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Research Interests
• High-performance computing
• Developing parallel numerical libraries

– Fast Fourier transform (FFT)
• “FFTE library” http://www.ffte.jp/
• FFTE's 1-D parallel FFT routine has been incorporated into the 

HPC Challenge (HPCC) benchmark.

– Multiple-precision arithmetic

– Linear algebra

• Performance tuning
– Code optimization (parallelization, vectorization, etc.)

– Memory optimization (cache blocking, etc.)

http://www.ffte.jp/
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Outline
• Performance development of 

supercomputers

• It’s all bandwidth

• Performance tuning
– What is performance tuning?
– Program optimization methods

• Implementation of parallel 1-D FFT using 
AVX instructions on multi-core processors



2011/11/22 NII Shonan Meeting 4

Performance Development of 
Supercomputers

• November 2011 TOP500 Supercomputing Sites
– K computer (SPARC VIIIfx 8-core 2 GHz)

10.51 PFlops (705,024 Cores)
– Tianhe-1A (X5670 2.93 GHz 6-core, NVIDIA C2050)

2.566 PFlops (186,368 Cores)
– Jaguar (Cray XT5-HE 6-core 2.6 GHz)

1.759 PFlops (224,162 Cores)

• Recently, the number of cores keeps increasing.
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The K Computer

Source: http://www.top500.org/
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Source: http://www.top500.org/
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Linpack Benchmark
• Developed by Jack Dongarra of the 

University of Tennessee. 

• Benchmark test for evaluating floating-point 
processing performance

• Uses Gaussian elimination method to 
estimate the time required for solving 
simultaneous linear equations

• Also used for the “TOP500 Supercomputer” 
benchmark
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Indicator of Capability for Supplying 
Data to the Processor

• In a computer system that performs scientific 
computations, the “capability for supplying data to 
the processor” is most important.

• Unless data is supplied to the arithmetic unit of the 
processor, computations cannot be performed.

• The computing performance of the processor is 
largely impacted by the data supply capacity.

• “Bandwidth” is used as an indicator of the data 
supply capability.
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Source: Wikipedia
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Memory Hierarchy (1/2)

• Memory hierarchy is designed based on the 
assumed locality of patterns of access to the 
memory area.

• Different types of locality:
– Temporal locality

• Property whereby the accessing of a certain address 
reoccurs within a relatively short time interval

– Spatial locality
• Property whereby data accessed within a certain time 

interval is distributed among relatively nearby addresses
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Memory Hierarchy (2/2)

• These tendencies often apply to business 
computations and other non-numeric 
computations, but are not generally applicable to 
numeric computation programs.

• Especially in large-scale scientific computations, 
there is often no temporal locality for data 
references.

• This is a major reason why vector-type 
supercomputers are advantageous for scientific 
computations.
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Concept of Byte/Flop
• The amount of memory access needed when performing a 

single floating-point operation is defined in byte/flop.

• With daxpy, double-precision real-number data must be 
loaded/stored three times (24 bytes total) in order to 
perform two double-precision floating-point operations per 
single iteration.
– In this case, 24Byte/2Flop = 12Byte/Flop.

• The smaller the Byte/Flop value is better.

void daxpy(int n, double a, double *x, double *y)
{
    int i;
    for (i = 0; i < n; i++)
        y[i] += a * x[i];
}
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Performance of DAXPY (Intel Xeon 
E3-1230 3.2GHz 8MB L3 cache, 

Intel MKL 10.3)
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PC and Vector-type Supercomputer 
Memory Bandwidth

• Intel Xeon E5-2687W (Sandy Bridge-EP 3.1GHz,
4 x DDR3-1600, 2 sockets/node)
– The theoretical peak performance of each node is

24.8GFlops×8 cores×2 sockets=396.8GFlops

– Memory bandwidth up to 51.2GB/s

– Byte/Flop value is 51.2/396.8≒0.129

• NEC SX-9A (16 CPUs/node)
– The theoretical peak performance of each node is 

102.4GFlops×16CPU=1638.4GFlops

– Memory bandwidth up to 4TB/s

– Byte/Flop value is 4096/1638.4=2.5
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Comparison of Theoretical 
Performance in DAXPY

• Intel Xeon E5-2687W
– Theoretical peak performance of each node: 396.8GFlops
– In the case where the working set exceeds the cache 

capacity, the memory bandwidth (51.2GB/s) is rate-
limiting and so the limit is (51.2GB/s)/
(12Byte/Flop)≒4.27GFlops

– Only approximately 1.1% of theoretical peak performance!

• NEC SX-9A
– Theoretical peak performance of each node: 

1,638.4GFlops
– The memory bandwidth (4TB/s) is rate-limiting, and so the 

limit is (4TB/s)/(12Byte/Flop)≒341.3GFlops
– Approximately 20.8% of theoretical peak performance.
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Arithmetic Operations in BLAS
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Performances of DGEMV and 
DGEMM (Intel Xeon E3-1230 3.2GHz 

8MB L3 cache, Intel MKL 10.3)
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Significance of Performance Tuning

• In the case of calculations whose runtime lasts for 
several months or longer, optimization may result 
in a reduction of runtime on the order of a month.

• As in the case of numeric libraries, if a program is 
used by many people, tuning will have sufficient 
value.

• If tuning results in a 30% improvement in 
performance, for example, the net result is the 
same as using a machine having 30% higher 
performance.
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Optimization Policy
• If available, use a vendor-supplied high-speed library as 

much as possible.
– BLAS, LAPACK, etc.

• The optimization capability of recent compilers is extremely 
high.

• Optimization that can be performed by the compiler must 
not be performed on the user side.
– Requires extra effort
– Results in a program that is complicated and may contain bugs 

• Overestimates the optimizing capability of compilers
– Humans are dedicated to improving algorithms.

– Unless otherwise unavoidable, do not use an assembler.
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Optimization Information of
Fujitsu Fortran Compiler

 (line-no.)(nest)(optimize)

         80                     !$OMP DO

         81     1   p                 DO 70 II=1,NX,NBLK

         82     2   p                   DO 30 JJ=1,NY,NBLK

                              <<< Loop-information Start >>>

                              <<<  [OPTIMIZATION]

                              <<<    PREFETCH       : 2

                              <<<      A: 2

                              <<< Loop-information  End >>>

         83     3   p                     DO 20 I=II,MIN0(II+NBLK-1,NX)

         84     3               !OCL SIMD(ALIGNED)

                              <<< Loop-information Start >>>

                              <<<  [OPTIMIZATION]

                              <<<    SIMD

                              <<<    SOFTWARE PIPELINING

                              <<< Loop-information  End >>>

         85     4   p   8v                  DO 10 J=JJ,MIN0(JJ+NBLK-1,NY)

         86     4   p   8v                    B(J,I-II+1)=A(I,J)

         87     4   p   8v         10       CONTINUE
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Loop Unrolling (1/2)
• Loop unrolling expands a loop in order to do the 

following:
– Reduce loop overhead
– Perform register blocking 

• If expanded too much, register shortages or 
instruction cache misses may occur, and so care 
is needed.

double A[N], B[N], C;

for (i = 0; i < N; i++) {

  A[i] += B[i] * C;

}

double A[N], B[N], C;

for (i = 0; i < N; i += 4) {

  A[i] += B[i] * C;

  A[i+1] += B[i+1] * C;

  A[i+2] += B[i+2] * C;

  A[i+3] += B[i+3] * C;

}
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Loop Unrolling (2/2)

double A[N][N], B[N][N],

            C[N][N], s;

for (j = 0; j < N; k++) {

   for (i = 0; i < N; j++) {

      s = 0.0;

      for (k = 0; k < N; k++) {

         s += A[i][k] * B[j][k];

      }

      C[j][i] = s;

    }

}

double A[N][N], B[N][N],
        C[N][N], s0, s1;

for (j = 0; j < N; j += 2)

   for (i = 0; i < N; i++) {

      s0 = 0.0;  s1 = 0.0;

      for (k = 0; k < N; k++) {

         s0 += A[j][k] * B[j][k];

         s1 += A[j+1][k] * B[j][k];

      }

      C[j][i] = s0;

      C[j+1][i] = s1;

   }
Matrix multiplication Optimized matrix multiplication
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Loop Interchange
• Loop interchange is a technique mainly for reducing the 

adverse effects of large-stride memory accesses.

• In some cases, the compiler judges the necessity and 
performs loop interchanges.

double A[N][N], B[N][N], C;

for (j = 0; j < N; j++) {

  for (k = 0; k < N; k++) {

    A[k][j] += B[k][j] * C;

  }

}

Before loop interchange

double A[N][N], B[N][N], C;

for (k = 0; k < N; k++) {

  for (j = 0; j < N; j++) {

    A[k][j] += B[k][j] * C;

  }

}

After loop interchange
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Padding
• Effective in cases where multiple arrays have been mapped 

to the same cache location and thrashing occurs
– Especially in the case of an array having a size that is a power of two

• It is recommended to change the defined sizes of two-
dimensional arrays.

• In some instances, this can be handled by specifying the 
compile options.

double A[N][N], B[N][N];

for (k = 0; k< N; k++) {

  for (j = 0; j < N; j++) {

    A[j][k] = B[k][j];

  }

}
Before padding

double A[N][N+1], B[N][N+1];

for (k = 0; k < N; k++) {

  for (j = 0; j < N; j++) {

        A[j][k] = B[k][j];

  }

}
After padding
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Cache Blocking (1/2)

• Effective method for optimizing memory accesses
• Cache misses are reduced as much as possible.

double A[N][N], B[N][N], C;

for (i = 0; i < N; i++) {

  for (j = 0; j < N; j++) {

    A[i][j] += B[j][i] * C;

  }

}

double A[N][N], B[N][N], C;

for (ii = 0; ii < N; ii += 4) {

  for (jj = 0; jj < N; jj += 4) {

    for (i = ii; i < ii + 4; i++) {

      for (j = jj; j < jj + 4; j++) {

        A[i][j] += B[j][i] * C;

      }

    }

  }

}
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Cache Blocking (2/2)

Memory access pattern 
without blocking

Memory access pattern 
with blocking
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An Implementation of Parallel 1-D FFT Using 
AVX Instructions on Multi-Core Processors

• The fast Fourier transform (FFT) is an algorithm 
widely used today in science and engineering.

• Today, a number of processors have short 
vector SIMD instructions, e.g.,
– Intel: SSE, SSE2, SSE3, SSSE3, SSE4 and AVX
– AMD: 3DNow!
– Motorola: AltiVec

• These instructions provide substantial speedup 
for digital signal processing applications.

• Efficient FFT implementations with short vector 
SIMD instructions have also been investigated.
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Background

• Many FFT algorithms work well when the data 
sets fit into the cache.

• However, when the problem size exceeds the 
cache size, the performance of these FFT 
algorithms decreases dramatically.

• The key issue in the design of large FFTs is 
minimizing the number of cache misses.

• Thus, both vectorization and high cache 
utilization are particularly important with respect 
to high performance on processors that have 
short vector SIMD instructions.



2012/5/19 NII Shonan Meeting 29

Related Works

• FFTW 3.3 [Frigo and Johnson]
– Supports AVX instructions (new in version 3.3.).
– The recursive call is employed to access main 

memory hierarchically.
– http://www.fftw.org/

• SPIRAL [Pueschel et al.]
– Supports AVX instructions.

– The goal of SPIRAL is to push the limits of 
automation in software and hardware development 
and optimization for DSP algorithms.

– http://www.spiral.net/

http://www.fftw.org/
http://www.spiral.net/
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Approach
• Some previously presented six-step FFT 

algorithms [VanLoan92] separate the 
multicolumn FFTs from the transpositions.

• Taking the opposite approach, we combine 
the multicolumn FFTs and transpositions to 
reduce the number of cache misses.

• We modify the conventional six-step FFT 
algorithm to reuse data in the cache 
memory.
→ We will call it a “block six-step FFT”.
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Intel AVX Instructions

• Intel Advanced Vector Extensions (AVX) were 
introduced into the Sandy Bridge processor.

• The most direct way to use the AVX instructions 
is to insert the assembly language instructions 
inline into source code.

• However, this can be time-consuming and 
tedious, and assembly language inline 
programming is not supported on all compilers.

• The Intel C/C++ and Fortran Compilers support 
automatic vectorization of floating-point loops 
using AVX instructions.
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How to Use the AVX Instructions
• The AVX instructions may be used in the following 

ways.

  (1) Vectorization by compiler

  (2) Using AVX intrinsic functions

  (3) Using an inline assembler

  (4) Directly writing a “.s” file with an assembler

• In order from (1) to (4), the coding increases in 
complexity, but there are advantages from the 
perspective of performance.
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An Example of a Vectorizable 
Radix-2 FFT Kernel

    SUBROUTINE FFT(A,B,W,M,L)

     COMPLEX*16 A(M,L,*),B(M,2,*),W(*)

     COMPLEX*16 C0,C1

     DO J=1,L

!DIR$ VECTOR ALIGNED

          DO I=1,M

              C0=A(I,J,1)

              C1=A(I,J,2)

              B(I,1,J)=C0+C1

              B(I,2,J)=W(J)*(C0-C1)

          END DO

     END DO

     RETURN

     END

The innermost loop lengths 
are varied from 1 to n/2 for 
n-point FFTs during log2(n) 
stages.
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First Stage of a Vectorizable
Radix-2 FFT Kernel

    SUBROUTINE FFT1ST(A,B,W,L)

     COMPLEX*16 A(L,*),B(2,*),W(*)

     COMPLEX*16 C0,C1

!DIR$ VECTOR ALIGNED

     DO J=1,L

          C0=A(J,1)

          C1=A(J,2)

          B(1,J)=C0+C1

          B(2,J)=W(J)*(C0-C1)

     END DO

     RETURN

     END

When the innermost loop 
length is one, the double-
nested loop can be collapsed 
into a single-nested loop to 
expand innermost loop length.
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Vectorized Assembly Code of 
Radix-2 FFT Kernel

vmovupd   (%edx,%ecx), %ymm3

vmovupd   (%edx,%ebx), %ymm4

vsubpd      %ymm4, %ymm3, %ymm5 

vaddpd      %ymm4, %ymm3, %ymm2 

vmulpd      %ymm5, %ymm1, %ymm7

vmovupd   %ymm2, (%edx,%edi) 

vshufpd     $5, %ymm5, %ymm5, %ymm6

vmulpd      %ymm6, %ymm0, %ymm2

vmovupd   32(%edx,%ecx), %ymm5

vmovupd   32(%edx,%ebx), %ymm6

vaddsubpd %ymm2, %ymm7, %ymm3

vsubpd       %ymm6, %ymm5, %ymm7

vaddpd       %ymm6, %ymm5, %ymm4

vmovupd    %ymm3, (%edx,%eax)

vmulpd       %ymm7, %ymm1, %ymm2

vmovupd    %ymm4, 32(%edx,%edi)

vshufpd      $5, %ymm7, %ymm7, %ymm7

vmulpd       %ymm7, %ymm0, %ymm3

vaddsubpd %ymm3, %ymm2, %ymm4

vmovupd    %ymm4, 32(%edx,%eax)
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Discrete Fourier Transform (DFT)

• 1-D DFT is given by
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2-D Formulation
• If     has factors      and       then1n
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• Using the above expression, the DFT 
formulation can be rewritten as follows:
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Six-Step FFT Algorithm

• This derivation leads to the following six-step 
FFT algorithm [Bailey90, VanLoan92]:

• Step 1: Transpose
• Step 2:     individual     -point multicolumn FFTs
• Step 3: Twiddle factor (          ) multiplication
• Step 4: Transpose
• Step 5:     individual    -point multicolumn FFTs
• Step 6: Transpose
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Block Six-Step FFT-Based Parallel
1-D FFT Algorithm
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Performance of 1-D FFTs on Intel Core i5-2520M
(Sandy Bridge 2.5 GHz)
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Conclusion

• Cache-aware algorithms are indispensable for 
achieving high performance on cache-based 
processors.

• The ability to perform optimization without the 
memory bandwidth becoming rate-limited is 
important for future processors.
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Challenges

• To abstract the hardware configuration for 
application developers is much more important.

• Domain specific-language is one of the solutions.
– SPIRAL, etc.

• The another way is developing numerical libraries 
to exploit the system performance.

• How to reduce the cost of performance tuning?
– Automatic tuning

– Automated code generation


