
2012/5/20

1

HPC, PARALLEL, AT
Reiji Suda

HPC people’s cycle

Measure
performance

Analyze
performance

Device better
variations

Implement
variations

2012/5/20

2

• There are deterministic improvements and
nondeterministic tunings

• We want to apply deterministic improvements
in all the cases they are applicable

Dead code

• Commercial / multi-purpose codes…

– implement many functionalities (e.g. fluid, structure,
heat, magnetics, various FEM elements)

• In-house codes…

– have many experimental functionalities (e.g. trying a
new model, algorithm, or discretization)

• There are many unused fragments of codes

– Which part is used is chosen by a part of input data

• Unused fragments may hinder optimizations

2012/5/20

3

Typical cases

for each grid point
 compute this
if (model A is used)
 do a very complex thing
for each grid point
 compute that

if (model A is not used)

for each grid point
 compute this
for each grid point
 compute that

for each grid point
 compute this and that

just a loop fusion

if (model is A)
 compute this way
else if (model is B)
 compute that way
compute something
if (model is A)
 compute this way
else if (model is B)
 compute that way

if (model A is used)

compute this way
compute something
compute this way

source
code

part of
input

PE /
staging

intermediate
code

optimizing
compiler

object
code

run
remainder

of input

result

* HPC people would prefer explicit annotation,
to declare “I want this place to be optimized”

What I want

2012/5/20

4

Unused code in libraries

• Libraries are destined to be general

– Many parts are unused

• Sometimes we know special optimal method
for special cases

Ex. domain decomposition

• Fixed-size decomposition: block size

• Variable-size decomposition

– Communicate with only neighbors: my end points

– General communication: every boundary points

– It could be big difference for 1,000,000 cores

2012/5/20

5

Ex. shadow region

• If the shadow is adjacent to the body region:
allocate a little bigger array

• Otherwise 1) compaction, 2) full shadow

Dead code in generated codes

• Assume that we have a general method A and
a specialized method B on condition P

• Which is easier?

– Static check – code generator checks whether P
always holds or not and generate either A or B

– Runtime check – code generator outputs
“if P then B else A” (and let PE choose one)

– Maybe, it just outputs A, a general solution

2012/5/20

6

• There are deterministic improvements and
nondeterministic tunings

• We want to try nondeterministic tunings to
find whether they are effective or not

No optimal solution in HPC

• Performance depends on conditions
– HW conditions

• Cache size, #cores, memory latency, network speed…

– SW conditions
• Library performance, working memory size…

– Data conditions
• Size of matrix, values, graph structures…

– Environmental conditions
• Other users, other processes…

• Tuning must be empirical

2012/5/20

7

Ex. BLAS

• BLAS provides a high-performance
implementation of basic linear algebra
routines

• Can be 100x faster than naïve code

– But usually tuned for very large matrices

• Could be 100x slower than naïve code for very
small matrices (e.g. 3x3 or 4x4)

Ex. Sparse matrix

• There are data structures which stores only
non-zero elements

• However if sparsity is not enough, it is more
efficient to store it as a dense matrix

1 5

4 2

3 3

9 4 1 5 4 2 3 3 9 4 A[0:7]

C[0:7] 0 1 2 1 4 1 2 3

P[0:4] 0 2 6 4 8
0 1 3 2

2012/5/20

8

Automatic tuning

• Several variations of the same computation
are programmed

• Performance is automatically measured, and a
well performing one is automatically selected

• Problems

– How to generate variations?

– How to select a good variation?

Online automatic tuning

Offline tuning

Trial Practice

Online tuning

• Lower total cost
• Higher optimization if used many times
• Lower optimization is enough if used a few times

Dynamic generation?

2012/5/20

9

What kind of variations?

• Scheduling variations
– unrolling, code motion, loop transformation, software pipelining
– scheduling in parallel processing

• Data structure variations
– array dimension, padding, skewing, space-filling order, (recursive)

block indexing, reordering
– list vs array, array-of-struct vs struct-of-array, object inlining
– distributed data structure, software cache

• Algorithmic variations
– different algorithm, preprocessing, parallelization, mixed precision

• Platform specific coding
– message passing, short vector instructions, GPU etc.

• Data structure vs code generation, storage vs recomputation

Array dimension

• Read L=16 block x M=1024 thread x N=16K word (GPU)

__device__ float x_dev[L][M][N];

__device__ float x_dev[M][L][N];

__device__ float x_dev[L][N][M];

__device__ float x_dev[N][L][M];

__device__ float x_dev[M][N][L];

__device__ float x_dev[N][M][L];

0.00E+00 1.00E+11 2.00E+11

Byte/s

C
o

al
es

ce
d

 a
cc

es
s

24

2012/5/20

10

Array of struct / struct of array

struct {
 double a, b, c, d;
} array[N];

struct {
 double a[N], b[N], c[N], d[N];
} array;

Better spatial locality if all fields are
 accessed at once

Better spatial locality if only small part
 of fields are accessed at once
Almost mandatory in GPUs (not coalesced)

Block indexing

2012/5/20

11

Parallel processing

• Moore’s law continues, but…

– The clock frequency will not improve much
(because of power & cooling limitation)

– Performance only comes from parallelism

• Free lunch is over

• In 10 years, processors have 20 ~ 200 cores

– Everyone needs to do parallel programming

Amdahl’s law

Part A takes 10% of time Part B takes 90% of time

Parallelize only Part B with 100 cores

If Part B speeds-up 100x
Only 9.9x speedup in total

If Part A speeds-up 10x (rather than 100x)
50x speedup in total

Need to parallelize dirty 90%, low efficiency allowed

2012/5/20

12

Reviving parallel algorithms?

P

Tp

Well parallelized
sequential algorithm

Parallel algorithm

Not-well parallelized
sequential algorithm

What I want

• Formulating HPC methods in reusable
components, parameterized
– Program transform or program generation,

and hand-written alternative

• Generating multiple specialized versions of
functions / classes from one piece of code
– And dynamic selection

• Enumerative / dynamic generation

• Support for debugging and testing
– In case of error, select another

