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de Bruijn Graph-based Assembly

Reads (substrings of original DNA sequence)

ﬂ Well-studied

de Bruijn graph / Unipath graph Elegant theories exist

1. remove motifs of errors, Relatively open

2. find the path corresponding to the Existing solutions are ad-hoc
V original sequence

Whole genome sequence

The current work revisits here



de Bruijn Graph & Unipath Graph

 de Bruijn Graph

k=3, reads = {TACAC, TACTC, GACAC}
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Existing Error Detection Methods

Bubbles are the most fundamental motif of errors.

reads CTTT
AAACTTT 7
AAAGTTT AAA TTT
GTTT .

Bubbles are easy to detect but sometimes more complex
structures do appear.

reads

AAACCGGTTT
AAATCGCTTT
AAATCACTTT
AAATTGCTTT
AAATTACTTT

How to find such structures?



Our Results

« Defined a new class of substructures superbubbles
« Expected linear (worst case quadratic)-time enumeration
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Superbubble
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Fundamental Properties

A superbubble can be specified by (s,t) (if (s,t) is known,
it can be traversed in linear time)
"." By topological sort

#Superbubbles = O(n)

"." A vertex cannot be the entrance of >1 superbubbles
Distinct superbubbles are either separated or nested




Enumeration

If you can check weather a vertex is the entrance of a
superbubble (and find the corresponding exit) or not, check

all vertices and you are done.

To check a vertex v is the entrance of a superbubble,
topological sort from v.



Entrance Checking

Topological sorting from an entrance
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tsort(u

(" unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not




Entrance Checking

Topological sorting from an entrance
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O some parents are visited, others are not

tsort(u):

enqueue u
while queue is not empty
vV <- dequeue
label v as visited
for win v’s children
if w’s parents are all visited
enqueue w
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Entrance Checking

Topological sorting from an entrance
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(") unknown enqueue u
while queue is not empty
. vV <- dequeue
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if w’s parents are all visited
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Entrance Checking

Topological sorting from a non-entrance
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O some parents are visited, others are not




Entrance Checking

Topological sorting from a non-entrance
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Runtime

Topological sorting O(n+m)-time from every vertex
m> O(n(n+m))-time in the worst case

O(n)-time in expectation under a reasonable model
"." topological sort from most vertices halts instantly

E[size of search tree] < const.
if E[#children of each vertex] < 1



Experiment

Procedures

1. Constructed a unipath graph from Human genome reads
of 40x coverage (via the succinct de Bruijn graph [Bowe
et al. WABI’'12])

2. Enumerated all superbubbles in the unipath graph

Results
Procedure 2 took 12min. by a single core machine.

The histogram of the size of superbubbles

size 3-9 10-19 20-29 30-39 40-49 50-59 60-

#S.B. 71663 | 4295 347 69 21 8 5

For 86.3% of 23,078 superbubbles of size >=5, ratio
between the longest/shortest path label length< 1.05



Summary

* Defined superbubbles

* An efficient (both theoretically and practically) algorithm
to enumerate all superbubbles in graphs
— Found many superbubbles in data from Human genome reads

Future work

« Error/Variation separation
* Find the right path in superbubbles
» Worst-case O(n)-time algorithm



