
Performance Tuning for High 
Performance Computing 

Applications

Daisuke Takahashi

University of Tsukuba, Japan

2012/5/19 NII Shonan Meeting 1



2012/5/19 NII Shonan Meeting 2

Research Interests
• High-performance computing
• Developing parallel numerical libraries

– Fast Fourier transform (FFT)
• “FFTE library” http://www.ffte.jp/
• FFTE's 1-D parallel FFT routine has been incorporated into the 

HPC Challenge (HPCC) benchmark.

– Multiple-precision arithmetic

– Linear algebra

• Performance tuning
– Code optimization (parallelization, vectorization, etc.)

– Memory optimization (cache blocking, etc.)

http://www.ffte.jp/


2012/5/19 NII Shonan Meeting 3

Outline
• Performance development of 

supercomputers

• It’s all bandwidth

• Performance tuning
– What is performance tuning?
– Program optimization methods

• Implementation of parallel 1-D FFT using 
AVX instructions on multi-core processors



2011/11/22 NII Shonan Meeting 4

Performance Development of 
Supercomputers

• November 2011 TOP500 Supercomputing Sites
– K computer (SPARC VIIIfx 8-core 2 GHz)

10.51 PFlops (705,024 Cores)
– Tianhe-1A (X5670 2.93 GHz 6-core, NVIDIA C2050)

2.566 PFlops (186,368 Cores)
– Jaguar (Cray XT5-HE 6-core 2.6 GHz)

1.759 PFlops (224,162 Cores)

• Recently, the number of cores keeps increasing.



2012/5/19 NII Shonan Meeting 5

The K Computer

Source: http://www.top500.org/



2012/5/19 NII Shonan Meeting 6

Source: http://www.top500.org/



2012/5/19
NII Shonan Meeting

7

Linpack Benchmark
• Developed by Jack Dongarra of the 

University of Tennessee. 

• Benchmark test for evaluating floating-point 
processing performance

• Uses Gaussian elimination method to 
estimate the time required for solving 
simultaneous linear equations

• Also used for the “TOP500 Supercomputer” 
benchmark



2012/5/19 NII Shonan Meeting 8

Indicator of Capability for Supplying 
Data to the Processor

• In a computer system that performs scientific 
computations, the “capability for supplying data to 
the processor” is most important.

• Unless data is supplied to the arithmetic unit of the 
processor, computations cannot be performed.

• The computing performance of the processor is 
largely impacted by the data supply capacity.

• “Bandwidth” is used as an indicator of the data 
supply capability.



2012/5/19 NII Shonan Meeting 9

Source: Wikipedia



2012/5/19 NII Shonan Meeting 10

Memory Hierarchy (1/2)

• Memory hierarchy is designed based on the 
assumed locality of patterns of access to the 
memory area.

• Different types of locality:
– Temporal locality

• Property whereby the accessing of a certain address 
reoccurs within a relatively short time interval

– Spatial locality
• Property whereby data accessed within a certain time 

interval is distributed among relatively nearby addresses



2012/5/19 NII Shonan Meeting 11

Memory Hierarchy (2/2)

• These tendencies often apply to business 
computations and other non-numeric 
computations, but are not generally applicable to 
numeric computation programs.

• Especially in large-scale scientific computations, 
there is often no temporal locality for data 
references.

• This is a major reason why vector-type 
supercomputers are advantageous for scientific 
computations.



2012/5/19 NII Shonan Meeting 12

Concept of Byte/Flop
• The amount of memory access needed when performing a 

single floating-point operation is defined in byte/flop.

• With daxpy, double-precision real-number data must be 
loaded/stored three times (24 bytes total) in order to 
perform two double-precision floating-point operations per 
single iteration.
– In this case, 24Byte/2Flop = 12Byte/Flop.

• The smaller the Byte/Flop value is better.

void daxpy(int n, double a, double *x, double *y)
{
    int i;
    for (i = 0; i < n; i++)
        y[i] += a * x[i];
}



2011/12/21
Advanced Course in High Performance 

Computing
13

Performance of DAXPY (Intel Xeon 
E3-1230 3.2GHz 8MB L3 cache, 

Intel MKL 10.3)

0
10

20
30

40
50

60
70

80
90

100

1 32 1024 32768 1048576

vector size  n

G
F
lo

p
s



2012/5/19 NII Shonan Meeting 14

PC and Vector-type Supercomputer 
Memory Bandwidth

• Intel Xeon E5-2687W (Sandy Bridge-EP 3.1GHz,
4 x DDR3-1600, 2 sockets/node)
– The theoretical peak performance of each node is

24.8GFlops×8 cores×2 sockets=396.8GFlops

– Memory bandwidth up to 51.2GB/s

– Byte/Flop value is 51.2/396.8≒0.129

• NEC SX-9A (16 CPUs/node)
– The theoretical peak performance of each node is 

102.4GFlops×16CPU=1638.4GFlops

– Memory bandwidth up to 4TB/s

– Byte/Flop value is 4096/1638.4=2.5



2012/5/19 NII Shonan Meeting 15

Comparison of Theoretical 
Performance in DAXPY

• Intel Xeon E5-2687W
– Theoretical peak performance of each node: 396.8GFlops
– In the case where the working set exceeds the cache 

capacity, the memory bandwidth (51.2GB/s) is rate-
limiting and so the limit is (51.2GB/s)/
(12Byte/Flop)≒4.27GFlops

– Only approximately 1.1% of theoretical peak performance!

• NEC SX-9A
– Theoretical peak performance of each node: 

1,638.4GFlops
– The memory bandwidth (4TB/s) is rate-limiting, and so the 

limit is (4TB/s)/(12Byte/Flop)≒341.3GFlops
– Approximately 20.8% of theoretical peak performance.



2011/12/21
Advanced Course in High Performance 

Computing
16

Arithmetic Operations in BLAS

BLAS
   Loads

 +
   Stores

Operati
ons

Ratio

Level 1 DAXPY

Level 2 DGEMV

Level 3 DGEMM

xyy α+=

Axyy αβ +=

ABCC αβ +=

mnmn 2++

kmn ==

n3

knmkmn ++2

n2

mn2

mnk2

2:3

2:1

n:2



2011/12/21
Advanced Course in High Performance 

Computing
17

Performances of DGEMV and 
DGEMM (Intel Xeon E3-1230 3.2GHz 

8MB L3 cache, Intel MKL 10.3)

0
10

20
30
40

50
60
70
80

90
100

100 600 1100 1600

matrix order

G
F
lo

p
s

DGEMM
DGEMV



2012/5/19 NII Shonan Meeting 18

Significance of Performance Tuning

• In the case of calculations whose runtime lasts for 
several months or longer, optimization may result 
in a reduction of runtime on the order of a month.

• As in the case of numeric libraries, if a program is 
used by many people, tuning will have sufficient 
value.

• If tuning results in a 30% improvement in 
performance, for example, the net result is the 
same as using a machine having 30% higher 
performance.



2012/5/19 NII Shonan Meeting 19

Optimization Policy
• If available, use a vendor-supplied high-speed library as 

much as possible.
– BLAS, LAPACK, etc.

• The optimization capability of recent compilers is extremely 
high.

• Optimization that can be performed by the compiler must 
not be performed on the user side.
– Requires extra effort
– Results in a program that is complicated and may contain bugs 

• Overestimates the optimizing capability of compilers
– Humans are dedicated to improving algorithms.

– Unless otherwise unavoidable, do not use an assembler.



2012/5/19 NII Shonan Meeting 20

Optimization Information of
Fujitsu Fortran Compiler

 (line-no.)(nest)(optimize)

         80                     !$OMP DO

         81     1   p                 DO 70 II=1,NX,NBLK

         82     2   p                   DO 30 JJ=1,NY,NBLK

                              <<< Loop-information Start >>>

                              <<<  [OPTIMIZATION]

                              <<<    PREFETCH       : 2

                              <<<      A: 2

                              <<< Loop-information  End >>>

         83     3   p                     DO 20 I=II,MIN0(II+NBLK-1,NX)

         84     3               !OCL SIMD(ALIGNED)

                              <<< Loop-information Start >>>

                              <<<  [OPTIMIZATION]

                              <<<    SIMD

                              <<<    SOFTWARE PIPELINING

                              <<< Loop-information  End >>>

         85     4   p   8v                  DO 10 J=JJ,MIN0(JJ+NBLK-1,NY)

         86     4   p   8v                    B(J,I-II+1)=A(I,J)

         87     4   p   8v         10       CONTINUE



2012/5/19
NII Shonan Meeting

21

Loop Unrolling (1/2)
• Loop unrolling expands a loop in order to do the 

following:
– Reduce loop overhead
– Perform register blocking 

• If expanded too much, register shortages or 
instruction cache misses may occur, and so care 
is needed.

double A[N], B[N], C;

for (i = 0; i < N; i++) {

  A[i] += B[i] * C;

}

double A[N], B[N], C;

for (i = 0; i < N; i += 4) {

  A[i] += B[i] * C;

  A[i+1] += B[i+1] * C;

  A[i+2] += B[i+2] * C;

  A[i+3] += B[i+3] * C;

}



2012/5/19
NII Shonan Meeting

22

Loop Unrolling (2/2)

double A[N][N], B[N][N],

            C[N][N], s;

for (j = 0; j < N; k++) {

   for (i = 0; i < N; j++) {

      s = 0.0;

      for (k = 0; k < N; k++) {

         s += A[i][k] * B[j][k];

      }

      C[j][i] = s;

    }

}

double A[N][N], B[N][N],
        C[N][N], s0, s1;

for (j = 0; j < N; j += 2)

   for (i = 0; i < N; i++) {

      s0 = 0.0;  s1 = 0.0;

      for (k = 0; k < N; k++) {

         s0 += A[j][k] * B[j][k];

         s1 += A[j+1][k] * B[j][k];

      }

      C[j][i] = s0;

      C[j+1][i] = s1;

   }
Matrix multiplication Optimized matrix multiplication



2012/5/19
NII Shonan Meeting

23

Loop Interchange
• Loop interchange is a technique mainly for reducing the 

adverse effects of large-stride memory accesses.

• In some cases, the compiler judges the necessity and 
performs loop interchanges.

double A[N][N], B[N][N], C;

for (j = 0; j < N; j++) {

  for (k = 0; k < N; k++) {

    A[k][j] += B[k][j] * C;

  }

}

Before loop interchange

double A[N][N], B[N][N], C;

for (k = 0; k < N; k++) {

  for (j = 0; j < N; j++) {

    A[k][j] += B[k][j] * C;

  }

}

After loop interchange



2012/5/19
NII Shonan Meeting

24

Padding
• Effective in cases where multiple arrays have been mapped 

to the same cache location and thrashing occurs
– Especially in the case of an array having a size that is a power of two

• It is recommended to change the defined sizes of two-
dimensional arrays.

• In some instances, this can be handled by specifying the 
compile options.

double A[N][N], B[N][N];

for (k = 0; k< N; k++) {

  for (j = 0; j < N; j++) {

    A[j][k] = B[k][j];

  }

}
Before padding

double A[N][N+1], B[N][N+1];

for (k = 0; k < N; k++) {

  for (j = 0; j < N; j++) {

        A[j][k] = B[k][j];

  }

}
After padding



2012/5/19
NII Shonan Meeting

25

Cache Blocking (1/2)

• Effective method for optimizing memory accesses
• Cache misses are reduced as much as possible.

double A[N][N], B[N][N], C;

for (i = 0; i < N; i++) {

  for (j = 0; j < N; j++) {

    A[i][j] += B[j][i] * C;

  }

}

double A[N][N], B[N][N], C;

for (ii = 0; ii < N; ii += 4) {

  for (jj = 0; jj < N; jj += 4) {

    for (i = ii; i < ii + 4; i++) {

      for (j = jj; j < jj + 4; j++) {

        A[i][j] += B[j][i] * C;

      }

    }

  }

}



2012/5/19
NII Shonan Meeting

26

Cache Blocking (2/2)

Memory access pattern 
without blocking

Memory access pattern 
with blocking



2012/5/19 NII Shonan Meeting 27

An Implementation of Parallel 1-D FFT Using 
AVX Instructions on Multi-Core Processors

• The fast Fourier transform (FFT) is an algorithm 
widely used today in science and engineering.

• Today, a number of processors have short 
vector SIMD instructions, e.g.,
– Intel: SSE, SSE2, SSE3, SSSE3, SSE4 and AVX
– AMD: 3DNow!
– Motorola: AltiVec

• These instructions provide substantial speedup 
for digital signal processing applications.

• Efficient FFT implementations with short vector 
SIMD instructions have also been investigated.



2012/5/19 NII Shonan Meeting 28

Background

• Many FFT algorithms work well when the data 
sets fit into the cache.

• However, when the problem size exceeds the 
cache size, the performance of these FFT 
algorithms decreases dramatically.

• The key issue in the design of large FFTs is 
minimizing the number of cache misses.

• Thus, both vectorization and high cache 
utilization are particularly important with respect 
to high performance on processors that have 
short vector SIMD instructions.



2012/5/19 NII Shonan Meeting 29

Related Works

• FFTW 3.3 [Frigo and Johnson]
– Supports AVX instructions (new in version 3.3.).
– The recursive call is employed to access main 

memory hierarchically.
– http://www.fftw.org/

• SPIRAL [Pueschel et al.]
– Supports AVX instructions.

– The goal of SPIRAL is to push the limits of 
automation in software and hardware development 
and optimization for DSP algorithms.

– http://www.spiral.net/

http://www.fftw.org/
http://www.spiral.net/


2012/5/19 NII Shonan Meeting 30

Approach
• Some previously presented six-step FFT 

algorithms [VanLoan92] separate the 
multicolumn FFTs from the transpositions.

• Taking the opposite approach, we combine 
the multicolumn FFTs and transpositions to 
reduce the number of cache misses.

• We modify the conventional six-step FFT 
algorithm to reuse data in the cache 
memory.
→ We will call it a “block six-step FFT”.



2012/5/19 NII Shonan Meeting 31

Intel AVX Instructions

• Intel Advanced Vector Extensions (AVX) were 
introduced into the Sandy Bridge processor.

• The most direct way to use the AVX instructions 
is to insert the assembly language instructions 
inline into source code.

• However, this can be time-consuming and 
tedious, and assembly language inline 
programming is not supported on all compilers.

• The Intel C/C++ and Fortran Compilers support 
automatic vectorization of floating-point loops 
using AVX instructions.



2012/5/19
NII Shonan Meeting

32

How to Use the AVX Instructions
• The AVX instructions may be used in the following 

ways.

  (1) Vectorization by compiler

  (2) Using AVX intrinsic functions

  (3) Using an inline assembler

  (4) Directly writing a “.s” file with an assembler

• In order from (1) to (4), the coding increases in 
complexity, but there are advantages from the 
perspective of performance.



2012/5/19 NII Shonan Meeting 33

An Example of a Vectorizable 
Radix-2 FFT Kernel

    SUBROUTINE FFT(A,B,W,M,L)

     COMPLEX*16 A(M,L,*),B(M,2,*),W(*)

     COMPLEX*16 C0,C1

     DO J=1,L

!DIR$ VECTOR ALIGNED

          DO I=1,M

              C0=A(I,J,1)

              C1=A(I,J,2)

              B(I,1,J)=C0+C1

              B(I,2,J)=W(J)*(C0-C1)

          END DO

     END DO

     RETURN

     END

The innermost loop lengths 
are varied from 1 to n/2 for 
n-point FFTs during log2(n) 
stages.



2012/5/19 NII Shonan Meeting 34

First Stage of a Vectorizable
Radix-2 FFT Kernel

    SUBROUTINE FFT1ST(A,B,W,L)

     COMPLEX*16 A(L,*),B(2,*),W(*)

     COMPLEX*16 C0,C1

!DIR$ VECTOR ALIGNED

     DO J=1,L

          C0=A(J,1)

          C1=A(J,2)

          B(1,J)=C0+C1

          B(2,J)=W(J)*(C0-C1)

     END DO

     RETURN

     END

When the innermost loop 
length is one, the double-
nested loop can be collapsed 
into a single-nested loop to 
expand innermost loop length.



2012/5/19 NII Shonan Meeting 35

Vectorized Assembly Code of 
Radix-2 FFT Kernel

vmovupd   (%edx,%ecx), %ymm3

vmovupd   (%edx,%ebx), %ymm4

vsubpd      %ymm4, %ymm3, %ymm5 

vaddpd      %ymm4, %ymm3, %ymm2 

vmulpd      %ymm5, %ymm1, %ymm7

vmovupd   %ymm2, (%edx,%edi) 

vshufpd     $5, %ymm5, %ymm5, %ymm6

vmulpd      %ymm6, %ymm0, %ymm2

vmovupd   32(%edx,%ecx), %ymm5

vmovupd   32(%edx,%ebx), %ymm6

vaddsubpd %ymm2, %ymm7, %ymm3

vsubpd       %ymm6, %ymm5, %ymm7

vaddpd       %ymm6, %ymm5, %ymm4

vmovupd    %ymm3, (%edx,%eax)

vmulpd       %ymm7, %ymm1, %ymm2

vmovupd    %ymm4, 32(%edx,%edi)

vshufpd      $5, %ymm7, %ymm7, %ymm7

vmulpd       %ymm7, %ymm0, %ymm3

vaddsubpd %ymm3, %ymm2, %ymm4

vmovupd    %ymm4, 32(%edx,%eax)



2012/1/10 IWIA’12 36

Discrete Fourier Transform (DFT)

• 1-D DFT is given by

)/2exp(,10

)()(
1

0

nink

jxky

n

n

j

jk
n

πω

ω

−=−≤≤

= ∑
−

=



2012/1/10 IWIA’12 37

2-D Formulation
• If     has factors      and       then1n

1,,1,01,,1,0

1,,1,01,,1,0

2211212

2211121

−=−=+=
−=−=+=

nknknkkk

njnjnjjj





• Using the above expression, the DFT 
formulation can be rewritten as follows:

n 2n

• An    -point FFT can be decomposed into an
     -point FFT and an      -point FFT.
n

1n 2n

11

1

1

1

2

2

21

21

22

2

1

0

1

0
2112 ),(),( kj

n

n

j

n

j

kj
nn

kj
njjxkky ωωω∑ ∑

−

=

−

=








=



2012/1/10 IWIA'12 38

Six-Step FFT Algorithm

• This derivation leads to the following six-step 
FFT algorithm [Bailey90, VanLoan92]:

• Step 1: Transpose
• Step 2:     individual     -point multicolumn FFTs
• Step 3: Twiddle factor (          ) multiplication
• Step 4: Transpose
• Step 5:     individual    -point multicolumn FFTs
• Step 6: Transpose

1n 2n

2n 1n

21

21

kj
nnω



2012/1/10 IWIA’12 39

Block Six-Step FFT-Based Parallel
1-D FFT Algorithm

0P

Partial
Transpose

3P

Bn Bn Bn Bn

0P 1P 2P 3P

2n

2n

1n

1n 2n

1n

Transpose
Partial
Transpose

1P 2P

The outermost 
loop is 
distributed 
across the 
processors

Bn Bn Bn Bn



2012/5/19 NII Shonan Meeting 40

Performance of 1-D FFTs on Intel Core i5-2520M
(Sandy Bridge 2.5 GHz)

0

2

4

6

8

10

12

14

64
K
12

8K
25

6K
51

2K 1M 2M 4M 8M 16
M

Length of Transform

G
F
lo

p
s

FFTE 5.0
(1 core)
FFTE 5.0
(2 cores)
FFTW 3.3
(1 core)
FFTW 3.3
(2 cores)



2012/5/19 NII Shonan Meeting 41

Conclusion

• Cache-aware algorithms are indispensable for 
achieving high performance on cache-based 
processors.

• The ability to perform optimization without the 
memory bandwidth becoming rate-limited is 
important for future processors.



2012/5/19 NII Shonan Meeting 42

Challenges

• To abstract the hardware configuration for 
application developers is much more important.

• Domain specific-language is one of the solutions.
– SPIRAL, etc.

• The another way is developing numerical libraries 
to exploit the system performance.

• How to reduce the cost of performance tuning?
– Automatic tuning

– Automated code generation


