ActivFORMS: Active Formal Models
for Self-Adaptive Systems

NIl Shonan Meeting
Engineering Adaptive Software Systems (EASSy)

M. Usman Iftikhar — usman.iftikhar@Inu.se
Danny Weyns — danny.weyns@Inu.se
Kostiantyn Kucher — kostiantyn.kucher@Inu.se

Promise of formal models for self-
adaptive systems®

Providing evidence that the system requirements
are satisfied during operation

regarding the uncertainty of changes that may affect
the system, its environment or its goals

>|<So1"tware Engineering for Self-Adaptive Systems: Assurances
(www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13511)

Overview

State of the art (some key contributions)
Our proposal

Approach

Realization

Contributions & Tradeoffs

Future research

Model-based development of dynamically adaptive
software [Zhang & Cheng, ICSE 2006]

* Process to create and verify formal models and automatically generate
programs from them (Petri nets and LTL)

* Assuring properties of self-adaptive systems: need for formal underpinning
* Need for clear separation between domain logic and adaptation logic

Model evolution by runtime parameter adaptation
[Epifani et al., ICSE 2009]

[_stopMsg] [Exl‘T [FASH

o).

nit pButtonMsg] [alarm changeDrug] [FailedCh ang}'a
1
03 —b@—1 — 0.01 —>
06 i
\&tz:lparamsﬂsg analyzel FailedAnlysis),
T a1
@ 1 . @_1‘
T Y S
noti:

1 hngeD ses | |FailedChangeDose)

2 098‘@7002——”\1

* Probabilistic model represents execution flows of the system
* Probabilities are dynamically updated based on observations

* Formal model of system behavior at runtime: focus on K of MAPE-K

Dynamic QoS management and optimization in
service based systems [Calinescu et al. TSE 2011]

Admin .—».—».—».
TESOUrce,
’@dlu(ation Monitor — Analyse — Plan — Execute
p rational QoS abs n wct | [@concretel QoS requirements |~ _ _ _ _
mmh | l([ll]l(lll(llT workflow| | workflow e® et cic
/(\ "1 . formule
] /T /r S —— pl()pmST{,‘)L“L“ S _ _

Developer \$ ‘ /

c \\'(;1‘1{[1})2 odel | yde) 1<11> polic <5
B — — — — prior-knowledge N
b : . operational model ~ J . L¢

]l date

Workflow engine ¢ > -
Monitor — Analyse Plan Execute - ‘\ ; ’ (O KAMI PRISM 191 GPAC
T T Autonomic manager ' (* — T (‘lx))(‘:ill(:)l(t‘llt flea
3 . .
Lc Internet) Autonomic manager effectors

‘ * \ abstract /9

:)irHJ Y EEELE R D

> Service-based system

« MAPE-K manager monitors service-based system and adapts workflow engine
(service selection + resources)

* Online verification of reliability and performance properties

 Formal model covers the system abstraction + goals (K)
 Adaptation logic consists of set of tools that are glued together

Managing non-functional uncertainty via model-
driven adaptivity [Ghezzi et al. ICSE 2013]

I
I
: ;
I
! N T - -+
I designs Qanncta:es invokes
I
L Developer

R

: UML Activity Diagrams Implementations
N .

: uses ? Lses

I

I m - generates % Tees %

I

\ -l s £ = :

: Generator PRISM
I

I [executes

I

I

I

Embedded Model

Interpreter

* Model with probability distribution of different execution paths of the system
* Interpreter guides the execution of the system using the model
 To guarantee highest utility for set of quality properties

* No clear separation of concerns (domain logic and adaptation logic)
 Adaptation logic is encoded in ad-hoc interpreter

Summary SOTA

Increasing attention for formal models at
runtime to provide guarantees of adaptation

Quantitative approaches dominate

Focus on formal models of system,
environment and goals (K of MAPE-K)

No systematic formalization and verification of
of adaptation functions (MAPE of MAPE-K)

Limited support for unpredicted changes

What is needed?

* Formalize adaptation functions to provide
guarantees about adaptation

e Support unanticipated changes
— Require support for adaptations of adaptation
functions

* Scalability of runtime verification

Overview

Our proposal

Approach

Realization

Contributions & Tradeoffs
Future research

Our proposal

Active formal models of the
complete adaptation loop (MAPE-K)

Formal model is directly executed to adapt the
managed system

Runtime updates of formal model to support
unanticipated changes

Goal
Management
Change Plans
4 |
' v
Plan Request
Manage [P) [Pz
Management Chanae Act
4 |
Status v
Component
Control C1 Cc2

* 3 layered model of Kramer & Magee

— Component control (layer 1), change management (2),
goal management (3)

 Focuson layer 2 and 3

— Assumption: managed system is equipped with
required sensors and effectors

— Instrumentation of managed system is research
subject in its own right

* Case study: logistic multi-robot system

Case study

e OO0 Robot System Manager
Tasks Map
[Show | | Edit | [Show| | Edit |
Pick |Drop Status
A D Done
B D Done
C D R1
B D R2
A D Pending
C D Pending
A
— R2 9
D B
L

Overview

Approach

Realization

Contributions & Tradeoffs
Future research

>

Engineer/
Admin

goal
adaptation

Approach

Goal
Manager

Adapt

Notify

72N

model
adaptation

@Dw%

Active Model

72N

system
adaptation

Analysis Planning

Monitoring

o=

typedef struct { ..

const ...

Execution

=2

bool fun ...

Enact /Update
Formal Model

Managed System

Probes

Tl

Virtual Machine

e
—>

Effectors

= —
r O a C ada pt t Goal model % dsystem M 4 Svst
i tati anage stem
Management oepaten Active Model e ’ g
Englneer/ \
| |

e Active model
— |s a formally verified model
— Realizes a MAPE-K loop
— To adapt the managed system

* Goal management
— Monitors the active model

— Can adapt the active model (e.g., to improve it or deal with
a particular adaptation problem)

* Engineer/Admin
— Can monitor goal satisfaction

— Can change the active model, verify and deploy it, to
manage (new) goals using goal management

Levels of adaptation

* Level 1: active model adapts the managed
system

— Close temporally a lane in the warehouse for
maintenance

* Level 2: adapt the active model (adapt MAPE)

— Add a new drop location in the warehouse

Overview

e Realization
e Contributions & Tradeoffs
e Future research

User

1

Realization

i <4+—P Tools

Admin/Engineer

]

Goal Manager

{ oo

MAPE-K Model

Active Model

Virtual Machine

l

Robot Manager

Probes

Effectors

'

Managed System (Robot)

Goal Management Interface

e 00 Active Models @ Runtime

| Connect | [(NewModel | | Add Goal |

™ Robot 1 - 192.168.0.10:80

addRequests() remRequests(} && lwaitRequired()
xecute[RiD]! execute[RiD]!
posUpdated() && lockPrevNode
. executelmmediately(} \.\ executeRemoval()
\
addRequests() lockNode® remRequests() && 'waitRequired() \ /
\ /
RID]! xecute[RID]! \ /
executeimmediately() executeRemoval()
— -

planning[RiD

planned()

doNothing(}

™ Robot 2 - 192.168.0.11:80

doNothing() addRequests(} remRequests(} && 'waitRequired()

execute[RiD]! xecute[RiD]!
executelmmediately() u\ /‘ xecuteRemoval(}
\ /
\ !
—_

e

planned()

planning[RiD]

planned()

doNothing()

Goal |Status

robotl != WAITING && robot2 != WAITING OK

| Update |

Virtual machine

Transforms a formal model (network of timed
automata) into a graph representation

Executes that model
Can adapt the current model at runtime
Can detect and notify goal violations

Level of adaptions

* Level 1: active model adapts managed system
* Level 2: adapt the active model

Level 1 adaptations

Close temporally a lane in the warehouse for maintenance

- Adapt the robot to prevent it from
using a closed lane

R2 ®

Close temporally a lane in the warehouse for maintenance

Level 1 adaptations

enableLane() disableLane() && !waitRequired()
planEnabling() planDisabling()
Admin
Planner I
planning[RiD]?

% <+—» Tools

C
planned()
execute[RiD]!

Goal Manager

| p\anningOngoing()J |

I

4. planner plans adaptation

3. analysis identifies MAPE-K Model

Active Model

need for closing lane

Virtual Machine

2. monitor
receives request 5. excute adapts the
map of the robot
- Probes Effectors
1. request to
close lane T l

Robot Manager

4+—P Managed System (Robot)

Level 2 adaptations

Add a new drop location in the warehouse

- Add new part of the map for the robot

- Creates new deadlock situations when
certain lanes are disabled

- Requires adding new representation in K
and adaptations of MAPE functions

R2

E A
®
D B
9

R1

on

Level 2 adaptations

Add a new drop location in the warehouse

1. request to prepare adding
a new destination

-

3. deploy new
model

User

i <4+—P Tools

Engineer :>

verify model

‘ i 2. update and

Goal Manager

T 4. load new model i

8. feedback loop @DO—’O

handles request :")

Active Model

MAPE-K Model
/\F 5. install new model
Virtual Machine

7. monitor {}

9. excute adapts the
map of the robot

!

Effectors

!

receives request ‘ ’ T
> Probes
6. request to add
destination
Robot Manager
—P

Managed System (Robot)

Level 2 adaptations

Deal with new deadlock threat (close additional lane): e.g., update planner

E A
—R2 — 9
D B
 J
C
R1 L
enableLane() disableLane() && !'waitRequired()
planEnabling() planDisabling()
planning[RiD]? ‘
C

planned()
execute[RiD]!

planningOngoing()

enableLane()
planEnabling()

disableLane()
&& 'waitRequired()

planDisabling(),
lockExtraNode()

addRequest()
planAddition()

remRequest()
&& 'waitRequired()

planRemoval()

laneDisabled()
&& posUpdated()

lockExtraNode()

planning[RiDJ

planned()
execute[RiD]!

planningOngoing()

Overview

e Contributions & Tradeoffs
e Future research

Contributions

Formal active model guarantees verified
properties of the adaption process

Active model directly executes the adaptation:
no coding, no model transformations

Adaptation of adaptation functions:
lightweight process to add new goals

Online detection of goal violations

Tradeoffs

Expert knowledge to desigh and change the
formal models

We can only express what the modeling
language supports

Language might not be appropriate to model
adaption logic for particular types of systems

Possible performance overhead

Overview

e Future research

Paves the way for future research

Domain specific design primitives to support
the designer (Didac Gil de la Iglesia)

Different modeling languages (e.g.
probabilistic automata)

Scalable runtime verification

Coordination between Active Models in
decentralized setting

Automation goal management by learning

Thank you! -- The floor is open for questions & critical comments

