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RMQ problem

Given an array A[1..n], pre-process A to answer the query:

RMQ(l , r) = arg max
l≤i≤r

A[i ]

A = 10 8 3 1 6 2 9 5 4 7 RMQ(3, 6) = 5.

This is a data structuring problem.

• Preprocess input data to answer long series of queries.

• Want to minimize:

1. Query time.
2. Space usage of data structure.
3. Time/space for pre-processing.

We do not consider updates to A.
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Encoding Model

• Preprocess input to get index,
delete input.

• Queries can only read index.

• Minimize index size and query time.
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Motivations:

• Values in A can be intrinsically uninteresting (e.g. document scores).

• Encoding size may be smaller than size of A and can fit in “local” or
“faster” memory.
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Encoding RMQ

• Trivial RMQ encoding uses Θ(n log n) bits: can we do better?

• Yes: encoding size is 2n−O(log n) bits.
• via Cartesian tree [Vuillemin, ’80].
• RMQ = LCA.

• Data structures:
• 2n + o(n) bits, O(1) query time. 23 34 11  8 88 75 33 53 18 37 27 68

[Fischer, Heun SICOMP’11],[Davoodi, R, Rao COCOON’12], building on
[Harel, Tarjan, FOCS’83].



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding top-k and range selection

• Given A[1..n] and k , encode A to answer the query:

top-k-pos(l , r): return positions of the k largest values in A[l ..r ].

• generalizes RMQ (case k = 1).
• lower bounds on encoding size.
• one-sided/prefix top-k queries top-k-pos(r) = top-k-pos(1, r).
• general two-sided queries.
• other variants of problem.

[First paper on encoding top-k-pos.]

• Given A[1..n] and κ, encode A to answer the query:

select(k, l , r): return the position of the k-th largest value in
A[l ..r ], for any k ≤ κ.

• Related work by many authors including [Brodal and Jorgensen,
ISAAC’09] [Jørgensen and Larsen, SODA’11], [Chan and Wilkinson,
SODA’13].
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Our results

1. One-sided/prefix variant (top-k-pos(r) queries):
• encoding size Ω(n log k) bits.
• n log k + o(n log k) bits, O(k) time or O(k log k) time sorted.

2. General two-sided range top-k queries:
• O(kn) bits, O(k2) time.
• O(n log k) bits, O(k) time.

3. Range selection queries:
• O(n log k) bits and O(log k/ log log n) time.
• Matches time bound of [CW SODA’13] but uses less space. Time

cannot be improved using n(log n)O(1) space [JL SODA’11].
• Lower bound for range selection [JL SODA’11]:

• If you use B bits of space you need Ω(log k/ log(B/n)) time.
• O(n log k) bits ⇒ Ω(log k/ log log k) time: we beat this.
• Their lower bound is only for finding the k-th largest value.
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Lower bound on encoding size

Lemma

Any encoding for one-sided top-k queries must take Ω(n log k) bits.

Proof: The index can encode (n/k)− 1 independent permutations over
k elements ⇒ Ω((n/k) · k log k) bits = Ω(n log k) bits.

Proof by example (k = 3).

A = 3 1 2 4 6 5 8 9 7 · · ·

Encode A. Now:

top-k-pos(1, 4) = {1, 3, 4} ⇒ A[2] = 1.
top-k-pos(1, 5) = {1, 4, 5} ⇒ A[3] = 2.
top-k-pos(1, 6) = {4, 5, 6} ⇒ A[1] = 3.
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Encoding one-sided top-k queries

Use k colours +1 “null” (= black) colour.

• First k elements assigned colours arbitrarily.

• Each new element gets colour of “ejected” element (“null” if none).

A = 6 4 2 10 3 7 5 8 9 1

⇒ • • • • • • • • • •
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Encoding one-sided top-k queries

A ⇒ • • • • • • • • • •

To answer top-k-pos(j) queries, find the first occurrence before j of
each colour. For example top-k-pos(7) = {6, 4, 1}.

Data structure for finding colours uses succinct DS
TM

technology, space
used is n log k + o(n log k) bits, time is O(k).

Reports in unsorted order, but can compare colours, so can sort in
O(k log k) time.

Open

n log k + o() space usage, O(k) sorted reporting for 1-sided queries?
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Encoding two-sided queries

Now we want the general problem: top-k-pos(i , j).

• Basic approach: construct the Cartesian tree of top-k elements in
A[i ], . . . ,A[j ] in O(k) time.

• Requires A to be available!

• It is enough if for each i , we store pointers to to k preceding and
succeeding larger elements.

Specifically:

• Define arrays of pointers P0[1..n] to Pk [1..n] as follows.

• P0[j ] = j for all j = 1, . . . , n.

• Pk+1[j ] = max ({i , i < Pk [j ] ∧ ai > aj} ∪ {0}) .

Naive representation of these arrays takes O(kn log n) bits.
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Encoding pointers

A : 10 8 3 1 6 2 9 5 4 7
P0 : 1 2 3 4 5 6 7 8 9 10
P1 : 0 1 2 3 2 5 1 7 8 7
P2 : 0 0 1 2 1 3 0 5 7 2

T0 = 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

arcs 1. = 0 1 2 3 4 5 6 7 8 9 10

B1 = ( ) ( ( ) ( ( ) ( ) ) ( ) ) ( ( ) ( ) )

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

T2 = 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

arcs 2. = 0 1 2 3 4 5 6 7 8 9 10

B2 = ( ) ( ( ) ) ( ( ) ) ( ( ) ( ) ( ) ) ( )

• Level i pointers are non-crossing.

• Can be encoded using 4n + o(n) bits → O(kn) bits overall.

• Can obtain Pi+1[j ] from Pi [j ] in O(1) time.

• Find top-k in O(k2) time overall.
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Optimal two-sided queries

• View A geometrically in 2D: A[i ] = y ⇒ (i , y).

• Use idea of shallow cutting for top-k [JL SODA’11].

• Take set of n given points and decompose into O(n/k) slabs each
containing O(k) points such that:
• For any 2-sided query top-k-pos(l , r) ∃ slab such that it and two

other adjacent slabs contain the top-k elements in A[l ..r ].
• Gives a kind of encoding: store relative order among these O(k)

elements: O(k log k) bits/slab = O(n log k) bits, optimal!
• But we need to represent the shallow cutting!
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Shallow cutting (pre-processing)

• Sweep a horizontal line down from
x = +∞.

• Initially just one slab. Place points
as encountered into their slab.

• When slab has 2k − 1 points, split
and create boundaries as follows:
• median x-coordinate as vertical

boundary.
• bottom y -coordinate as bottom

boundary.

• Example: k = 3.

�
�
�

�
�
�

• At end: O(n/k) slabs each with Θ(k) elements.

• Slabs naturally form full binary “tree of slabs” Ts .

• Naive encoding of x-coordinates requires O(k log n) bits/slab, or
O(n log n) bits overall.
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Encoding the slabs

�
�
�

�
�
�

• Retrieve resolving slab: LCA.

• Retrieve x-coordinates of slab
boundaries: top-2 pointers, O(n)
bits. slab bottom: ?

• Retrieve x-coordinates of points +
answer queries: perform RMQs
using CT of A, guided by
O(k log k) bits of ordering info.

Theorem

There is an encoding of size O(n log k) bits that supports top-k-pos

queries in O(k) time.
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Encoding range selection

Problem

Given A[1..n] and κ, encode A to answer select(k , l , r) which returns
the position of the k-th largest value in A[l ..r ], for any k ≤ κ.

Overall approach is similar:

• Create κ-shallow cutting.

• For O(κ) points in each slab, store range selection data structure:
O(κ log κ) bits.

• Find resolving slab for given query and use slab’s range selection
data structure to answer query.

• Convert answer back to “global” coordinates.
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Encoding shallow cutting

Previous shallow cutting representation was space optimal but could only
enumerate all O(κ) x-coordinates in a slab in O(κ) time. We want
O(log k/ log log n) query time.

B We need a more sophisticated representation of slabs which can:

• in O(1) time, retrieve the i-th largest x-coordinate in the slab
(access query).

• in O(log k/ log log n) time, perform predecessor search for l and r
among x coordinates in a slab.

Previous result by [CW SODA’13]

• O(n log κ+ n log log n + (n log n)/κ︸ ︷︷ ︸
non-optimal terms

) bits of space.
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Tree Partitioning and Marking

We partition the tree of slabs Ts . Ts has n′ = O(n/κ) nodes.

• Let s(v) be the number of descendants of v in Ts .

• Let t0 = n′ and ti+1 = dlog2 tie, stopping when tz = 1.

• A node v is level i if t2
i ≤ s(v) < t2

i−1.
• Node levels decrease from leaf to root.
B x-coordinates in a level i node take O(log t2

i−1) = O(ti ) bits.

Mark an internal node in Ts if:

1. it is level i and both its children are level > i .

2. it is level i and both its children are level i .

3. it is level i and its parent is level < i .

Lemma

The number of marked level i nodes is O(n′/t2
i ) = O(n/(κt2

i )).

For each marked node we store all its x-coordinates explicitly. Sum over
all level i nodes is O((n/(κt2

i )) · κti ) = O(n/ti ) bits ⇒ O(n) bits overall.
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Tree Partitioning and Marking

Marking Rule

v is marked if:

1. it is level i and both children are level > i .

2. it is level i and both children are level i .

3. it is level i and parent is level < i .

• Each unmarked level i node has:
• one marked child at level < i .
• one child at level i .

• Unmarked level i nodes form
paths fringed by marked nodes.

> i

> i

> i

> i i

i

i

i

i

i
> i
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access queries

B Need to store the x-coordinates of points in an unmarked node v .

• Points in v are original or inherited.

• Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

• Pointers to the marked nodes where
v ’s original points lie cost O(n) bits
summed over all unmarked nodes.

• For inherited points p, use O(κ)
colors (cf. 1-sided top-k) to find the
ancestor where p is original:
O(n log κ) bits.

�
�
�

�
�
�Inherited

Original
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access queries

Modulo many details (succinct DS
TM

technology):

Lemma

We can encode the cells of the shallow cutting to support access queries
in O(1) time.

Implies:

• Encoding for range selection using O(n log κ) bits in O(log k) time.

• Can return top-k , for any k ≤ κ in O(k) time.

No details given:

Theorem

There is an encoding for range selection that takes O(n log κ) bits and
supports range selection in O(log k/ log log n) bits.
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Conclusions and Open Problems

Conclusions:

• Gave optimal,non-trivial, encodings for range selection and range
top-k .

• Improved prevous bounds, “broke” lower bound.

Open problems:

• Sorted reporting in one-sided case.

• Exact constant factors (progress for k = 2).

• Can we extend this to partially ordered A? (N. Yasuda)

• What about average-case encoding complexity? (S.-I. Minato)

• Obvious pre-processing times are O(n log k) for the one-sided case
and O(n log n) for the 2-sided case. Can this be improved? (N.
Yasuda)
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