
Quasi-Succinct Indices
or

The Revenge of Elias and Fano

 Sebastiano Vigna
Dipartimento di Informatica

Università degli Studi di Milano
Italia

Inverted Indices
• The backbone of search engines (and more)

• Main problem: store a sequence of increasing
integers in little space so to be able to
enumerate the list / pick the k-th integer / skip
to the first integer larger than or equal to b
quickly

• Maps to rank/selection/predecessor search

• For positions the problem is a bit more
articulated (and complicated)

The Classical Solution

• Middle 80s/start of 90s (apparently depends on
who you talk to)

• Turn the sequence x0, x1, x2, ... into gaps x0, x1 -
x0, x2 - x1,...

• Hope that the numbers will be small and well
(predictably) distributed

• Use some instantaneous code to store the
gaps

Lot Of Research

• Zillions of different codes and kinds of codes

• Problem: sequential decoding easy, rank/
selection/predecessor very inefficient

• Solution: various kind of skip tables that make it
possible to “jump” in the middle of the gap
sequence

• In retrospective, it looks a little bit contrived,
doesn’t it?

Why Gaps?

• Maybe we can approach the problem in a
completely different way

• Maybe gaps were not a good idea in the first
place

• Maybe there are nice, efficient ways of store
sequences of integers that do not require gaps

• So, back (1975!) to the future (now)!

Elias–Fano Representation

• Elias developed in 1975 a quasi-succinct
representation for monotone sequences
(JACM); Fano discusses it in a report

• At that time, probably no more than a
curiosity

• (My 2€¢: should be taught in the first year of
any CS curriculum)

• Inspired several modern succinct data
structures

High Bits/Low Bits
• Given n and u we have a monotone sequence

0 ≤ x0, x1, x2, ... , xn-1≤u

• Store the lower ℓ= log(u / n) bits explicitly

• Store the upper bits as a sequence of unary
coded gaps (0k1 represents k)

• We use at most 2 + log(u / n) bits per element

• Close to the succinct bound: quasi-succinct!

• (Less than half a bit away, as Elias proves)

5 8 8 15 32

1 10 10 11 100001 00 00 11 00

01 00 00 11 00

1 2 2 3 8

01 01 1 01 000001

1 − 0 2 − 1 2 − 2 3 − 2 8 − 3

5, 8, 8, 15, 32 ≤ u = 36, ℓ = 2

Advantages
• Almost optimal space usage

• Distribution-free

• Reading sequentially requires very few logical
operations (you might be surprised)

• Restrict the rank/selection problem to a nice
~2n bits array with half zeroes, half ones

• It’s beautiful :-)

• So, what about rank/select?

Looking up (Selection)

• Suppose you want to get the k-th element
quickly

• Just scan the upper bits, one word at a time,
doing population counting (one clock)

• Cost of searching: 100ps/element (yes, that’s
picoseconds) per element on an i7 @ 3.4GHz

• When you get to the right word, complete
sequentially and pick the lower bits

Searching (Successor)

• It’s exactly the same: only, you count zeroes

• Zeroes tells you how much the upper bits are
increasing, which is the important thing

• Just skip b >> ℓupper zeroes and complete

sequentially

• Due to the balance between ones and zeroes,
on average always 100ps per element (this
must be made more precise, see the paper)

“Complete Sequentially”?
• Not really

• There are broadword algorithms for selection (I wrote the first
one in 2005; improved later by Simon Gog)

• Fixed number of operations to skip k unary codes

• Final phase at ~500ps/element

int select_in_word(const uint64_t x, const int k) {
 uint64_t byte_sums = x - ((x & 0xaaaaaaaaaaaaaaaaULL) >> 1);
 byte_sums = (byte_sums & 0x3333333333333333ULL) + ((byte_sums >> 2)

 & 0x3333333333333333ULL);
 byte_sums = (byte_sums + (byte_sums >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 byte_sums *= 0x0101010101010101ULL;
 const uint64_t k_step_8 = k * 0x0101010101010101ULL;
 const int place = ((((k_step_8 | 0x8080808080808080ULL) - byte_sums)

& 0x8080808080808080ULL) >> 7) * 0x0101010101010101ULL >> 53 & ~0x7;
 return place + select_in_byte[x >> place & 0xFF |

k - ((byte_sums << 8) >> place & 0xFF) << 8];
}

Not Fast enough?
• Fix a quantum q (I use 256)

• Store in a table the position of each q-th zero,
or q-th one

• Go there in constant time and search from
there

• On average, again constant time because of the
balance between zeroes and ones

• Extreme locality: one memory access per skip

0 1 0 1 1 0 1 0 0 0 0 0 1 01 00 00 11 00

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• 5, 8, 8, 15, 32 ≤ u = 36, ℓ = 2

• We to skip to 22, so we skip 22 >> ℓ = 5 zeroes

• We getting to position 9, so we are in the middle of the unary
code associated with the element of index 9 - 5 = 4

• A unary-code read (the dashed arrow) returns 3

• We now know that the upper bits of the current element (of
index 4) are 3 + 5 = 8

• Since the block of lower bits of index 4 is zero, we return 32

• If we have skip pointers with q=4, we can start from the dotted
arrow

Enough of Fun with Bits

• We want to store an inverted index

• There are document pointers, counts and
positions

• For pointers we obviously use a quasi-succinct
list with skips

• Counts? Positions?

• Important: we can store strictly monotone
sequences quasi-succinctly by storing xi - i !

Using Duality Perversely
• Instead of storing counts c0, c1, c2, ... , we store their

prefix sums (a.k.a. cumulative function) c0, c0 + c1, c0 + c1
+ c2, ...

• Instead of storing positions, we store the prefix sums
of their gaps

• Positions pi
0, pi

1, pi
2, ... , pi

ci – 1 are first turned into pi
0 +

1, pi
1 – pi

0, pi
2 – pi

1, . . . , pi
ci – 1 – pi

ci – 2

• All such sequences are concatenated and stored as a
prefix sum

• Key observation: the counts cumulative function is the
indexing function for positions

Fast & Compact
• Decoding speed faster than other approaches

(but not for counts/positions!)

• Compression definitely better than other
approaches, even for the smallest lists, except
for very slow stuff like Golomb

• Locality of access definitely better than other
approaches

• Note that reading sequentially and skipping
mix well together

It Works

• In April 2012 I visited Facebook

• They were working on their new feature—
GraphSearch

• Problem: how do you find very quickly which
of your friends like to cook?

• Hard intersection problem—small vs. big

Interaction

• I handed to Mike Curtiss (formerly at
Google) my preprint

• I had the gut feeling that the Elias–Fano
representation was exactly what they were
looking for: fast intersection of small and
big lists

• Note that Shuai Ding (PForDelta) works
with Mike

Ten Months Later

• On January 27 I got an email from Mike

• “We wanted to let you know that we have open-sourced a C
++ implementation of your index representation. We are
currently using this in production, because it is faster than
any other approaches.”

• “Any other” includes Google’s GroupVarint
and variants of PForDelta

• I guess they benchmarked the thing
thoroughly...

Fantastic Feedback

• My code was completely rewritten by a
competent engineer using stuff I’ve never
seen for unaligned access

• Some more speed improvements

• Very clever idea: read directly cumulative
unary codes by bit cancellation

• That stuff found its way back into MG4J
(our Java search engine)

What Now?
• Let’s improve this, e.g., better implementations

• There’s decades of engineering and optimization on gaps,
very little on this, yet it is faster and compresses better!

• Beautiful code by Philip Pronin (Facebook) on GitHub:

 int64_t get_next_upper_bits() {
 while(word == 0) word = upper_bits[++curr];
 const int64_t upper_bits = curr * 64 +

 __builtin_ctzll(word) - index++;
 word &= word - 1;
 return upper_bits;
 }

Benchmarks
• Benchmarks in the WSDM 2012 paper are

obsolete (code is now much better thanks to
Philip)

• New benchmarks soon using Haswell, which has a
single-instruction x &= x –1(thanks to Giuseppe
Ottaviano for making me notice this)

• Difficult comparison with the literature, as the
authors of the main paper about compression of
positions refuse to give their code (the URL in the
paper is fake)

When Does It Shine?

• Heavy skipping: “Romeo and Juliet”

• Proximity-based search, like...

• find phrases

• find documents containing a bag of words within k
positions

• In general, when skipping is more important than
pure enumeration

• Particularly efficient when coupled with optimally
lazy proximity algorithms [Boldi & Vigna 2006]

When Does It Crawl?

• Enumeration oriented tasks (no skipping)

• TF-IDF-like scoring (e.g., BM25) on Boolean
disjunctions (but you can have a separate fast
count index)

• Everywhere appearing phrases: “home page”

Try It!

• On MG4J: http://mg4j.di.unimi.it/

• On WebGraph: http://webgraph.di.unimi.it/

• Facebook: https://github.com/facebook/folly/

• Lucene codec?

• Questions?

http://mg4j.di.unimi.it
http://mg4j.di.unimi.it
http://mg4j.di.unimi.it
http://mg4j.di.unimi.it
https://github.com/facebook/folly/
https://github.com/facebook/folly/

