
Encoding top-k and range selection

Roberto Grossi1 John Iacono2 Gonzalo Navarro3

Rajeev Raman4 S. Srinivasa Rao5

Università di Pisa, Italy.

Polytechnic Institute of New York University, United States.

Universidad de Chile.

University of Leicester, UK.

Seoul National University, S. Korea.

NII Shōnan seminar #29, 27 September 2013
Some results were presented at ESA 2013.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

RMQ problem

Given an array A[1..n], pre-process A to answer the query:

RMQ(l , r) = arg max
l≤i≤r

A[i ]

A = 10 8 3 1 6 2 9 5 4 7 RMQ(3, 6) = 5.

This is a data structuring problem.

• Preprocess input data to answer long series of queries.

• Want to minimize:

1. Query time.
2. Space usage of data structure.
3. Time/space for pre-processing.

We do not consider updates to A.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding Model

• Preprocess input to get index,
delete input.

• Queries can only read index.

• Minimize index size and query time.

QUERY

RESULT

In
d

e
x

INPUT
PREPROC

Motivations:

• Values in A can be intrinsically uninteresting (e.g. document scores).

• Encoding size may be smaller than size of A and can fit in “local” or
“faster” memory.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding RMQ

• Trivial RMQ encoding uses Θ(n log n) bits: can we do better?

• Yes: encoding size is 2n−O(log n) bits.
• via Cartesian tree [Vuillemin, ’80].
• RMQ = LCA.

• Data structures:
• 2n + o(n) bits, O(1) query time. 23 34 11  8 88 75 33 53 18 37 27 68

[Fischer, Heun SICOMP’11],[Davoodi, R, Rao COCOON’12], building on
[Harel, Tarjan, FOCS’83].



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding top-k and range selection

• Given A[1..n] and k , encode A to answer the query:

top-k-pos(l , r): return positions of the k largest values in A[l ..r ].

• generalizes RMQ (case k = 1).
• lower bounds on encoding size.
• one-sided/prefix top-k queries top-k-pos(r) = top-k-pos(1, r).
• general two-sided queries.
• other variants of problem.

[First paper on encoding top-k-pos.]

• Given A[1..n] and κ, encode A to answer the query:

select(k, l , r): return the position of the k-th largest value in
A[l ..r ], for any k ≤ κ.

• Related work by many authors including [Brodal and Jorgensen,
ISAAC’09] [Jørgensen and Larsen, SODA’11], [Chan and Wilkinson,
SODA’13].



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Our results

1. One-sided/prefix variant (top-k-pos(r) queries):
• encoding size Ω(n log k) bits.
• n log k + o(n log k) bits, O(k) time or O(k log k) time sorted.

2. General two-sided range top-k queries:
• O(kn) bits, O(k2) time.
• O(n log k) bits, O(k) time.

3. Range selection queries:
• O(n log k) bits and O(log k/ log log n) time.
• Matches time bound of [CW SODA’13] but uses less space. Time

cannot be improved using n(log n)O(1) space [JL SODA’11].
• Lower bound for range selection [JL SODA’11]:

• If you use B bits of space you need Ω(log k/ log(B/n)) time.
• O(n log k) bits ⇒ Ω(log k/ log log k) time: we beat this.
• Their lower bound is only for finding the k-th largest value.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Lower bound on encoding size

Lemma

Any encoding for one-sided top-k queries must take Ω(n log k) bits.

Proof: The index can encode (n/k)− 1 independent permutations over
k elements ⇒ Ω((n/k) · k log k) bits = Ω(n log k) bits.

Proof by example (k = 3).

A = 3 1 2 4 6 5 8 9 7 · · ·

Encode A. Now:

top-k-pos(1, 4) = {1, 3, 4} ⇒ A[2] = 1.
top-k-pos(1, 5) = {1, 4, 5} ⇒ A[3] = 2.
top-k-pos(1, 6) = {4, 5, 6} ⇒ A[1] = 3.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding one-sided top-k queries

Use k colours +1 “null” (= black) colour.

• First k elements assigned colours arbitrarily.

• Each new element gets colour of “ejected” element (“null” if none).

A = 6 4 2 10 3 7 5 8 9 1

⇒ • • • • • • • • • •



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding one-sided top-k queries

A ⇒ • • • • • • • • • •

To answer top-k-pos(j) queries, find the first occurrence before j of
each colour. For example top-k-pos(7) = {6, 4, 1}.

Data structure for finding colours uses succinct DS
TM

technology, space
used is n log k + o(n log k) bits, time is O(k).

Reports in unsorted order, but can compare colours, so can sort in
O(k log k) time.

Open

n log k + o() space usage, O(k) sorted reporting for 1-sided queries?



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding two-sided queries

Now we want the general problem: top-k-pos(i , j).

• Basic approach: construct the Cartesian tree of top-k elements in
A[i ], . . . ,A[j ] in O(k) time.

• Requires A to be available!

• It is enough if for each i , we store pointers to to k preceding and
succeeding larger elements.

Specifically:

• Define arrays of pointers P0[1..n] to Pk [1..n] as follows.

• P0[j ] = j for all j = 1, . . . , n.

• Pk+1[j ] = max ({i , i < Pk [j ] ∧ ai > aj} ∪ {0}) .

Naive representation of these arrays takes O(kn log n) bits.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding pointers

A : 10 8 3 1 6 2 9 5 4 7
P0 : 1 2 3 4 5 6 7 8 9 10
P1 : 0 1 2 3 2 5 1 7 8 7
P2 : 0 0 1 2 1 3 0 5 7 2

T0 = 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

arcs 1. = 0 1 2 3 4 5 6 7 8 9 10

B1 = ( ) ( ( ) ( ( ) ( ) ) ( ) ) ( ( ) ( ) )

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

T2 = 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

arcs 2. = 0 1 2 3 4 5 6 7 8 9 10

B2 = ( ) ( ( ) ) ( ( ) ) ( ( ) ( ) ( ) ) ( )

• Level i pointers are non-crossing.

• Can be encoded using 4n + o(n) bits → O(kn) bits overall.

• Can obtain Pi+1[j ] from Pi [j ] in O(1) time.

• Find top-k in O(k2) time overall.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Optimal two-sided queries

• View A geometrically in 2D: A[i ] = y ⇒ (i , y).

• Use idea of shallow cutting for top-k [JL SODA’11].

• Take set of n given points and decompose into O(n/k) slabs each
containing O(k) points such that:
• For any 2-sided query top-k-pos(l , r) ∃ slab such that it and two

other adjacent slabs contain the top-k elements in A[l ..r ].
• Gives a kind of encoding: store relative order among these O(k)

elements: O(k log k) bits/slab = O(n log k) bits, optimal!
• But we need to represent the shallow cutting!



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Shallow cutting (pre-processing)

• Sweep a horizontal line down from
x = +∞.

• Initially just one slab. Place points
as encountered into their slab.

• When slab has 2k − 1 points, split
and create boundaries as follows:
• median x-coordinate as vertical

boundary.
• bottom y -coordinate as bottom

boundary.

• Example: k = 3.

�
�
�

�
�
�

• At end: O(n/k) slabs each with Θ(k) elements.

• Slabs naturally form full binary “tree of slabs” Ts .

• Naive encoding of x-coordinates requires O(k log n) bits/slab, or
O(n log n) bits overall.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Shallow cutting (pre-processing)

• Sweep a horizontal line down from
x = +∞.

• Initially just one slab. Place points
as encountered into their slab.

• When slab has 2k − 1 points, split
and create boundaries as follows:
• median x-coordinate as vertical

boundary.
• bottom y -coordinate as bottom

boundary.

• Example: k = 3.

�
�
�

�
�
�

• At end: O(n/k) slabs each with Θ(k) elements.

• Slabs naturally form full binary “tree of slabs” Ts .

• Naive encoding of x-coordinates requires O(k log n) bits/slab, or
O(n log n) bits overall.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Shallow cutting (pre-processing)

• Sweep a horizontal line down from
x = +∞.

• Initially just one slab. Place points
as encountered into their slab.

• When slab has 2k − 1 points, split
and create boundaries as follows:
• median x-coordinate as vertical

boundary.
• bottom y -coordinate as bottom

boundary.

• Example: k = 3.

�
�
�

�
�
�

• At end: O(n/k) slabs each with Θ(k) elements.

• Slabs naturally form full binary “tree of slabs” Ts .

• Naive encoding of x-coordinates requires O(k log n) bits/slab, or
O(n log n) bits overall.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding the slabs

�
�
�

�
�
�

• Retrieve resolving slab: LCA.

• Retrieve x-coordinates of slab
boundaries: top-2 pointers, O(n)
bits. slab bottom: ?

• Retrieve x-coordinates of points +
answer queries: perform RMQs
using CT of A, guided by
O(k log k) bits of ordering info.

Theorem

There is an encoding of size O(n log k) bits that supports top-k-pos

queries in O(k) time.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding range selection

Problem

Given A[1..n] and κ, encode A to answer select(k , l , r) which returns
the position of the k-th largest value in A[l ..r ], for any k ≤ κ.

Overall approach is similar:

• Create κ-shallow cutting.

• For O(κ) points in each slab, store range selection data structure:
O(κ log κ) bits.

• Find resolving slab for given query and use slab’s range selection
data structure to answer query.

• Convert answer back to “global” coordinates.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Encoding shallow cutting

Previous shallow cutting representation was space optimal but could only
enumerate all O(κ) x-coordinates in a slab in O(κ) time. We want
O(log k/ log log n) query time.

B We need a more sophisticated representation of slabs which can:

• in O(1) time, retrieve the i-th largest x-coordinate in the slab
(access query).

• in O(log k/ log log n) time, perform predecessor search for l and r
among x coordinates in a slab.

Previous result by [CW SODA’13]

• O(n log κ+ n log log n + (n log n)/κ︸ ︷︷ ︸
non-optimal terms

) bits of space.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Tree Partitioning and Marking

We partition the tree of slabs Ts . Ts has n′ = O(n/κ) nodes.

• Let s(v) be the number of descendants of v in Ts .

• Let t0 = n′ and ti+1 = dlog2 tie, stopping when tz = 1.

• A node v is level i if t2
i ≤ s(v) < t2

i−1.
• Node levels decrease from leaf to root.
B x-coordinates in a level i node take O(log t2

i−1) = O(ti ) bits.

Mark an internal node in Ts if:

1. it is level i and both its children are level > i .

2. it is level i and both its children are level i .

3. it is level i and its parent is level < i .

Lemma

The number of marked level i nodes is O(n′/t2
i ) = O(n/(κt2

i )).

For each marked node we store all its x-coordinates explicitly. Sum over
all level i nodes is O((n/(κt2

i )) · κti ) = O(n/ti ) bits ⇒ O(n) bits overall.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Tree Partitioning and Marking

Marking Rule

v is marked if:

1. it is level i and both children are level > i .

2. it is level i and both children are level i .

3. it is level i and parent is level < i .

• Each unmarked level i node has:
• one marked child at level < i .
• one child at level i .

• Unmarked level i nodes form
paths fringed by marked nodes.

> i

> i

> i

> i i

i

i

i

i

i
> i



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

access queries

B Need to store the x-coordinates of points in an unmarked node v .

• Points in v are original or inherited.

• Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

• Pointers to the marked nodes where
v ’s original points lie cost O(n) bits
summed over all unmarked nodes.

• For inherited points p, use O(κ)
colors (cf. 1-sided top-k) to find the
ancestor where p is original:
O(n log κ) bits.

�
�
�

�
�
�Inherited

Original



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

access queries

B Need to store the x-coordinates of points in an unmarked node v .

• Points in v are original or inherited.

• Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

• Pointers to the marked nodes where
v ’s original points lie cost O(n) bits
summed over all unmarked nodes.

• For inherited points p, use O(κ)
colors (cf. 1-sided top-k) to find the
ancestor where p is original:
O(n log κ) bits.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

access queries

B Need to store the x-coordinates of points in an unmarked node v .

• Points in v are original or inherited.

• Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

• Pointers to the marked nodes where
v ’s original points lie cost O(n) bits
summed over all unmarked nodes.

• For inherited points p, use O(κ)
colors (cf. 1-sided top-k) to find the
ancestor where p is original:
O(n log κ) bits.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

access queries

B Need to store the x-coordinates of points in an unmarked node v .

• Points in v are original or inherited.

• Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

• Pointers to the marked nodes where
v ’s original points lie cost O(n) bits
summed over all unmarked nodes.

• For inherited points p, use O(κ)
colors (cf. 1-sided top-k) to find the
ancestor where p is original:
O(n log κ) bits.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

access queries

Modulo many details (succinct DS
TM

technology):

Lemma

We can encode the cells of the shallow cutting to support access queries
in O(1) time.

Implies:

• Encoding for range selection using O(n log κ) bits in O(log k) time.

• Can return top-k , for any k ≤ κ in O(k) time.

No details given:

Theorem

There is an encoding for range selection that takes O(n log κ) bits and
supports range selection in O(log k/ log log n) bits.



Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

Conclusions and Open Problems

Conclusions:

• Gave optimal,non-trivial, encodings for range selection and range
top-k .

• Improved prevous bounds, “broke” lower bound.

Open problems:

• Sorted reporting in one-sided case.

• Exact constant factors (progress for k = 2).

• Can we extend this to partially ordered A? (N. Yasuda)

• What about average-case encoding complexity? (S.-I. Minato)

• Obvious pre-processing times are O(n log k) for the one-sided case
and O(n log n) for the 2-sided case. Can this be improved? (N.
Yasuda)


	Introduction
	Intro

	Results
	pandr

	One-sided Problem
	onesided

	Two-sided Problem
	twosided

	Encoding range selection
	rangesel

	Conclusions
	conc


