
Similarity based Approach for Similarity based Approach for Similarity based Approach for Similarity based Approach for

Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data

Similarity based Approach for Similarity based Approach for Similarity based Approach for Similarity based Approach for Similarity based Approach for Similarity based Approach for Similarity based Approach for Similarity based Approach for

Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data Compression of Noisy Data

Sep 2013

Takeaki UnoTakeaki Uno (National Institute of Informatics)

•• Recent bigdata era has given huge noisy data to us

•• For these data, standard compression techniques do not work well

�������� same strings will be “different”, by noise

•• Frequency and repetition are small

�������� Huffman coding, run length coding are not efficient

•• However, “similarity” exists

Compression of Noisy DataCompression of Noisy DataCompression of Noisy Data

abcdef abcDef abCdef Abcdef AbcDef …

•• Huffman coding represent each word by “ID”, whose length

depends on its frequency

•• In similarity, each “word/segment” is represented by “address” +

“difference”

++ “address” is the position of the reference string

++ ”difference” is the difference between the word/segment and the

reference word/segment

••We can use a large database, or dictionary, as a reference set

Using SimilarityUsing SimilarityUsing Similarity

•• Similarity is on the middle of Huffman/Run length type and context

free grammar type

++ Huffman/run length simply use “frequency” of words

++ context free grammar use the “global structure” of the data

++ similarity is a local structure, related to the approximate

frequency of the words

•• Similarity makes huffman/run length/context grammar more

efficient in noisy data

Position of SimilarityPosition of SimilarityPosition of Similarity

•• Since human and mouse have redundant structures, the compression

ratio is high, but is up to 90%, roughly

•• Bacteria and dicty may have large word bias

Performance on Genome SequencePerformance on Genome SequencePerformance on Genome Sequence

human

chr. 22

human

chr. X

mouse

chr. 19

bacteria dicty dros

size 8764657 33793259 14535557 14241057 5278628 6976263

zip deflate 9 100.4% 102.2% 102.8% 104.2% 93.3% 106.1%

lzma 9 88.9% 86.7% 91.1% 94.3% 82.7% 101.2%

bicompress2 89.5% 95.6% 91.8% 97.5% 86.7% 97.9%

FuzzyLZ 90.2% 102.9% 93.4% 106.5% 90.9% 106.4%

Develop a compression method by similarityDevelop a compression method by similarity

•• In genome sequences, there are few same substrings, but are many

similar substrings

�������� Refer similar string and store the difference

•• Use Hamming distance as similarity

�������� Edit distance is too much heavy (the representation of difference

would be large)

•• Use Multi-sorting algorithm for finding pairs of fixed-length similar

substrings

Idea: Use SimilarityIdea: Use SimilarityIdea: Use Similarity

①①①①①①①① Find similar substrings (with Hamming distance at most 3)

of length 20, from genome sequence (called seedsseeds)

②②②②②②②② Extend the similarity by blocks of length 10, in both direction,

until encountering a block with Hamming distance more than 2

③③③③③③③③ Select the similar substring to be refered, and how many

preceding/following block we use, for each position

(by dynamic programming)

••①①①①①①①① can be done in short time if the string is not so much repetitive.

••②②②②②②②② can be done in short time

••③③③③③③③③ can be done in short time, by dynamic programming

Outline of CompressionOutline of CompressionOutline of Compression

••We have to determine the similarities we use to compress

(each similarity has different efficiency)

••We also have to determine the positions (blocks) from which the

similarities start

•• By dynamic programming, for each position, we compute the best

possible compression ratio, from left to right

•• The compression ratio is computed according to #bits used for

similarities (#bits needed to refer a position and represent diff.)

The TasksThe TasksThe Tasks

•• In the code, raw data and similarity alternatively appear

•• Raw data is stored by “length of raw data” + raw string (2bits / letter)

(length is usually short, thus stored by a variable length integer)

•• Each similarity is represented by “ref” + “diff” of blocks …

Coding Rule: OutlineCoding Rule: OutlineCoding Rule: Outline

mode

(1bit)

mode

(1bit)
raw

data

raw

data

similaritysimilarity

•• A block is represented by a markmark of 2bits, and differencedifference

mark: 00,01,10 Hamming distance is 0,1,2, 11 is end-mark

•• The number of possible differences is 1, 10C1××××3 and 10C2××××3××××3

which can be coded in 0, 5, 9 bits

•• A block is represented by 2bits + ??bits, and repeat until endmark

Coding Rule: BlockCoding Rule: BlockCoding Rule: Block

•• The seed is always used

(thus, first end-mark of similarity means, seed appear)

•• The mark of seed is 00,01,10,11� Hamming distance is 0,1,2,3

•• #differences is 1, 20C1××××3, 20C2××××3
2 and 20C2××××3

3

which can be coded in 0, 6, 11, 17 bits

•• After the seed, usual blocks, again, follow

•• The next end-mark means the (true) end of the similarity

•• The next mode can be raw data or similarity, thus end-mark is

110: end + raw string follows, 111: end + similarity follows

Coding Rule: SeedCoding Rule: SeedCoding Rule: Seed

••When the coding rule is determined, we can compute best

compression for each position, for both cases that at the position

(a) a similarity ends, and (b) raw mode ends

Examine the casesExamine the cases

1. raw mode continues (increase 2bits)

2. similarity ends just before, and raw mode begins here

(increase 2bits + XX bits for a number)

3. Similarity end here

Dynamic ProgrammingDynamic ProgrammingDynamic Programming

•• For a seed, if the optimal both costs of all preceding position is

determined, we can compute from where we should start

(that yields optimal compression)

•• Once optimal start position is determined, we can compute the

compression cost at the end of each following block

•• Compute as this for all seeds, starting at the current frontier position

Cost Computation for SimilarityCost Computation for SimilarityCost Computation for Similarity

•• Genome sequence is chopped into chunks to be compressed

(each chunk is compressed, with referring a preceding block)

•• Algorithm refers the reverse direction of the sequence

distance to the reference is limited by chunk size

•• The cost for representing a number is fixed, for conciseness

(reference � the size of chunk, length � variable length integer)

••When the sequence is partially very similar, code 00 is frequently used

In such case, we give code 0 for 00, and (100, 101, 11) for (01, 10, 11)

•• Similar pairs are stored with unifying continuous pairs

(so, maximal continuously similar substrings are stored)

Some Additional RuleSome Additional RuleSome Additional Rule

・・・・・・・・ 7100、 11835、 8403、 2736、 32737(81.9)、 1271

The PerformancesThe PerformancesThe Performances

human

chr. 22

human

chr. X

mouse

chr. 19

Bacteria dicty dros

size 8764657 33793259 14535557 14241057 5278628 6976263

zip deflate 9 100.4% 102.2% 102.8% 104.2% 93.3% 106.1%

lzma 9 88.9% 86.7% 91.1% 94.3% 82.7% 101.2%

biocompress2 89.5% 95.6% 91.8% 97.5% 86.7% 97.9%

FuzzyLZ 90.2% 102.9% 93.4% 106.5% 90.9% 106.4%

genz 20 86.9(27.2) 86.2(31.4) 90.3(20.9) 98.5(4.4) 91.3(22.7) 98.8(3.1)

+ lzma 9 84.8% 84.1% 88.1% 94.3% 84.3% 97.4%

genz 20 l 87.2[6.3] 86.6[4.9] 90.5[6.5] 98.6[3.7] 91.7[7.2] 98.8[3.7]

genz 16 89.7[4.4] 91.5[2.2] 93.9[3.5] 99.3[1.2] 93.4[15.3] 99.2[1.1]

genz Ham2 87.2[3.1] 86.7[3.0] 90.6[4.0] 98.6[4.3] 91.6[2.9] 98.8[3.0]

genz 24,lk 86.1[0.87] 83.1[0.85] 89.0[1.5] 94.2[1.34] 88.3[6.0] 97.3[1.79]

24lk+lzma 9 83.7% 81.0% 86.4% 89.8% 80.8% 96.2%

•• For human and mouse, genz is strong (may have much similarity)

•• For dros, all are bad, but genz is the best (may have few similarities)

•• For bacteria and dicty, lzma is the best

(may have perfect similarities, and large word bias)

•• Computation time for 1MB is

3 sec.  zip -9

1 sec.  lzma

40～ sec.  genz

Advantages / DisadvantagesAdvantages / DisadvantagesAdvantages / Disadvantages

•• The bottleneck is “finding similar substring pairs”

 there are several approximations

(1)(1) decrease the size of chunks

(2)(2) decrease the threshold for Hamming distance

(3)(3) use interleave positions

•• Each accelerates up to (1), decrease to 16, 2x (2), 3x, (3) 6x,

and loses accuracy 0.5% - 1.0%

•• By increasing the chunk size, genz outperforms all the others, but

takes long time… (with interleave and limitation of similar pairs, the

time becomes short)

For Speeding UpFor Speeding UpFor Speeding Up

•• Short read is a fragment of a genome sequence, taken by genome

sequencers

 Usually very short, such as 36 letters (Solexa)

•• The position of each short read is randomly chosen, thus there are

many overlaps

 There are much redundancy

••We approach efficient compression from this redundancy

 represent the short reads by their differences from similar ones

Compression on Short ReadCompression on Short ReadCompression on Short Read

•• In principle, each short read can be mapped to some positions of the

genome with small errors

 can be represented by difference!

•• However, the addressing takes much space, such as 32 bits for

Homo-sapience

(36 letters takes 72 bits, so compression ratio must be > 40%)

••We consider another method to avoid heavy addressing

Reference to Genome SequenceReference to Genome SequenceReference to Genome Sequence

•• Since referring the genome is heavy, we refer the short read itself

•• To save the space for addressing, we use the permutation of the

ordering, of the short reads

•• The idea is, find a minimum spanning tree on the similarity graph

vertices: short reads

edges: between similar short reads

edge weights: distance between the short reads

••We encode the tree in 2n bits, and for each short read, store the

difference from its parent

Self-ReferenceSelfSelf--ReferenceReference

•• …… to be doneto be done

Implementation and ExperimentsImplementation and ExperimentsImplementation and Experiments

••We proposed the use of similarity for compression

•• An example is a genome sequence compression, based on

representing a segment by referring similar substring

�������� The compression ratio is considerable better

•• Next example is a short read compression, based on MST in a

similarity graph

Future work:

•• Implementation and experiments

•• Sequence data with real numbers (ex., trajectory)

•• Images and Movies

e

ConclusionConclusionConclusion

