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More than three transcription factors often work together to enable
cells to respond to various signals. The detection of combinatorial
regulation by multiple transcription factors, however, is not only
computationally nontrivial but also extremely unlikely because of
multiple testing correction. The exponential growth in the number of
tests forces us to set a strict limit on the maximum arity. Here, we
propose an efficient branch-and-bound algorithm called the “limit-
less arity multiple-testing procedure” (LAMP) to count the exact
number of testable combinations and calibrate the Bonferroni
factor to the smallest possible value. LAMP lists significant combi-
nations without any limit, whereas the family-wise error rate is
rigorously controlled under the threshold. In the human breast
cancer transcriptome, LAMP discovered statistically significant
combinations of as many as eight binding motifs. This method
may contribute to uncover pathways regulated in a coordinated
fashion and find hidden associations in heterogeneous data.

Bonferroni correction | gene expression

deliberately excluding such tests. Here, we propose an cfficient
branch-and-bound algorithm, called the “limitless arity multiple-
testing procedure” (LAMP). LAMP counts the exact number of
“testable” motif combinations and derives a tighter bound of
FWER, which allows the calibration of the Bonferroni factor as
the FWER is controlled rigorously under the threshold.

In comparison with existing methods that can find only two-
motif combinations, our testing procedure may contribute to find-
ing larger fractions of regulatory pathways and TF complexes, thus
providing more concrete evidence for further investigation. In
legacy yeast expression data (29), a four-motif combination cor-
responding to a known pathway was found using LAMP, whereas
only two motifs in the combination had been predicted using the
existing method. When applied to human breast cancer tran-
scriptome data (30), combinations of up to eight motifs were
found to be statistically significant.

Results
Method Overview. To present our strategy for combinatorial regu-
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Transcription factors (TFs) work
In combination

e Often several TFs are necessary to induce the
expression of downstream genes

TF

Combinations of TFs
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Example: Yamanaka Factor (K. Okita et al., Nature, 2007)
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Find statistically significant
combinations of TF binding motifs

O A P ... Motifs

Contingency table for @ A

_ Up-regulated | No-regulated
With Motif 4 O
Combination

M o

P-value by Fisher exact test
0.0079

Significant?
No — You have to apply multiple
testing procedure



Bonferroni Correction

* Family-wise error « 100 motifs In total
rate(FWER) * Number of tests
— At least one false @ Ww W - 10
discovery occurs 04 o {4 - - - 4950
* P-value threshold d is Total  5.050

determined such that
FWER is below a

 Corrected threshold

©=0.05/5050
e Form tests, = 99%10°6
s=% « Bonferroni is too

m conservative!



New Proposal:
Limitless Arity Multiple testing Procedure
(LAMP)

 Count the exact number of “testable”
combinations

— Infrequent combinations do not affect family-wise
error rate

— Stepwise procedure involving itemset mining

 Calibrate the correction factor to the smallest
possible value

» Discovered statistically significant motif
combinations in yeast and breast cancer
expression data



Raw p-value _

With Motif
Combination

Null Hypothesis H without [ ;

— Two variables are independent

P-value: p(a,b,c,d)

— Probability of observing stronger table than observed
— If smaller than o, reject H (discovery!)

Type-| error: reject H when it is true
Probability of type-| error must satisfy

P(p<a|H)<«a



Multiple Tests

m null hypotheses H,,...,H
V: Number of rejections in m tests

Probability that more than one type-| error
occurs: Family-wise error rate (FWER)

PV >0[(|H,)

Multiple testing procedures aim to control
FWER under a



Bonferroni Correction

e Given threshold 6. FWER is bounded as

P(\/ >O|ﬂH|) SZP(pI §5| HI) Union bound
=1 i=1

Definition of p-value
<mo

* Thus, setting 6=a/m calibrate FWER bound to
a



_ Up-regulated | Not regulated _
Occurrence
With Motif ’ Frequency
Combination

* P-value by Fisher exact test cannot be smaller

than
n N
f(x)=| " |/
X X

* No chance of false discovery, if f(X)>0

P(p<o|H)=0



Tarone Correction (Biometrics, 1990)

* Considering minimum p-value, FWER is
bounded as follows

P(\/ >O|ﬂH|)SZP(pIS§|HI) Union bound
i=1 =1

— z P( pi S 5 | H Use minimum p-value

I 7 toremove hypotheses
{i[f (xj)=5}

Sl {l | f (Xi) 2 5}| 5 Definition of p-value

* Take maximum 6 that keeps FWER bound below
a



FWER is represented as
go) = 1(x)=05}0o
ldentify all motif combinations that satisfy
f(x)>6
Inverse function
fr0)=Ast. f(1)<o< f(A1-1)
Find all combinations whose frequency is A or
more by itemset mining

FWER bound is computed as

5 . ml§ m’: Number of motif combintions whose
g ( ) T frequency is A or more



Finding optimal 6 that calibrates FWER

bound to a
* FWER bound is
piecewise linear FWER Bound £(0) )
* Repeat itemset mining ) /
with decrementing the /

frequency parameter

d

* Aline segment drawn
by a mining call .

I I
S f(C-1 f(C-2) - p-value threshold §

* Finish if line segment
reaches a
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Applications to Yeast Transcriptome

Microarray data by Gasch et al
Binding motif data by SGD Database

102 motifs, each binding to 30.1 genes on
average

Expressions of about 6000 genes measured on
173 different conditions



Statistically significant TF combinations
under a heat shock condition

Corrected p-value (p-value*K)

L LAMP (=£102) Bonferroni (£4)
Combination
K =303 K=4,426,528
HSF1 4 41E-24 6.44E-20
MSN2 3.73E-11 5.45E-07
MSN4 0.00053 > 1
SKO1 0.00839 > 1
SNT2 0.0192 > 1
PHD1, SUT1, SOK2, SKN7 0.0272 > 1

Red : significant

16



Rank of gene expression p-value B
D
P ovn PHD1

PHD1 >1

SUT1 > 1

SOK?2 0.666

SKN7 mﬂﬂ 0.111
PHD1, SUTT,
SOK2, SKN7 0.0272

HAP4 GAT2 MSN4 MGA1 GIDS  YNL179C RHOS5



Application to MCF7 human breast
cancer cells (GSE6462)

Treated with epidermal growth factor (EGF) or
heregulin (HRG)
—-0.1,0.5,1,10 nM

Expression measured 5, 10, 15, 30, 45, 60
mins after

Motifs taken from MSigDB

397 motifs, Approx. 12000 genes

LAMP K=1,174,108 ~ 3,750,336
Bonferroni K=1.4 x 10'® (maximum arity =8)
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Empirical FWER

* LAMP’s FWER is much closer to the designated
value 0.05

A 0.05 g — LAMP B 0.05 * | AMP
0.04 MBS GH 0.04 —*-Bonferroni
o o ,
§0.03 u;JO.OS
0.02 § =0.02
0.01 T3 ? 0.01 .
*
0 * X 0 ‘ z
1 2 3 4 102 1 2 B3 4 397

Maximum arity Maximum arity



100,000

Computational Time

*LAMP

= Bonferroni
¥ ¥ ¥ ¥
1 2 3 4 102

Maximum arity
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Maximum arity



Concluding Remarks

LAMP is much more sensitive than Bonferroni,
whereas FWER is strictly kept under threshold

FDR version of LAMP may be possible

Immediately applicable to sequences, trees
and graphs
Minimum p-value must be strictly positive

— LAMP cannot be applied to t-test

— Statistical tests with “robustness” can be
combined with LAMP



