound of Ω(n1/P)  (in comparison model)



Comparisons Bound

s > log^2 n

•Munro-Paterson (1978)

O(n log (n/s) + n logs n )

•Frederickson (1986) 

O(n log*(n/s) + n logs n)

•Elmasry, Juhl, Katajainen, Satti (2013)

O(n log*((n/log n)/s) + n logs n) time

(For example, when s = n/log n, O(n) time)



Comparisons Bound (for small s)

• Munro, R. (1992)

O(2^s n^{1+1/s})

O(n log log n) randomized algorithm with O(1) space

• R., Ramnath (1998)

O(s n^{1+1/s} log n)

For s=O(1) , time is O(n1+Є)

For s = O(log n), time is O(n log2 n)

Recall

For s= O(n/log n), time is O(n)



Chan, SODA 2009

• Frederickson's bd is tight in streaming model

• Ω(n log*(n/s) + n logs n) time for det. multi-pass 
streaming alg'm in comparison model

• Ω(n log logs n) expected time for RAM in 
comparison model

• Gave a matching upper bound in the randomized 
setting (improving on Munro-R 92)



What if input elements are integers
from a bounded universe of size U?

Chan, Munro, R. (to appear in ISAAC 2013)

Two (deterministic) algorithms:

1.  O(n logs U) time,

2. O(n log n logs log U) time

using O(s) space

Combined to obtain  O(n log1+εn) time  using O(1)  

space (of  O(log U) bits each)



O(n logs U) algorithm for integers
using O(s) space

For i=1 to log U do

By doing a simple count, 

find the ith bit of the answer.

O(n log U) using O(1) space, can be generalized to

O(n logs U) using O(s) space by finding log s bits of the 
answer in each iteration.



O(n log log U) time to find approximate 
median

• Find the largest prefix p  that has > n/2 elements

(majority) in the input

• Let x, y, z be such that

p0x is the smallest element with prefix p0

p1y is the smallest element with prefix p1

p1z is the largest element with prefix p1

• p0x, p1y or p1z has rank in [n/4, 3n/4] and hence an 
approximate median



Finding the prefix

• Do a binary search on the prefix length estimates

• O(log log U) iterations

• Each iteration involves checking for a `majority’ element 
among the elements in the prefix length estimate.

2-pass O(n) algorithm due to Boyer-Moore

To sum up, O(n log log U) time to find an approximate 
median.

Can be generalized to O(n logs log U) time (requires finding 
majority of s prefixes in O(n) time – uses dynamic 
counting tricks of Dietz)



Finding the median

• Once an approximate median is found, in O(log n) passes 
the median can be found

-- using `filters’ to capture the active elements

(from Munro-Paterson, …)

• Thus O(n log n logs log U) time to find median using O(s) 
space or O(s log n + log U) bits.

• Choosing s = log U /log n, and using the min of 

O(n log sU) and O(n log n log slog U), we get

• O(n log1+Єn) using O(1) words of O(log U) bits of space.



New approach (Restore model)

• Elements can be moved around, but after the output, the 
input needs to be `restored’ to original input.

• Relaxed than Read-only memory

• New model of computation between in-place and read-
only memory

• Chan, Munro, R (SODA 2014),

if the inputs are integers, 

can find the median in O(n) time using O(log n) space in 

restore model.



O(n) selection using O(log n) space in 
restore model

I  O(n log U) time using O(log U) words of O(log n) bits of 
space

1.Do a quick-sort type partitioning around U/2, except don’t 
move the leading bits.

2.Recurse on the appropriate part (including restore).

3. `Reverse’ step 1 to restore the input

(Note: can also sort in O(n log U) time using O(log U) words 
of O(log n) bits of space)



Reducing the time to O(n)

• Run the previous algorithm as long as each part has at 
most cn elements (for some constant c).

• When one of the two parts > cn elements, the other one 
has at most dn = (1-c)n elements. So at that level, at 

most  dn ONEs in the leading bits, so the leading bits 

can be  

a) extracted to leading part of the array, and

b) compressed to log (n choose dn) for some d < 1

releasing O(n) bits that can be used to 

complete the selection using read-only memory alg’m.



Applying these ideas to sorting

• By applying read-only memory sorting algorithm for the 
tail, can obtain

O(n log n) time with O(log n) space

• By doing s-ary partitioning, can be improved to

O(RAM sort) time with O(nЄ) space where RAM sort is 

the time to sort n integers in standard RAM.



Conclusions

• Selection from integers can be done much faster than 
general input in read-only memory

(O(n log 1+Є n) time with O(1) space against O(n1+ε) time)

• Selection can be done almost as well as in general RAM in 

Restore model for integers

(O(n) time with O(log n) space)

• Sorting can be done almost as well as in general RAM in

Restore model for integers  (but is as bad as in ROM if   

we remove integer  assumption)



Open Problems

• Ω(n log logs n) rand. lower bd for general non-
comparison RAM model ??

• Ω(n log*(n/s)) or Ω(n logs n) or Ω(n1+1/s) det. 
lower bd for comparison RAM ROM model ??

• Other problems in Restore model.



Thank You


