COMPRESSED TRIES AND
TOP-K STRING COMPLETION

Giuseppe Ottaviano
ISTI-CNR — Pisa

Joint work with Roberto Grossi and Paul Hsu

String set representation

three
trial
triangle
trie
triple
triply

Represent a string set so that

*Lookup and access operations are fast
*Space of the representation is small

Compacted tries

. @

: Node label
Branching character

three
trial
triangle
trie
triple
triply

Succinct tree encoding

A

(2) (& ®@®@

Succinct trie encoding?

Good candidate for succinct tree encoding
— Most space is taken by tree pointers

But... tries can be tall, usually small fanout
Navigation of succinct trees is “slow”

— A few cache misses for each FirstChild

— Even if no cache misses, constants hidden in O(1)
are high

Existing libraries using LOUDS tree encoding
are indeed slow

Path decomposition

Recurse here with
suffix 1 e

Query: triil:'ﬁle

Centroid path decomposition

e Starting from the root, recursively choose the
node with most descendants

* Height of path decomposition tree O(log n)
with this strategy

Succinct encoding

L : tlri2alngle

rian
/ A\
n N1 BP: (((()
B : h epl
(spaces added for clarity)

* Node label written literally, interleaved with number of
other branching characters at that pointin array L

* Corresponding branching characters in array B

e Tree encoded with DFUDS in bitvector BP

— Variant of Range Min-Max tree [ALENEX 10] to support
Find{Close,Open}, more space-efficient (Range Min tree)

three
trial
triangle
triangular
trie
triple
triply

tlri2alnglle

L tlriZalngllelarlleree

7\ 7\ /4

BP ((CCCCOMOY)
B hpeluy

Compression of L

...5...index

.htmlS. ..

.S...355..

.htmlS. .

3 index

5 .html

.55..

Dictionary

.55..

..htmi$..

Jindex

.htmls

.355

* Dictionary codewords shared among labels
* Codewords do not cross label boundaries ($)

e Use vbyte to compress the codeword ids

Experimental results (time)

* Experiments show gains in time comparable

to the gains in

height

e Confirm that bottleneck is traversal

operations

Hu-Tucker Front Coding

Web Queries URLs Synthetic
3.8 7.0 22.0
3.5 5.5 119.8

Lexicographic trie

Centroid trie

2.4 3.4 5.1

Code available at https:

(microseconds, lower is better)

//github.com/ot/path decomposed tries

Experimental results (space)

* For strings with many common prefixes, even
non-compressed trie is space-efficient

* Labels compression considerably increases
space-efficiency

* Decompression time overhead: ~10%

Web Queries URLs Synthetic
Hu-Tucker Front Coding 40.9% 24.4% 19.1%
Centroid trie 55.6% 22.4% 17.9%
Centroid trie + compression 31.5% 13.6% 0.4%

(compression ratio, lower is better)

Code available athttps://github.com/ot/path decomposed tries

Top-k string completion

three
trial
triangle
trie

triple

w H»H 01 O = N

triply

 Top-k Completion query

— Given prefix p, return k strings prefixed by p with
highest scores

 Example: p=“tr”, k=2
— (triangle, 9), (trie, 5)

Motivation: query suggestion

are all italians

are all italians catholic

are all italians in the mafia

are all italians tan

are all italians racist

are all italians loud

are all italians from the romans
are all italians lousy lovers

are all italians guidos

Preferences

(Scored) compacted tries

£t
h r
three
_ Chree (i
trial
triangle e 3
trie
& 1 e
triple 5) <
triply ° Y n 1

4"5 4"8' ‘!‘gle ‘4P‘g

Max-score path decomposition

: tlri2alngle
(((()
h epl
2 541

9
t1r12a1ng1e

three 2 P, h,2
trial 1 E
triangle 9
trie 5 a
triple 4

L t1r12a1nglelleree
triply 3 P

BP ((((()))()))
hpely
245139

avilivy

Complete tr

e 8 12 8 019 [2 4 1900 11 2 & 7 1 10000 ...

Score compression

3 bits/value 11 bits/value 16 bits/value

Packed-blocks array

— “Folklore” data structure, similar to many existing
packed arrays

Divide the array into fixed-size blocks

Encode the values of each block with the same
number of bits

Store separately the block offsets

Score compression

351230

o 1L 2 4 e

L 2 & 2] 0

3 bits/value

11 bits/value

Can be unlucky

16 bits/value

— Each block may contain a large value

But scores are power-law distributed

Also, tree-wise monotone sorting

On average, 4 bits per score

Results

Bing query histogram: 400M queries
Raw data (TSV, decimal scores): 94G
Gzipped data: 23G

Score-decomposed trie: 24G

Results

Dataset Raw
AOL Queries 209.8 56.3 62.4
Bing Queries 235.6 57.9 61.2
URLs 228.7 54.7 58.6
Unigrams 114.3 442 39.8

bits per string-score pair

Performance

* About 10 microseconds for top-10
completions

— Basically the same as retrieving 10 strings from an
std::set (red-black tree)

* Why care? Network latency is in the
milliseconds

* Important if we need to search several
prefixes for each query

— Example: approximate completion

Thanks for your attention!

