
Detecting Superbubbles in
Assembly Graphs

Taku Onodera (U. Tokyo)!
Kunihiko Sadakane (NII)!

Tetsuo Shibuya (U. Tokyo)!

de Bruijn Graph-based Assembly	

Reads (substrings of original DNA sequence)	

de Bruijn graph / Unipath graph!

Whole genome sequence	

1.  remove motifs of errors!
2.  find the path corresponding to the

original sequence	

The current work revisits here!

Well-studied!
Elegant theories exist	

Relatively open!
Existing solutions are ad-hoc	

de Bruijn Graph & Unipath Graph	

•  de Bruijn Graph!

k=3, reads = {TACAC, TACTC, GACAC}	

•  Unipath Graph!

A	
 C	

A	

T	
 C	

GAC	
 ACA	
 CAC	

TAC	
 ACT	
 CTC	

A	
 C	

A	

TC	

GAC	
 ACA	
 CAC	

TAC	
 CTC	

Existing Error Detection Methods	

Bubbles are the most fundamental motif of errors.!

Bubbles are easy to detect but sometimes more complex
structures do appear.	

AAACCGGTTT!
AAATCGCTTT!
AAATCACTTT!
AAATTGCTTT!
AAATTACTTT	
 AAA	
 TTT	

AAT	
 CTT	

ATC	

ATT	

GCT	

ACT	

AAACTTT!
AAAGTTT	
 AAA	
 TTT	

CTTT	

How to find such structures?	

GTTT	

reads	

reads	

cggcacaaaaa tatgaggaaaaacaggg

aggatatg att aaa agtt

cagtttgtattttttgttgagtgaatgt ct ccag t c ata gagatgcaagtgtagatacacag ta aga

tagatgcaagtgtagatacacag ta aga

gcag t c cta tagatgcaagtgtagatacacag ta

tagtttgtattttttgttgagtgaatgt

tggcacaaaaa

attg cggaaaaaacagggaggatatgatt ata

agttcagttt

a tgttttttgtt gagtgaatgtctccag cc ata gagatgcaagtgtagatacacag

t c

g

ggttttttgtt

gagtgaatgtctccagt

tgttttttgtt gagtgaatgtctccag

gggaaaaaacagggaggatatgatt

ata

ctg gggaaaaaacaggg aggatatg

att

ttt ata agttcagttt g ggttttttgtt

tatgaggaaaaacaggg

28

18

28 2

34

3

6 3
25

23 5

28

17

11 25 28 17

28 28

10

11

25

28

4

3 3 271

1 1

Our Results	

•  Defined a new class of substructures superbubbles!
•  Expected linear (worst case quadratic)-time enumeration!

Superbubble	

U	

s	
 t	

All vertices in U are
reachable from s
without passing t	

t is reachable
from all vertices
in U without
passing s!

acyclicity, minimality	

Superbubble	

U	

s	
 t	

All vertices in U are
reachable from s
without passing t	

t is reachable
from all vertices
in U without
passing s!

acyclicity, minimality	
 s	
 t	
 u	

s and u is not
a pair	

Superbubble	

U	

s	
 t	

All vertices in U are
reachable from s
without passing t	

t is reachable
from all vertices
in U without
passing s!

acyclicity, minimality	

Same path label length (in the ideal case)!
or !

Similar path label length!

additional!
constraint	

s	
 t	
 u	

s and u is not
a pair	

Fundamental Properties	

Distinct superbubbles are either separated or nested	

#Superbubbles = O(n)!
∵ A vertex cannot be the entrance of >1 superbubbles	

A superbubble can be specified by (s,t) (if (s,t) is known,
it can be traversed in linear time)!
∵ By topological sort	

Enumeration	

If you can check weather a vertex is the entrance of a
superbubble (and find the corresponding exit) or not, check
all vertices and you are done.!
!
To check a vertex v is the entrance of a superbubble,
topological sort from v.!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from an entrance	

This must be the exit	

This must be the
entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from a non-entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Entrance Checking	

Topological sorting from a non-entrance	

This must not be
the entrance	

in queue	

visited	

some parents are visited, others are not	

unknown	

tsort(u):!
 enqueue u!
 while queue is not empty!
 v <- dequeue!
 label v as visited!
 for w in v’s children!
 if w’s parents are all visited!
 enqueue w!

Runtime	

Topological sorting O(n+m)-time from every vertex !
!O(n(n+m))-time in the worst case!

!
O(n)-time in expectation under a reasonable model!
∵ topological sort from most vertices halts instantly!

E[size of search tree] < const.!
if E[#children of each vertex] < 1	

start	

Experiment	

size	
 3-9	
 10-19	
 20-29	
 30-39	
 40-49	
 50-59	
 60-	

#S.B.	
 71663	
 4295	
 347	
 69	
 21	
 8	
 5	

Procedures!

For 86.3% of 23,078 superbubbles of size >=5, ratio
between the longest/shortest path label length< 1.05	

1.  Constructed a unipath graph from Human genome reads
of 40× coverage (via the succinct de Bruijn graph [Bowe
et al. WABI’12])!

2.  Enumerated all superbubbles in the unipath graph	

The histogram of the size of superbubbles	

Results	

Procedure 2 took 12min. by a single core machine.	

Summary	

•  Defined superbubbles!
•  An efficient (both theoretically and practically) algorithm

to enumerate all superbubbles in graphs!
–  Found many superbubbles in data from Human genome reads	

Future work	

•  Error/Variation separation!
•  Find the right path in superbubbles!
•  Worst-case O(n)-time algorithm!

