Computing

Dynamic Updates and Self-Adaptation
Can we fill the gap?

Valerio Panzica La Manna - Politecnico di Milano, Italy

dependable evolvable pervasive software engineering group

panzica@elet.polimi.it

EASSy 2013 - Shonan Meeting - 12 Sep 2013

) Ve
o

Computing

o
[-y
o
<
o,
9

S
Dynamic Updates...

dependable evolvable pervasive software engineering group

dependable evolvable pervasive software engineering group
*—oo

9 Sity
o %%
o

Q

puting

gman

Introduction

e Modern software systems are subject to continuous and
unanticipated changes:

— In the surrounding environment.

— In the requirements.

dependable evolvable pervasive software engineering group

S

9 ity

o %%
(o2

Q

puting

gman

Introduction

e Modern software systems are subject to continuous and
unanticipated changes:

— In the surrounding environment.
— In the requirements.

e Toincorporate these changes, systems are typically
updated offline:

— Shutdown
— Update
— Restart

dependable evolvable pervasive software engineering group

S

9 ity

o %%
(o2

Q

puting

gman

Introduction

e Modern software systems are subject to continuous and
unanticipated changes:

— In the surrounding environment.
— In the requirements.

e Toincorporate these changes, systems are typically
updated offline:

— Shutdown
— Update
— Restart

e Many of these systems must operate continuously

dependable evolvable pervasive software engineering group

S
9 ity
o' %%

Q

puting

gman

Introduction

e Modern software systems are subject to continuous and
unanticipated changes:

— In the surrounding environment.

— In the requirements.

e Toincorporate these changes, systems are typically
updated offline:

— Shutdown
— Update
— Restart

e Many of these systems must operate continuously

dependable evolvable pervasive software engineering group
*—oo

9 Sity
o' %%
(%

Computing

Q

gman

Introduction

o

&

e Modern software systems are subject to continuous and
unanticipated changes:

— In the surrounding environment.

— In the requirements.

e Toincorporate these changes, systems are typically
updated offline:

— Shutdown
— Update
— Restart

e Many of these systems must operate continuously

dependable evolvable pervasive software engineering group
*—0—

9 Sity
o %%

Dynamic Software Update 2)

o

s

puting

Engineering software systems able to evolve at run-time

 Dynamic updates must be safe
- The update process must not lead to erroneous behavior
— Crucial for safety-critical applications.

e Systems must be updated as soon as possible
— To adapt to unpredicted changes in the environment

— To incorporate new critical requirements

dependable evolvable pervasive software engineering group
*—oo

9 Sity
o' %%

o
Computing

Q

gman

Open Reactive Systems

o

)y
Finite State Controller

controlled by

-

?operate

uncontrollable
environment

dependable evolvable pervasive software engineering group

09 S”UQ/
QO‘

99

puting

gman

Open Reactive Systems

o

)y
Finite State Controller

controlled by

-

limplements

Specification

?operate Environment Requirements
Assumptions

Sequences of events that
can occur in the environment

uncontrollable
environment

Sequences of events allowed
in the system

10

dependable evolvable pervasive software engineering group

A specification oriented

perspective

Specification |

Q

9 Sity
o %%

g

Requirements

Environment
Assumptions

S puting
T
-‘?QS
NEW Specification |
: Environment
Requirements :
Assumptions

11

dependable evolvable pervasive software engineering group

o [[[[0}(\9 SituO"@
A specification oriented @
=
perspective s
Specification | NEW Specification |
Requirements Environment Requirements Environment
1 Assumptions 1 Assumptions
R4
’
’
Problem

In which state can a system safely
disregard the current obligations and
start behaving according to the new
specification?

dependable evolvable pervasive software engineering group

S
c\ 0/

Q

puting

gman

Our contribution

 Formalizing criteria for safe dynamic updates.
— Definition of updatable states [1].
— Additional criteria for more timely updates [2].

e Approach to automatically construct dynamically updating
systems from changes in MSD specification [1, 2].

e Tool realization as part of ScenarioTools [2].

[1] C.Ghezzi et al. “Synthesizing dynamically updating controllers from changes in
scenario based specification”, SEAMS 2012.

[2] V. Panzica La Manna et al. “Formalizing correctness criteria of dynamic
updates derived from specification changes”, SEAMS 2013.

13

dependable evolvable pervasive software engineering group

Si fUQ/

Example Current Specification: 6

S

&

* Environment Assumptions: The points on the track section occur in

the shown order.

* Requirements: After endOfTS and before lastBrake, the RC requests

the crossing control permission to enter the crossing (...)

(
{

Nt

requestEnter

interval for the
required interaction %///////EEEEEAllowed(t/f)
lastEmergency enter

//w Brake Crossing

N\

: 1
1 r's
1 W
1 1

[

endOfTS noReturn

14

dependable evolvable pervasive software engineering group

Example Specification Change ::

(\9 Si tUQ/

Computlng

\I\V\an

Changed Assumptions: The event approachingCrossing occurs in the
sequence of environment events as shown

New Added Requirement: After approachingCrossing and before
lastEmergencyBrake, the RC must check the status of the crossing.
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 1

[

N7

|
N
b

|

T . 1
new =

1 1 required interaction | 1 1
endOfTS noReturn

15

dependable evolvable pervasive software engineering group

Q‘“g S”“"/

0’
Computing

Example Offline Update

()] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
,/W Brake Crossing

%

[|
F Y
w

[|

endOfTS noReturn

checkCrossingStatus

crossingStatus
approaching

astEmergenc enter
Crossing és» Jeney

Brake Crossing
|

(%

[|
A
w

[|
new

[1 required interaction
endOfTS noReturn

16

dependable evolvable pervasive software engineering group

Q‘“g S”“"/

0’
Computing

Example Offline Update

()] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

N7

[|
A
w

[|

endOfTS noReturn

update not possible

checkCrossingStatus

crossingStatus
approaching

astEmergenc enter
Crossing ;"3 Jeney

Brake Crossing
|

(%

[|
A
w

[|
new
[1 required interaction

endOfTS noReturn

17

dependable evolvable pervasive software engineering group

Q‘“g s”“"/

0’
Computing

Example Offline Update

()] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

N7

[|
A
w

[|

endOfTS noReturn

update not possible

update possible _
checkCrossingStatus
crossingStatus
approathng astEmergency enter
CrOSSlng ﬂ Brake Crossing
1 | | | [|
g ! g '
5 " " " &
f [] [w
| { | [|
new : :
[1 required interaction [[]
endOfTS noReturn

18

dependable evolvable pervasive software engineering group

o S:t%/

Exam le: Offline Update v
Computing
()] requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter
éa» Brake Crossing

| | | |

' ' ' '
N " ' " F
< [[1 h 3

| | | [|

| : | |

endOfTS noReturn

update not possible

update possible _
checkCrossingStatus
crossingStatus
approathng astEmergency enter
Brake Crossing
1 1 1 L}
! y ! '
5 " " " &
f [] [w
1 { 1 [}
new . .
[1 required interaction [[]
endOfTS noReturn

How to dynamically update the RailCab to the new behavior at run-time?

dependable evolvable pervasive software engineering group

9 Sity
o' %%

Fundamental criterion Lo -

() requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

N7

[|
A
w

[|

endOfTS noReturn

checkCrossingStatus

crossingStatus
approaching

Crossing ;"3

astEmergency enter

Brake Crossing
|

(%

[|
A
w

[|
new
[1 required interaction

endOfTS noReturn

20

dependable evolvable pervasive software engineering group

) Sity
o' %%

Fundamental criterion @

()] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

(7

[|
A
w

[|

endOfTS noReturn

update possible

checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 |

[|
A
v

[|
new
1 required interaction

N =

[| [|
noReturn

initial state: it can always be updated
(same behavior of off-line updates).

21

dependable evolvable pervasive software engineering group

) Sity
o' %%

Fundamental criterion @

() requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

f/w Brake Crossing

[|
A
w

[|

N\
L A]
- ...
L A]

'endOfTS Y noReturn

update possible not sure
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 |

(%

[|
A
w

[|
new
[1 required interaction 1 '

endOfTS noReturn

the running system does not remember this event
since it is not present in the old assumptions

O

22

dependable evolvable pervasive software engineering group

) Sity
o' %%

Fundamental criterion @

() requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

f/w Brake Crossing

[|
A
w

[|

N\
L A]
- ...
L A]

l endOfTS Y noReturn

update possible not sure update possible
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 |

(%

[|
A
w

[|
new
[1 required interaction 1 '

endOfTS noReturn

O

here we can be sure that approachingCrossing
has occurred (due to the new assumption)

23

dependable evolvable pervasive software engineering group

9 Sity
o' %%

Fundamental criterion @

¢) requestEnter

interval for the
required interaction ‘mAllowed (t/£f)
lastEmergency enter
'ﬁw Brake Crossing

¥

7

endOfTS noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus
approaching

Crossing éw

astEmergency enter

Brake Crossing
|

N\
- omom

[|
A
w

[|
new
[1 required interaction

endOfTS noReturn

24

dependable evolvable pervasive software engineering group

) Sity
o' %%

Fundamental criterion @

()] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing ‘»

(7

[|
A
w

[|

endOfTS noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus
approaching

astEmergency enter

Brake Crossing
1 |

(%

[}

A

) 4
[}

N =

new
[1 required interaction 1 '

endOfTS noReturn

When is a system updatable?

25

dependable evolvable pervasive software engineering group

9 Sity
o' %%

Fundamental criterion @

¢) requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

f/w Brake Crossing

(7

[|
A
w

[|

'endOfTS Y noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus
approaching

astEmergency enter

Brake Crossing
1 L}

(%

[|
A
v

[|
new
[1 required interaction 1 '

endOfTS noReturn

N =

Intuition 1: The system must continue its past execution to satisfy S'.
26

dependable evolvable pervasive software engineering group

) Sity
o' %%

Fundamental criterion @

¢) requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

/-/,37 Brake Crossing

(7

[|
A
w

[|

'endOfTS Y noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Crossing ?3 Brake Crossing
| 1 |

[|
§ ¢
} . [|
new
[1 required interaction 1 '

endOfTS noReturn

(%

N =

Intuition 2: The considered past execution starts from the last time
the initial state is visited.

27

dependable evolvable pervasive software engineering group

09 SHUO,«
[

Eynthesizing Dynamically 3
Updating Controller D

j—’ = » ! change in requirements or = » !
I I . . I I
e E— environment assumptions e

o | e —

| . | puna I
: - - (assumption or requirement : - -
MSDs added or removed)

puting

Specification S

automated
¢ is implemented by synthesis

updatablﬂe\ states update transitions

Specification S'

current controller

YO N~
copy of the controller for
current controller implementing S’
dynamically updating controller
28

¢)] requestEnter

interval for the
required interaction

enterAllowed (t/£)

lastEmergency enter

Brake Crossing
n

-
EEEEEN
- -

[
§
h

[

noReturn

il

updatab|ef
states

ammmmmEa=
-
.

“: removed transitions

added update transitions and c*-part 29

dependable evolvable pervasive software engineering group

—0—0
09 SltUQ/
e ®
° o
[~ .
Modeli MSD Sp ificati > e
odeliin €Cliications 3
g /°S
It @ %0 x| |#6 |0 7ER TR DT le® & » 0 BB % Hro- % | ™
|- e | [Tahoma E :] % Fo
Q, Quick Access ‘ ﬁ | fﬁ‘_—,Resource %ENN Repository Exploring | == Plug-in Development %SScenarioTools MSD Simulation Perspective
% Package Ex 53 Plug-ins = O @ test_Test.scenariorunconfiguration &) railcab.uml <P *railcab.di 23 = 0 0= out 2 Tas = O
B <§> | = 5d:Reauestf.nterhlindOﬂ'ra.ckSectinnJ L = % =
» = org.eclipse.emf.ecore lE @
=] 2L
:'1'7 Drg.etllpse_urnlz.uml . env : Environment | | rc : RailCab | next : CrossingCaontral .El
k—g& org.scenariotools.msd.examples.rai I I T
¥ |z > org.scenarictools.msd.examples.rai [| | 03 . A0
. ; | | |
» =i JRE ?'fstem Library [JavaSE-1.7] : endOITSO : : =
Eﬁsrc 5532 e >|') E:.
FE&MFI’A—INF 6507 : : c :
¥ (& > model 7421] . reauestEnertd S N
F [> instance-model 5041 : : : t')
<4 > railcab.di 6048 : : :
|54 = railcab.notation 6048 | |i |
ia railcab.uml| 7421 : : enterAllowed{ isAllowed: Boolean) : jm
— | lastBreak() | I (=] Ere)
[2 L?ﬁtmp test 6428 L lwstBreakd i =1
[} build.properties 5532 i I i 8.
Y'[;_—'S& org.scenariotools.msd.examples.rai : : :
b = JRE System Library [JavaSE-1.7] ! ! ' & ...
(#§src 7423
b [= cycle-free-model 7610 .
b [y cycle-free-model-to-be-debugged
FE&MFI’A—INF 7423 EOE
b [testl-cycle-free-model 7842 =
%—gbuild p:operties 7423 CrivedntoCrossingCSD |EE CriveOntoCrossingCD |'E' EnteraAllowed TrueSD |'H' RequestEnterAtEnd... &3 |'H' EnterAllowedFalsesD |]
o .
l-'[)_—%:v org.scenariotools. msd.examples.syr
o= Tasks Problems E Properties 32 £Y Synchronize Console =¥ = g8
- =
i Model Explorer 33 =] RequestEnterAtEndOfTrackSection
o e} =
lEH' @ - lz =S UML Name RequestEnterAtEnd OfTrackSection
b B2 Model
Profile Is abstract (true (=) false Is active (Jtrue (=) false
Appearance _ .
Is leaf () true false Is reentrant true (| false
Advanced - @ @ -
Visibility public [*] Specification |{Undeﬁned> Edit.)
Precondition |4 | %] | # | Postcondition |4 %] ||

dependable evolvable pervasive software engineering group

Controller Synthesis

)

Q

09 SifUQ/
[

Computing

[r5e @ [®[$r-0-Q- [N [[#6r [a]

[Package Ex 2 = Plug-ins = O

ES|e <
~INF 6507
del 7421
nstance-model 6041
railcab_DriveOntoCrossing_v1l-dynamic.msdr
railcab_DriveOntoCrossing_vl-dynamic.scen:
railcab_DriveOntoCrossing_v1l-dynamicContr
railcab_DriveOntoCrossing_v1-dynamicContr
railcab_DriveOntoCrossing_vl.gy 7421
= railcab_DriveOntoCrossing_v1l.msdruntime
railcab_DriveOntoCrossing_vl.scenarioruncoi
= railcab_DriveOntoCrossing_wv1Controller.gv
= railcab_DriveOntoCrossing_wv1Controller.m:
railcab_DriveOntoCrossing_vZ.gw
= railcab_DriveOntoCrossing_v2.msdruntime
railcab_DriveOntoCrossing_v2.scenarioruncoi
= railcab_DriveOntoCrossing_w2Controller.gw
= railcab_DriveOntoCrossing_v2Controller.m:
railcab_Integrated.corr.xmi 7421
railcab_Integrated.ecore 7421
railcab_Integrated.interpreterconfiguration &0
railcab_Integrated.roles2echjects 7421
railcab_Integrated.scenariorunconfiguration

railcab_Integrated.xmi 7421
milmmln A CaAo

E- Model Explorer 532 = B

B Q%

No Model Available

railrah Mrivaintnrnecinn w1 Cantrallar Aav - Arn sranarintnnls med evamnla

test_Test.scenarioruf

[resource set
» [platform: fresour

Selection | Parent | List

&= Tasks ™/ Problemss

e 0o

% railcab_DriveOntoCrossing_v1Caontroller.gv

S

Artributes Zoom Out Zoom In

Property
Winfo

derived
editable
last modified
linked
location
name
path
size

azlastEmf:rgelmyBreakﬂ [24?5396(]8—}11:]\\

A

* noReturn() [247539608->rc]

1]
tenterMNext() [247539608->rc]

@

1
endOfTS() [247539608->rc]

Nas

tBreak() [247539608->rc]

time-New_configuration

idel finstance-model frailcal

o1

dependable evolvable pervasive software engineering group

Bynamically Updating

Controller

oldController

- lendOfTS()
- i[env->rc]
e i(removed)

[rc->next]
(removed)

enterAllowed(falsé)
[next->rc]

i
1

'

'

I

I

I
'
I
'
'
I
I
I
I
'
'
I
I
'
'
'

ienterNext()
1 [env->rc] |
: . 1astBrake()
! -7 [env->rc]
l‘. e 1:;stEmergencyBrake()
\ T [env->rc]
i - (removed)

", ,’InoRetum()
v/ [env->rc]

update

) v
c\ O/
o

Q

puting

gman

update

update

newController

endOfTS()

update i [env->rc]

requestEnter()
[rc->next]

enterAllowed(false)
[next->rc]

approachingCrossing()

[env->rc]

L ’l/astBrake()
" [env->rc]

As

heckCrossingStatus()

[rc->next]

rossingStatus(true)

[next->rc]

\\\ lastEmergencyBrake()
N [env->rc]

A noReturn()
">~ [env->rc]

‘<<//—/—"" -

v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'

ienterNext()
i [env-3rc]

32

Computing

Dynamic Updates and Self-Adaptation
Can we fill the gap?

dependable evolvable pervasive software engineering group

dependable evolvable pervasive software engineering group

09 Sifu°/
QO*
puting

99

T) Self-Adaptation &
Safe Updates s

e Self-adaptation must be safe:

— Parameter self-tuning is safe:
e No changes in the implementation

gman

— Self-adaptation via composition:
e Needs to rely on stateless components or services
— Self-adaptation of stateful applications:
e Requires quiescence
Can we do better?
e Our criterion of updatable states can help:
- Automatic identification of safe updatable states
- More timely adaptation
e No need to wait for quiescence

34

dependable evolvable pervasive software engineering group

) Sltu°/

2) Automatic generation of self»@

2z

adaptive systems :

Integrating goal models and scenario-based specifications:

e Goal models defines the adaptation

— The alternative goals and tasks

- The context triggering the adaptation
e MSD specification can define the behavior of goals and tasks
e The synthesis approach can automatically generate

— the controller of each adaptive behavior

— and the update transitions between them

35

*—o0

dependable evolvable pervasive software engineering group

RailCab Example

Obstacle
Detected

Approaching
Crossing

or or

Double Check

9 Sity
o %%
o

Q

puting

gman

36

dependable evolvable pervasive software engineering group

RailCab Example

Obstacle
Detected

Approaching
Crossing

or or

Double Check

Specification S Specification S'

dependable evolvable pervasive software engineering group

o—0—
o}“g SltUO/
®
g o
o puting
z
2

RailCab Example g

Obstacle
Detected

Approaching
Crossing

or or

Double Check ¢ 4

updatable
states \ i

SpeCification S SpeCification S' ': removed transitions

added update transitions and c-part

38

dependable evolvable pervasive software engineering group

RailCab Example i<

Obstacle
Approaching Detected
Crossing
or or
Double Check © g

updatable
states \ i

SpeCification S SpeCification S' ': removed transitions

Under which condition the update transitions are reversible?

39

dependable evolvable pervasive software engineering group

L) SifU°/
[

3) Dynamic Updates @
of Self-Adaptive Systems R

Applying the approach to the MAPE-K
e Adding new goals and associated behavior
— No need to manually define the K
e It can be derived from the specification
— No need to manually identify updatable states
— Automatic synthesis of unanticipated adaptive behavior

40

dependable evolvable pervasive software engineering group

9 Sity
o %

3) Dynamic Updates @
of Self-Adaptive Systems :

Applying the approach to the MAPE-K
e Adding new goals and associated behavior
— No need to manually define the K
e It can be derived from the specification
— No need to manually identify updatable states
— Automatic synthesis of unanticipated adaptive behavior

e Dynamic Updates of Monitoring capability?

41

Computing

HYDES

dependable evolvable pervasive software engineering group

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 40
	Slide 41
	Slide 42

