Encoding top-k and range selection

2 3

Roberto Grossi' John lacono Gonzalo Navarro
Rajeev Raman* S. Srinivasa Rao®

Universita di Pisa, Italy.
Polytechnic Institute of New York University, United States.
Universidad de Chile.
University of Leicester, UK.

Seoul National University, S. Korea.

NIl Shonan seminar #29, 27 September 2013
Some results were presented at ESA 2013.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
@00 (o]e} 000 00000 000000 [e]

RMQ problem

Given an array A[l..n], pre-process A to answer the query:

RMQ(I,r) = arg /rg’_aéxr Ali]

A=[10]8[3[1]6][2[9]5[4]7] RMQ(3,6)=>5.

This is a data structuring problem.
e Preprocess input data to answer long series of queries.
e Want to minimize:

1. Query time.
2. Space usage of data structure.
3. Time/space for pre-processing.

We do not consider updates to A.

00 000 00000 000000 (e}
. . QUERY
e Preprocess input to get index, PREPROC
delete input.
)) RESULT

o Queries can only read index.

e Minimize index size and query time.
Motivations:

e Values in A can be intrinsically uninteresting (e.g. document scores).
e Encoding size may be smaller than size of A and can fit in “local” or
“faster” memory.

DA

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusion
ooe (o]e} 000 00000 000000 [e]

Encoding RMQ

e Trivial RMQ encoding uses ©(nlog n) bits: can we do better?

e Yes: encoding size is 2n — O(log n) bits.
e via Cartesian tree [Vuillemin, '80].
e RMQ = LCA.

e Data structures:

e 2n+ o(n) bits, O(1) query time. |23]34[11] 8 [88] 75]38] 53] 18] 37[27] e8]

[Fischer, Heun SICOMP'11],[Davoodi, R, Rao COCOON'12], building on
[Harel, Tarjan, FOCS'83].

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions

000 0 000 00000 000000 [e]

Encoding top-k and range selection

e Given A[l..n] and k, encode A to answer the query:

top-k-pos(/, r): return positions of the k largest values in A[/..r].

generalizes RMQ (case k = 1).

lower bounds on encoding size.

one-sided/prefix top-k queries top-k-pos(r) = top-k-pos(1, r).
general two-sided queries.

other variants of problem.

[First paper on encoding top-k-pos.]
e Given A[l..n] and &, encode A to answer the query:
select(k,/,r): return the position of the k-th largest value in
All..r], for any k < k.

e Related work by many authors including [Brodal and Jorgensen,
ISAAC'09] [Jgrgensen and Larsen, SODA'11], [Chan and Wilkinson,
SODA'13].

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 oce 000 00000 000000 [e]

Our results

1. One-sided/prefix variant (top-k-pos(r) queries):

e encoding size Q(nlog k) bits.

e nlog k + o(nlog k) bits, O(k) time or O(k log k) time sorted.
2. General two-sided range top-k queries:

e O(kn) bits, O(k?) time.

e O(nlog k) bits, O(k) time.
3. Range selection queries:

e O(nlog k) bits and O(log k/ loglog n) time.

e Matches time bound of [CW SODA'13] but uses less space. Time

cannot be improved using n(log n)°® space [JL SODA'11].
¢ Lower bound for range selection [JL SODA'11]:

e If you use B bits of space you need Q(log k/log(B/n)) time.
e O(nlog k) bits = Q(log k/ log log k) time: we beat this.
® Their lower bound is only for finding the k-th largest value.

Results One-sided Problem o-sided Problem

000

Lower bound on encoding size

Lemma
Any encoding for one-sided top-k queries must take Q(nlog k) bits.

Proof: The index can encode (n/k) — 1 independent permutations over
k elements = Q((n/k) - klog k) bits = Q(nlog k) bits.

Proof by example (k = 3).

A=[3[I[2[4]6]5[e]9[7 -
Encode A. Now:

{1,3,4)} = A2l = 1.
{1,4,5} = A[3] = 2.
{4,5,6} = A[1] = 3.

top-k-pos(1,4) =
top-k-pos(1,5)
top-k-pos(1, 6)

Use k colours +1 “null” (= black) colour.

o First k elements assigned colours arbitrarily.
A

e Each new element gets colour of “ejected” element (“null” if none)

=[6]4]2]10[3][7]5]8]9]1]

S [efefefefefefefefe]e]

«O» «Fr « =>»

<

it
-

DA

ntroduction Results One-sided Problem o-sided Problem

ooe

Encoding one-sided top-k queries

A = [elelele]slelole o s

To answer top-k-pos(j) queries, find the first occurrence before j of
each colour. For example top-k-pos(7) = {6,4,1}.

™
Data structure for finding colours uses succinct DS technology, space
used is nlog k + o(nlog k) bits, time is O(k).

Reports in unsorted order, but can compare colours, so can sort in
O(k log k) time.

Open

nlog k + o() space usage, O(k) sorted reporting for 1-sided queries?

Introduction Results One-sided Problem Two-sided Problem Encoding range selection
000 (o]e} 000 @0000 000000

Encoding two-sided queries

Now we want the general problem: top-k-pos(/, /).
e Basic approach: construct the Cartesian tree of top-k elements in
Alf],...,Alj] in O(k) time.
e Requires A to be available!
e It is enough if for each i, we store pointers to to k preceding and
succeeding larger elements.
Specifically:
o Define arrays of pointers Py[1..n] to Py[1..n] as follows.
o Py[jl=jforallj=1,...,n.
o Piljl = max({i, i < Pe[j] A ai > a;} U{0}) .

Naive representation of these arrays takes O(knlog n) bits.

Results One-sided Problem Two-sided Problem Encoding range selection
00 000 0000 000000

Encoding pointers

A: 10 8 3 1 6 2 9 5 4 7
Pb: 1 2 3 4 5 6 7 8 9 10
pp: 01 2 3 2 5 1 7 8 7
P,: 0 0 1 2 1 3 0 5 7 2
e EE N Ot N
arcsl = 0 1 2 3 4 5 6 7 8 9 1C arcs2 = 0 1 2 3 4 5 6 7 8 9 10

70=110101010101010101010 73 =101001001011011001011

A

77=101001001011011001011 7,=100010010010110110111
Bi=()(O) ()OO) By=()(()) (OO)0

e Level / pointers are non-crossing.

e Can be encoded using 4n + o(n) bits — O(kn) bits overall.
Can obtain Pi1[j] from P;[j] in O(1) time.
Find top-k in O(k?) time overall.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 00e00 000000 [e]

Optimal two-sided queries

e View A geometrically in 2D: A[i] =y = (i,y).
e Use idea of shallow cutting for top-k [JL SODA'11].

e Take set of n given points and decompose into O(n/k) slabs each
containing O(k) points such that:
e For any 2-sided query top-k-pos(/, r) 3 slab such that it and two
other adjacent slabs contain the top-k elements in A[l..r].
e Gives a kind of encoding: store relative order among these O(k)
elements: O(k log k) bits/slab = O(nlog k) bits, optimal!
e But we need to represent the shallow cutting!

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 [e]ele] o} 000000 [e]

Shallow cutting (pre-processing)

e Sweep a horizontal line down from
X = 400. . ° '/O\.
o Initially just one slab. Place points .

as encountered into their slab.

When slab has 2k — 1 points, split
and create boundaries as follows:
e median x-coordinate as vertical
boundary.
e bottom y-coordinate as bottom
boundary.

Example: k = 3.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 [e]ele] o} 000000 [e]

Shallow cutting (pre-processing)

Sweep a horizontal line down from

X = 400. R °
Initially just one slab. Place points ! /5\

as encountered into their slab.

When slab has 2k — 1 points, split
and create boundaries as follows:
e median x-coordinate as vertical
boundary.
e bottom y-coordinate as bottom
boundary.

Example: k = 3.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 [e]ele] o} 000000 [e]

Shallow cutting (pre-processing)

e Sweep a horizontal line down from
X = +00.

o Initially just one slab. Place points o 4@?\
as encountered into their slab. !

e When slab has 2k — 1 points, split
and create boundaries as follows:

e median x-coordinate as vertical
boundary.

e bottom y-coordinate as bottom
boundary.

e Example: kK = 3.

e At end: O(n/k) slabs each with ©(k) elements.
e Slabs naturally form full binary “tree of slabs” Ts.

¢ Naive encoding of x-coordinates requires O(k log n) bits/slab, or
O(nlog n) bits overall.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusion

000 (o]e} 000 [e]e]ele] } 000000 [e]

Encoding the slabs

o e Retrieve resolving slab: LCA.

s e Retrieve x-coordinates of slab
boundaries: top-2 pointers, O(n)
bits. slab bottom: ?

o o Retrieve x-coordinates of points +
answer queries: perform RMQs
using CT of A, guided by

O(k log k) bits of ordering info.

Theorem

There is an encoding of size O(nlog k) bits that supports top-k-pos
queries in O(k) time.

Encoding range selection
®00000

Encoding range selection

Problem

Given A[l..n] and k, encode A to answer select(k,/, r) which returns
the position of the k-th largest value in A[l..r], for any k < k.

Overall approach is similar:

Create k-shallow cutting.

For O(k) points in each slab, store range selection data structure:
O(k log k) bits.

Find resolving slab for given query and use slab’s range selection
data structure to answer query.

e Convert answer back to “global” coordinates.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 00000 O®0000 [e]

Encoding shallow cutting

Previous shallow cutting representation was space optimal but could only
enumerate all O(x) x-coordinates in a slab in O(k) time. We want
O(log k/ log log n) query time.

> We need a more sophisticated representation of slabs which can:

e in O(1) time, retrieve the i-th largest x-coordinate in the slab
(access query).

e in O(log k/ log log n) time, perform predecessor search for [and r
among x coordinates in a slab.

Previous result by [CW SODA'13]
e O(nlogk + nloglogn+ (nlogn)/k) bits of space.

non-optimal terms

Encoding range selection
00@000

Tree Partitioning and Marking

We partition the tree of slabs T,. T, has n’ = O(n/k) nodes.
o Let s(v) be the number of descendants of v in Ts.
o Let tg = n' and t;11 = [log, t;], stopping when t, = 1.
e Anode v is level i if t? <s(v) < t? ;.

e Node levels decrease from leaf to root.
I> x-coordinates in a level i node take O(logt? ;) = O(t;) bits.

Mark an internal node in T if:
1. it is level i and both its children are level > .
2. it is level i and both its children are level i.

3. it is level i and its parent is level < i.

Lemma
The number of marked level i nodes is O(n’/t?) = O(n/(kt?)).

For each marked node we store all its x-coordinates explicitly. Sum over
all level i nodes is O((n/(xt?)) - kt;) = O(n/t;) bits = O(n) bits overall.

v is marked if:

1. it is level i and both children are level > i.
2. it is level i and both children are level i.

3. it is level i and parent is level < i.

e Each unmarked level i node has

e one marked child at level < i
e one child at level /.

e Unmarked level i nodes form
paths fringed by marked nodes.

«O» «F»

> Need to store the x-coordinates of points in an unmarked node v.

e Points in v are original or inherited.

AN

Inherited

A

Original

DA

> Need to store the x-coordinates of points in an unmarked node v.

e Points in v are original or inherited.

e Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

«O>» «Fr «=» <«

>

DA

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 00000 O000e0 [e]

access queries

> Need to store the x-coordinates of points in an unmarked node v.

e Points in v are original or inherited.

e Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

e Pointers to the marked nodes where
v's original points lie cost O(n) bits
summed over all unmarked nodes.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions
000 (o]e} 000 00000 O000e0 [e]

access queries

> Need to store the x-coordinates of points in an unmarked node v.

e Points in v are original or inherited.

e Each original point in v is stored
explicitly in a marked node fringing
the unmarked path.

e Pointers to the marked nodes where
v's original points lie cost O(n) bits
summed over all unmarked nodes.

e For inherited points p, use O(k)
colors (cf. 1-sided top-k) to find the
ancestor where p is original:

O(nlog k) bits.

Encoding range selection
O0000e

access queries

™
Modulo many details (succinct DS technology):

Lemma
We can encode the cells of the shallow cutting to support access queries
in O(1) time.
Implies:
e Encoding for range selection using O(nlog k) bits in O(log k) time.
e Can return top-k, for any k < k in O(k) time.

No details given:

Theorem

There is an encoding for range selection that takes O(nlog) bits and
supports range selection in O(log k/ log log n) bits.

Results One-sided Problem ange selection Conclusions

Conclusions and Open Problems

Conclusions:

Gave optimal,non-trivial, encodings for range selection and range
top-k.
Improved prevous bounds, “broke” lower bound.

Open problems:

Sorted reporting in one-sided case.

Exact constant factors (progress for k = 2).

Can we extend this to partially ordered A? (N. Yasuda)

What about average-case encoding complexity? (S.-I. Minato)

Obvious pre-processing times are O(nlog k) for the one-sided case
and O(nlog n) for the 2-sided case. Can this be improved? (N.
Yasuda)

	Introduction
	Intro

	Results
	pandr

	One-sided Problem
	onesided

	Two-sided Problem
	twosided

	Encoding range selection
	rangesel

	Conclusions
	conc

