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Introduction

e Modern software systems are subject to continuous and
unanticipated changes:

— In the surrounding environment.

— In the requirements.
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e Toincorporate these changes, systems are typically
updated offline:

— Shutdown
— Update
— Restart
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Engineering software systems able to evolve at run-time

 Dynamic updates must be safe
- The update process must not lead to erroneous behavior
— Crucial for safety-critical applications.

e Systems must be updated as soon as possible
— To adapt to unpredicted changes in the environment

— To incorporate new critical requirements
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uncontrollable
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Open Reactive Systems
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Finite State Controller

controlled by
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Specification

?operate Environment Requirements
Assumptions

Sequences of events that
can occur in the environment

uncontrollable
environment

Sequences of events allowed
in the system
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Problem

In which state can a system safely
disregard the current obligations and
start behaving according to the new
specification?
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Our contribution

 Formalizing criteria for safe dynamic updates.
— Definition of updatable states [1].
— Additional criteria for more timely updates [2].

e Approach to automatically construct dynamically updating
systems from changes in MSD specification [1, 2].

e Tool realization as part of ScenarioTools [2].

[1] C.Ghezzi et al. “Synthesizing dynamically updating controllers from changes in
scenario based specification”, SEAMS 2012.

[2] V. Panzica La Manna et al. “Formalizing correctness criteria of dynamic
updates derived from specification changes”, SEAMS 2013.
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* Environment Assumptions: The points on the track section occur in

the shown order.

* Requirements: After endOfTS and before lastBrake, the RC requests

the crossing control permission to enter the crossing (...)

(
{

Nt

requestEnter

interval for the
required interaction %///////EEEEEAllowed(t/f)
lastEmergency enter

//w Brake Crossing

N\

: 1
1 r's
1 W
1 1

[

endOfTS noReturn
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Changed Assumptions: The event approachingCrossing occurs in the
sequence of environment events as shown

New Added Requirement: After approachingCrossing and before
lastEmergencyBrake, the RC must check the status of the crossing.
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 1

[

N7

|
N
b

|

T . 1
new =

1 1 required interaction | 1 1
endOfTS noReturn
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Example Offline Update

( )] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
,/W Brake Crossing

%

[ |
F Y
w

[ |

endOfTS noReturn

checkCrossingStatus

crossingStatus
approaching

astEmergenc enter
Crossing és» Jeney

Brake Crossing
|

(%

[ |
A
w

[ |
new

[ 1 required interaction
endOfTS noReturn

16



dependable evolvable pervasive software engineering group

Q‘“g S”“"/

0’
Computing

Example Offline Update

( )] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

N7

[ |
A
w

[ |

endOfTS noReturn

update not possible

checkCrossingStatus

crossingStatus
approaching

astEmergenc enter
Crossing ;"3 Jeney

Brake Crossing
|

(%

[ |
A
w

[ |
new
[ 1 required interaction

endOfTS noReturn
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( )] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

N7

[ |
A
w

[ |

endOfTS noReturn

update not possible

update possible _
checkCrossingStatus
crossingStatus
approathng astEmergency enter
CrOSSlng ﬂ Brake Crossing
1 | | | [ |
g ! g '
5 " " " &
f [ ] [ w
| { | [ |
new : :
[ 1 required interaction [ [ ]
endOfTS noReturn
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( )] requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter
éa» Brake Crossing

| | | |

' ' ' '
N " ' " F
< [ [ 1 h 3

| | | [ |

| : | |

endOfTS noReturn

update not possible

update possible _
checkCrossingStatus
crossingStatus
approathng astEmergency enter
Brake Crossing
1 1 1 L}
! y ! '
5 " " " &
f [ ] [ w
1 { 1 [}
new . .
[ 1 required interaction [ [ ]
endOfTS noReturn

How to dynamically update the RailCab to the new behavior at run-time?
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( ) requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

N7

[ |
A
w

[ |

endOfTS noReturn

checkCrossingStatus

crossingStatus
approaching

Crossing ;"3

astEmergency enter

Brake Crossing
|

(%

[ |
A
w

[ |
new
[ 1 required interaction

endOfTS noReturn
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( )] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing

(7

[ |
A
w

[ |

endOfTS noReturn

update possible

checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 |

[ |
A
v

[ |
new
1 required interaction

N =

[ | [ |
noReturn

initial state: it can always be updated
(same behavior of off-line updates).
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( ) requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

f/w Brake Crossing

[ |
A
w

[ |

N\
L A ]
- ...
L A ]

'endOfTS Y noReturn

update possible not sure
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 |

(%

[ |
A
w

[ |
new
[ 1 required interaction 1 '

endOfTS noReturn

the running system does not remember this event
since it is not present in the old assumptions

O
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( ) requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

f/w Brake Crossing

[ |
A
w

[ |

N\
L A ]
- ...
L A ]

l endOfTS Y noReturn

update possible not sure update possible
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Brake Crossing
1 |

(%

[ |
A
w

[ |
new
[ 1 required interaction 1 '

endOfTS noReturn

O

here we can be sure that approachingCrossing
has occurred (due to the new assumption)
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¢ ) requestEnter

interval for the
required interaction ‘mAllowed (t/£f)
lastEmergency enter
'ﬁw Brake Crossing

¥

7

endOfTS noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus
approaching

Crossing éw

astEmergency enter

Brake Crossing
|

N\
- omom

[ |
A
w

[ |
new
[ 1 required interaction

endOfTS noReturn
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( )] requestEnter

interval for the
required interaction ﬂAllowed (t/£)
lastEmergency enter
és» Brake Crossing ‘»

(7

[ |
A
w

[ |

endOfTS noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus
approaching

astEmergency enter

Brake Crossing
1 |

(%

[}

A

) 4
[}

N =

new
[ 1 required interaction 1 '

endOfTS noReturn

When is a system updatable?

25



dependable evolvable pervasive software engineering group

9 Sity
o' %%

Fundamental criterion @

¢ ) requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

f/w Brake Crossing

(7

[ |
A
w

[ |

'endOfTS Y noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus
approaching

astEmergency enter

Brake Crossing
1 L}

(%

[ |
A
v

[ |
new
[ 1 required interaction 1 '

endOfTS noReturn

N =

Intuition 1: The system must continue its past execution to satisfy S'.
26
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¢ ) requestEnter
interval for the
required interaction mexllowed (t/£)
lastEmergency enter

/-/,37 Brake Crossing

(7

[ |
A
w

[ |

'endOfTS Y noReturn

update possible not sure update possible too late
checkCrossingStatus

crossingStatus

approaching astEmergency enter

Crossing ?3 Brake Crossing
| 1 |

[ |
§ ¢
} . [ |
new
[ 1 required interaction 1 '

endOfTS noReturn

(%

N =

Intuition 2: The considered past execution starts from the last time
the initial state is visited.

27
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j—’ = » ! change in requirements or = » !
I I . . I I
e E— environment assumptions e

o | e —

| . | puna I
: - - (assumption or requirement : - -
MSDs added or removed)

puting

Specification S

automated
¢ is implemented by synthesis

updatablﬂe\ states update transitions

Specification S'

current controller

YO N~
copy of the controller for
current controller implementing S’
dynamically updating controller
28
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interval for the
required interaction

enterAllowed (t/£)

lastEmergency enter

Brake Crossing
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EEEEEN
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noReturn
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states
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-
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“: removed transitions

added update transitions and c*-part 29
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[ Package Ex 2 = Plug-ins = O
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~INF 6507
del 7421
nstance-model 6041
railcab_DriveOntoCrossing_v1l-dynamic.msdr
railcab_DriveOntoCrossing_vl-dynamic.scen:
railcab_DriveOntoCrossing_v1l-dynamicContr
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railcab_DriveOntoCrossing_vl.gy 7421
= railcab_DriveOntoCrossing_v1l.msdruntime
railcab_DriveOntoCrossing_vl.scenarioruncoi
= railcab_DriveOntoCrossing_wv1Controller.gv
= railcab_DriveOntoCrossing_wv1Controller.m:
railcab_DriveOntoCrossing_vZ.gw
= railcab_DriveOntoCrossing_v2.msdruntime
railcab_DriveOntoCrossing_v2.scenarioruncoi
= railcab_DriveOntoCrossing_w2Controller.gw
= railcab_DriveOntoCrossing_v2Controller.m:
railcab_Integrated.corr.xmi 7421
railcab_Integrated.ecore 7421
railcab_Integrated.interpreterconfiguration &0
railcab_Integrated.roles2echjects 7421
railcab_Integrated.scenariorunconfiguration

railcab_Integrated.xmi 7421
milmmln A CaAo

E- Model Explorer 532 = B

B Q%

No Model Available

railrah Mrivaintnrnecinn w1 Cantrallar Aav - Arn sranarintnnls med evamnla

test_Test.scenarioruf

[ resource set
» [ platform: fresour

Selection | Parent | List

&= Tasks ™/ Problemss

e 0o

% railcab_DriveOntoCrossing_v1Caontroller.gv

S

Artributes Zoom Out Zoom In

Property
Winfo

derived
editable
last modified
linked
location
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path
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azlastEmf:rgelmyBreakﬂ [24?5396(]8—}11:]\\

A

* noReturn() [247539608->rc]

1]
tenterMNext() [247539608->rc]

@

1
endOfTS() [247539608->rc]

Nas

tBreak() [247539608->rc]

time-New_configuration
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Controller

oldController

- lendOfTS()
- i[env->rc]
e i(removed)

[rc->next]
(removed)

enterAllowed(falsé)
[next->rc]

i
1

'

'

I

I

I
'
I
'
'
I
I
I
I
'
'
I
I
'
'
'

ienterNext()
1 [env->rc] |
: . 1astBrake()
! -7 [env->rc]
l‘. e 1:;stEmergencyBrake()
\ T [env->rc]
i - (removed)

", ,’InoRetum()
v/ [env->rc]

update

) v
c\ O/
o

Q
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update

update

newController

endOfTS()

update i [env->rc]

requestEnter()
[rc->next]

enterAllowed(false)
[next->rc]

approachingCrossing()

[env->rc]

L ’l/astBrake()
" [env->rc]

As

heckCrossingStatus()

[rc->next]

rossingStatus(true)

[next->rc]

\\\ lastEmergencyBrake()
N [env->rc]

A noReturn()
">~ [env->rc]

‘<<//—/—"" -

v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'

ienterNext()
i [env-3rc]
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T) Self-Adaptation &
Safe Updates s

e Self-adaptation must be safe:

— Parameter self-tuning is safe:
e No changes in the implementation

gman

— Self-adaptation via composition:
e Needs to rely on stateless components or services
— Self-adaptation of stateful applications:
e Requires quiescence
Can we do better?
e Our criterion of updatable states can help:
- Automatic identification of safe updatable states
- More timely adaptation
e No need to wait for quiescence

34



dependable evolvable pervasive software engineering group

) Sltu°/

2) Automatic generation of self»@

2z

adaptive systems :

Integrating goal models and scenario-based specifications:

e Goal models defines the adaptation

— The alternative goals and tasks

- The context triggering the adaptation
e MSD specification can define the behavior of goals and tasks
e The synthesis approach can automatically generate

— the controller of each adaptive behavior

— and the update transitions between them

35
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Obstacle
Detected

Approaching
Crossing

or or

Double Check

Specification S Specification S'
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RailCab Example g

Obstacle
Detected

Approaching
Crossing

or or

Double Check ¢ 4

updatable
states \ i

SpeCification S SpeCification S' ': removed transitions

added update transitions and c-part

38
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RailCab Example i<

Obstacle
Approaching Detected
Crossing
or or
Double Check © g

updatable
states \ i

SpeCification S SpeCification S' ': removed transitions

Under which condition the update transitions are reversible?

39
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3) Dynamic Updates @
of Self-Adaptive Systems R

Applying the approach to the MAPE-K
e Adding new goals and associated behavior
— No need to manually define the K
e It can be derived from the specification
— No need to manually identify updatable states
— Automatic synthesis of unanticipated adaptive behavior

40
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3) Dynamic Updates @
of Self-Adaptive Systems :

Applying the approach to the MAPE-K
e Adding new goals and associated behavior
— No need to manually define the K
e It can be derived from the specification
— No need to manually identify updatable states
— Automatic synthesis of unanticipated adaptive behavior

e Dynamic Updates of Monitoring capability?

41
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