Detecting Superbubbles in
Assembly Graphs

Taku Onodera (U. Tokyo)
Kunihiko Sadakane (NII)
Tetsuo Shibuya (U. Tokyo)

de Bruijn Graph-based Assembly

Reads (substrings of original DNA sequence)

ﬂ Well-studied

de Bruijn graph / Unipath graph Elegant theories exist

1. remove motifs of errors, Relatively open

2. find the path corresponding to the Existing solutions are ad-hoc
V original sequence

Whole genome sequence

The current work revisits here

de Bruijn Graph & Unipath Graph

 de Bruijn Graph

k=3, reads = {TACAC, TACTC, GACAC}

A C
GAC ACA

A
/L
T

@/ act Sl @
(ere)

« Unipath Graph

A C
GAC ACA

A

@/ ”

Existing Error Detection Methods

Bubbles are the most fundamental motif of errors.

reads CTTT
AAACTTT 7
AAAGTTT AAA TTT
GTTT .

Bubbles are easy to detect but sometimes more complex
structures do appear.

reads

AAACCGGTTT
AAATCGCTTT
AAATCACTTT
AAATTGCTTT
AAATTACTTT

How to find such structures?

Our Results

« Defined a new class of substructures superbubbles
« Expected linear (worst case quadratic)-time enumeration

gcagt c cta tagatgcaagtgtagatacacag ta
3
tagatgcaagtgtagatacacag ta aga
58 25
28 2 6 3 23 5
cggcacaaaaa tatgaggaaaaacaggg 18 cagtttgtattttttgttgagtgaatgt ct —I ccagt ¢ |— ata —I gagatgcaagtgtagatacacag H ta aga r
17 aggatatg att aaa agtt .
t c
l tatgaggaaaaacaggg tagtttgtattttttgttgagtgaatgt
53 28 1 1 28
a tgttttttgtt gagtgaatgtctccag | |cc ata gagatgcaagtgtagatacacag ’
11 25 28 17
‘1 tggcacaaaaa —| ctg gggaaaaaacaggg aggatatg —| ttt ata agttcagttt g ggttttttgtt |— gagtgaatgtctccagt

25

11
ggttttttgtt

att H ata H agttcagttt

T

g -I tgttttttgtt gagtgaatgtctccag

3/3 10

J gggaaaaaacagggaggatatgatt r

s

attg H cggaaaaaacagggaggatatgatt ata

28

1 27

Superbubble

U t is reachable
from all vertices

reachable from s in U without
without passing t . — .\Pas’sing S
/ S \ /./ t\

acyclicity, -minimality

All vertices inrU are

Superbubble

All vertices in'U are t is reachable
from all vertices

reachable from s
S t in U without
withou passmg passmgs
acyclicity, minimality 6 é é

\ - \ -

s and u is not
a pair

Superbubble

_ _ t is reachable
All vertices inrU are U from all vertices

reachable from s s in U without
without passw:t/v . ><\passi;s/

acyclicity, minimality 6 é é
constant (——) 5204 s o
constrai a pair

Same path label length (in the ideal case)

or
Similar path label length

Fundamental Properties

A superbubble can be specified by (s,t) (if (s,t) is known,
it can be traversed in linear time)
"." By topological sort

#Superbubbles = O(n)

"." A vertex cannot be the entrance of >1 superbubbles
Distinct superbubbles are either separated or nested

Enumeration

If you can check weather a vertex is the entrance of a
superbubble (and find the corresponding exit) or not, check

all vertices and you are done.

To check a vertex v is the entrance of a superbubble,
topological sort from v.

Entrance Checking

Topological sorting from an entrance

e e
o

/

tsort(u

(" unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from an entrance

.L»/\\ -

T T

(" unknown

O some parents are visited, others are not

tsort(u):

enqueue u
while queue is not empty
vV <- dequeue
label v as visited
for win v’s children
if w’s parents are all visited
enqueue w

Entrance Checking

Topological sorting from an entrance

.L,fé\
_

e Pof

tsort(u

{ ™ unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from an entrance

,z,fé\
_

e Pof

tsort(u

{ ™ unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from an entrance

tsort(u):

{3 unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from an entrance

e e

tsort(u):

{3 unknown enqueue u

while queue is not empty

. v <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from an entrance

e e

tsort(u):

{3 unknown enqueue u

while queue is not empty

. v <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from an entrance

o/'\

\ ‘/This must be the exit
‘//> _ \rbe\“

tsort(u):
(") unknown enqueue u
while queue is not empty
. vV <- dequeue
@ in queue label v as visited
© visited for w in v’s children
if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from a non-entrance

N
1)
/ Voo
o’
Ranl
- % I -

\ ',‘ . ‘\~‘l' ', \/
N \ \ (‘\)/ ‘\"'j\\
/ (,“\)/% (“\)
_ tsort(u):
{ 3 unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Entrance Checking

Topological sorting from a non-entrance

This must not be
the entrance ‘ 7 O\
\ %

/ \O/
- tsort(u
{_ unknown enqueue u

while queue is not empty

. vV <- dequeue

@ in queue label v as visited

© visited for w in v’s children

if w’s parents are all visited
enqueue w

O some parents are visited, others are not

Runtime

Topological sorting O(n+m)-time from every vertex
m> O(n(n+m))-time in the worst case

O(n)-time in expectation under a reasonable model
"." topological sort from most vertices halts instantly

E[size of search tree] < const.
if E[#children of each vertex] < 1

Experiment

Procedures

1. Constructed a unipath graph from Human genome reads
of 40x coverage (via the succinct de Bruijn graph [Bowe
et al. WABI’'12])

2. Enumerated all superbubbles in the unipath graph

Results
Procedure 2 took 12min. by a single core machine.

The histogram of the size of superbubbles

size 3-9 10-19 20-29 30-39 40-49 50-59 60-

#S.B. 71663 | 4295 347 69 21 8 5

For 86.3% of 23,078 superbubbles of size >=5, ratio
between the longest/shortest path label length< 1.05

Summary

* Defined superbubbles

* An efficient (both theoretically and practically) algorithm
to enumerate all superbubbles in graphs
— Found many superbubbles in data from Human genome reads

Future work

« Error/Variation separation
* Find the right path in superbubbles
» Worst-case O(n)-time algorithm

