2012/5/20

Reiji Suda

HPC, PARALLEL, AT

HPC people’s cycle

Measure
performance
Implement Analyze
variations performance

* There are deterministic improvements and
nondeterministic tunings

* We want to apply deterministic improvements
in all the cases they are applicable

Dead code

Commercial / multi-purpose codes...

— implement many functionalities (e.g. fluid, structure,
heat, magnetics, various FEM elements)

In-house codes...

— have many experimental functionalities (e.g. trying a
new model, algorithm, or discretization)

There are many unused fragments of codes
— Which part is used is chosen by a part of input data

Unused fragments may hinder optimizations

2012/5/20

Typical cases

for each grid point if (model is A)
compute this compute this way

if (model A is used) else if (model is B)
do a very complex thing compute that way

for each grid point compute something
compute that if (model is A)

compute this way
if (model A is not used) else if (model is B)
compute that way
for each grid point
compute this if (model A is used)
for each grid point
compute that
compute this way

compute something
just a loop fusion compute this way

for each grid point
compute this and that

What | want

source
code
PE/ intermediate
staging code
part of
input

optimizing object
compiler code
result
remainder
of input

* HPC people would prefer explicit annotation,
to declare “I want this place to be optimized”

2012/5/20

Unused code in libraries

* Libraries are destined to be general
— Many parts are unused

* Sometimes we know special optimal method
for special cases

Ex. domain decomposition

* Fixed-size decomposition: block size
(IR [[[[[[[[

<>

* Variable-size decomposition
— Communicate with only neighbors: my end points

ﬂ]:ﬂ:-

— General communication: every boundary points

ﬂ:ﬂ:ﬁu

— It could be big difference for 1,000,000 cores

2012/5/20

Ex. shadow region

* If the shadow is adjacent to the body region:

allocate a little bigger array
OOTTTT e TTTTTTTITTITITTTITTTITTITITT]
OO D T ITTTTTITTT1T171]
(T T T i T T 1 1 [[[o ST
CTTTTTTTITTTTITTITTITTTT O

* Otherwise 1) compaction, 2) full shadow

Dead code in generated codes

* Assume that we have a general method A and
a specialized method B on condition P
* Which is easier?

— Static check — code generator checks whether P
always holds or not and generate either A or B

— Runtime check — code generator outputs
“if P then B else A” (and let PE choose one)

— Maybe, it just outputs A, a general solution

2012/5/20

* There are deterministic improvements and
nondeterministic tunings

* We want to try nondeterministic tunings to
find whether they are effective or not

No optimal solution in HPC

* Performance depends on conditions
— HW conditions
* Cache size, #cores, memory latency, network speed...
— SW conditions
* Library performance, working memory size...
— Data conditions
* Size of matrix, values, graph structures...
— Environmental conditions
* Other users, other processes..

* Tuning must be empirical

2012/5/20

Ex. BLAS

* BLAS provides a high-performance
implementation of basic linear algebra
routines

* Can be 100x faster than naive code
— But usually tuned for very large matrices

e Could be 100x slower than naive code for very
small matrices (e.g. 3x3 or 4x4)

Ex. Sparse matrix

* There are data structures which stores only
non-zero elements

* However if sparsity is not enough, it is more
efficient to store it as a dense matrix

Pl0:4] |0 2|4
1

e NN

8
11423

9|4 A[0:7]|1|5|2|4|3|3|9|4|

2012/5/20

2012/5/20

Automatic tuning

» Several variations of the same computation
are programmed

* Performance is automatically measured, and a
well performing one is automatically selected

* Problems
— How to generate variations?
— How to select a good variation?

Online automatic tuning

Trial Practice

ommewnns. [N EEEEEEEE
Online tuning ..D.DDDD

* Lower total cost
* Higher optimization if used many times
* Lower optimization is enough if used a few times

Dynamic generation?

What kind of variations?

Scheduling variations

— unrolling, code motion, loop transformation, software pipelining
— scheduling in parallel processing

Data structure variations

— array dimension, padding, skewing, space-filling order, (recursive)
block indexing, reordering

— list vs array, array-of-struct vs struct-of-array, object inlining

— distributed data structure, software cache
Algorithmic variations

— different algorithm, preprocessing, parallelization, mixed precision
Platform specific coding

— message passing, short vector instructions, GPU etc.
Data structure vs code generation, storage vs recomputation

Coalesced access

Array dimension

Read L=16 block x M=1024 thread x N=16K word (GPU)

__device__ float x_dev[M][N][L];

\
__device__ float x_dev[N][M][L]; I

__device__float x_dev[N][L][M]; I
_ device__ float x_dev[L][N][M];]

__device__ float x_dev[M][L][N];

__device__ float x_dev[L][M][N]; I
} Byte/s

0.00E+00 1.00E+11 2.00E#11

2012/5/20

Array of struct / struct of array

struct {

double a, b, ¢, d; Better spatial locality if all fields are
}array[N]; accessed at once
struct { . -

double a[NJ, b[N], ¢[NJ, d[N]; Better spatial locality if only small part
}array; ’ T ’ of fields are accessed at once

Almost mandatory in GPUs (not coalesced)

Block indexing

2012/5/20

10

Parallel processing

* Moore’s law continues, but...

— The clock frequency will not improve much
(because of power & cooling limitation)

— Performance only comes from parallelism
* Free lunch is over

* In 10 years, processors have 20 ~ 200 cores
— Everyone needs to do parallel programming

Amdahl’s [aw

Part A takes 10% of time Part B takes 90% of time

Parallelize only Part B with 100 cores
If Part B speeds-up 100x
Only 9.9x speedup in total

If Part A speeds-up 10x (rather than 100x)
50x speedup in total

Need to parallelize dirty 90%, low efficiency allowed

2012/5/20

11

Reviving parallel algorithms?

Tp

Parallel algorithm

Not-well parallelized

Well parallelized
sequential algorithm

What | want

Formulating HPC methods in reusable
components, parameterized

— Program transform or program generation,
and hand-written alternative

Generating multiple specialized versions of
functions / classes from one piece of code
— And dynamic selection

Enumerative / dynamic generation
Support for debugging and testing

— In case of error, select another

2012/5/20

12

