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ABSTRACTION VS. 
PERFORMANCE

A few lines from the PETSc Biconjugate gradient 
method.

 97:      betaold = beta;
 98:      KSP_MatMult(ksp,Amat,Pr,Zr); /*     z <- Kp   */
 99:      VecConjugate(Pl);
100:      KSP_MatMultTranspose(ksp,Amat,Pl,Zl);
101:      VecConjugate(Pl);
102:      VecConjugate(Zl);
103:      VecDot(Zr,Pl,&dpi);    /*     dpi <- z'p      */
104:      a = beta/dpi;          /*     a = beta/p'z    */
105:      VecAXPY(X,a,Pr);       /*     x <- x + ap     */
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BUILD TO ORDER BLAS
Kernel Specification

A = A + u1 * v1' + u2 * v2'

x = beta * (A' * y) + z

w = alpha * (A * x)
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KERNEL SPECIFICATION

  GEMVER
  in u1 : vector, u2 : vector, v1 : vector, 
     v2 : vector, alpha : scalar,
     beta : scalar, y : vector, z : vector
  inout A : dense column matrix
  out x : vector, w : vector
  {
     A = A + u1 * v1' + u2 * v2'
     x = beta * (A' * y) + z
     w = alpha * (A * x)
  }

Sunday, May 20, 2012
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Fig. 8. Performance data for Intel Westmere. Speedups relative to unfused loops compiled with ICC (ICC performance is 1 and not shown). The left three

kernels are vector-vector while the right six are matrix-vector operations. In all cases, BTO generates code that is between 16% slower and 39% faster than

hand-optimized code and significantly faster than library and compiler-optimized versions.

search time of the orthogonal search as compared to an ex-

haustive search using the smaller kernels: ATAX, AXPYDOT,

BICGK, VADD, and WAXPBY. For all kernels, orthogonal

search found the best-performing version while taking 1-8% of

the time of exhaustive search, demonstrating that searching the

space orthogonally dramatically reduces search time without

sacrificing performance. This reduction in search time results

in part from the chosen orthogonal ordering. By searching the

fusion space first, we often dramatically reduce the number

of data-parallel loops and hence the size of the subsequent

thread-count search space.

Thus, we see that fusion and thread search can be conducted

orthogonally without a significant loss of kernel performance.

2) Fusion Search: Next we focus on fusion strategies. In

this section we analyze our choice of using a combination of

a genetic algorithm and the max-fuse heuristic.

We compare four search strategies on our most challenging

kernel, GEMVER. In particular, we test random search, our

genetic algorithm without the max-fuse heuristic, the max-

fuse heuristic by itself, and the combination of the max-fuse

heuristic with the genetic algorithm (MFGA). As described

in Section IV, the random search strategy and the genetic

algorithm use the same mutation schemes, and thus their

comparison shows the benefit of the crossover and selection

methods.

Figure 9 shows the performance over time of each of the

search methods. (MF is a single point near 3 GFLOPS.)

Because the search is stochastic, each of the lines in the chart

is the average of two runs. MFGA finds the optimal point in

less than 10 minutes on average. Without the MF heuristic, GA

alone eventually reaches 90% of MFGA but requires over an

hour of search time. The Random search plateaus without ever

finding the optimal value. The MF heuristic by itself achieves

40% of MFGA.

In conclusion, a combination of GA and MF is the best

strategy for the fusion portion of the search.

3) Thread Search: Using the MFGA heuristic described

in the previous section, we explore several possible thread

search strategies, including the global thread number and the

exhaustive strategies discussed in Section IV-D. The baseline

test is the MFGA search with number of threads set equal

Fig. 9. GEMVER performance over time for different search strategies on

Intel Westmere. MFGA finds the best version more quickly and consistently

than either search individually.

to the number of cores (24 for these experiments), which we

refer to as the const strategy. Recall that the global strategy

starts with MFGA and then searches over a single parameter

for all loop nests for the number of threads. Recall that the

exhaustive search replaces the single thread parameter with

the full space of possible thread counts, i.e., considering the

number of threads for each loop nest individually.

The results for seven kernels are in Figure 10. The top chart

shows the final performance of the best version found in each

case.

Searching over the thread space improves the final perfor-

mance compared with using a constant number of threads

(e.g., equal to the number of cores), with negligible difference

in kernel performance between the global thread count (fixed

count for all threads) and fully exhaustive approaches (varying

thread counts for different operations). The bottom chart in

Figure 10 shows the total search cost of the different thread

search approaches, demonstrating that global thread search

improves scalability without sacrificing performance.
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Fig. 8. Performance data for Intel Westmere. Speedups relative to unfused loops compiled with ICC (ICC performance is 1 and not shown). The left three

kernels are vector-vector while the right six are matrix-vector operations. In all cases, BTO generates code that is between 16% slower and 39% faster than

hand-optimized code and significantly faster than library and compiler-optimized versions.

search time of the orthogonal search as compared to an ex-

haustive search using the smaller kernels: ATAX, AXPYDOT,

BICGK, VADD, and WAXPBY. For all kernels, orthogonal

search found the best-performing version while taking 1-8% of

the time of exhaustive search, demonstrating that searching the

space orthogonally dramatically reduces search time without

sacrificing performance. This reduction in search time results

in part from the chosen orthogonal ordering. By searching the

fusion space first, we often dramatically reduce the number

of data-parallel loops and hence the size of the subsequent

thread-count search space.

Thus, we see that fusion and thread search can be conducted

orthogonally without a significant loss of kernel performance.

2) Fusion Search: Next we focus on fusion strategies. In

this section we analyze our choice of using a combination of

a genetic algorithm and the max-fuse heuristic.

We compare four search strategies on our most challenging

kernel, GEMVER. In particular, we test random search, our

genetic algorithm without the max-fuse heuristic, the max-

fuse heuristic by itself, and the combination of the max-fuse

heuristic with the genetic algorithm (MFGA). As described

in Section IV, the random search strategy and the genetic

algorithm use the same mutation schemes, and thus their

comparison shows the benefit of the crossover and selection

methods.

Figure 9 shows the performance over time of each of the

search methods. (MF is a single point near 3 GFLOPS.)

Because the search is stochastic, each of the lines in the chart

is the average of two runs. MFGA finds the optimal point in

less than 10 minutes on average. Without the MF heuristic, GA

alone eventually reaches 90% of MFGA but requires over an

hour of search time. The Random search plateaus without ever

finding the optimal value. The MF heuristic by itself achieves

40% of MFGA.

In conclusion, a combination of GA and MF is the best

strategy for the fusion portion of the search.

3) Thread Search: Using the MFGA heuristic described

in the previous section, we explore several possible thread

search strategies, including the global thread number and the

exhaustive strategies discussed in Section IV-D. The baseline

test is the MFGA search with number of threads set equal

Fig. 9. GEMVER performance over time for different search strategies on

Intel Westmere. MFGA finds the best version more quickly and consistently

than either search individually.

to the number of cores (24 for these experiments), which we

refer to as the const strategy. Recall that the global strategy

starts with MFGA and then searches over a single parameter

for all loop nests for the number of threads. Recall that the

exhaustive search replaces the single thread parameter with

the full space of possible thread counts, i.e., considering the

number of threads for each loop nest individually.

The results for seven kernels are in Figure 10. The top chart

shows the final performance of the best version found in each

case.

Searching over the thread space improves the final perfor-

mance compared with using a constant number of threads

(e.g., equal to the number of cores), with negligible difference

in kernel performance between the global thread count (fixed

count for all threads) and fully exhaustive approaches (varying

thread counts for different operations). The bottom chart in

Figure 10 shows the total search cost of the different thread

search approaches, demonstrating that global thread search

improves scalability without sacrificing performance.

Intel Westmere, 24 core, 2.66 GHz
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// q = A ∗ p
dgemv(’N’,A nrows,A ncols,1.0,A,lda,p,1,0.0,q,1);
// s = A’ ∗ r
dgemv(’T’,A nrows,A ncols,1.0,A,lda,r,1,0.0,s,1);

Fig. 7. Example sequence of BLAS calls that implement BICGK.

directly to a BLAS call while others are equivalent to multiple
BLAS calls. As an example, Listing 7 shows the sequence of
BLAS calls that implement the BICGK kernel.

TABLE I
KERNEL SPECIFICATIONS.

Kernel Operation

AXPYDOT z ← w − αv
β ← zTu

VADD x ← w + y + z
WAXPBY w ← αx+ βy

ATAX y ← ATAx

BICGK q ← Ap
s ← AT r

DGEMV z ← αAx+ βy

DGEMVT x ← βAT y + z
w ← αAx

GEMVER
B ← A+ u1vT1 + u2vT2

x ← βBT y + z
w ← αBx

GESUMMV y ← αAx+ βBx

The computers used for testing include recent AMD and
Intel multicore architectures which we describe in Table II.

TABLE II
SPECIFICATIONS OF THE TEST MACHINES.

Processor Cores Speed L1 L2 L3
(GHz) (KB) (KB) (MB)

Intel Westmere 24 2.66 12 x 32 12 x 256 2 x 12
AMD Phenom II X6 6 3.3 6 x 64 6 x 512 1 x 6
AMD Interlagos 64 2.2 64 x 16 16 x 2048 8 x 8

B. Comparison to Similar Tools

We begin by placing BTO performance results in context
by comparing them with several state-of-the-art tools and
libraries. BTO performs loop fusion and array contraction and
makes use of data parallelism. BTO relies on the native com-
piler for loop unrolling and vectorization. The two compilers
used to gather this data are the Intel C Compiler (ICC) [19]
and the PGI C Compiler (PGCC) [27]. With the exception of
the explicitly labeled PGCC results, all kernels are compiled
using ICC. Both ICC and PGCC unroll loops and vectorize.
They also identify and exploit data parallelism and perform
loop fusion.

We begin with a detailed comparison of BTO and five other
approaches for generating high performance code on the Intel
Westmere. We then give a brief summary of similar results on
the AMD Phenom and Interlagos.

The first approaches are using ICC and PGCC, which repre-
sent the best commercial compilers. The third approach is us-
ing Pluto [9], a source-to-source translator capable of perform-
ing loop fusion and identifying data parallelism. The fourth

approach is using Intel’s Math Kernel Library (MKL) [19]
which is a vendor-tuned BLAS implementation targeting Intel
CPUs. The fifth is a hand-tuned implementation (applying loop
fusion, array contraction, and data parallelism) created by an
expert in performance tuning who works in the performance
library group at Apple, Inc. The input for ICC, PGCC and
Pluto is a translation of the BLAS calls to C loops. The
compiler flags used with ICC were “-O3 -mkl -fno-alias” and
the flags for PGCC were “-O4 -fast -Mipa=fast -Mconcur -

Mvect=fuse -Msafeptr” (“-Msafeptr” not used on Interlagos).
Data parallelism is exploited by ICC, PGCC, Pluto, and MKL
by using OpenMP [12]. BTO and the hand-tuned versions use
Pthreads [26].

Figure 8 shows the speedup relative to ICC on the y-axis
for several linear algebra kernels. (ICC performance is 1.) On
the left are the three vector-vector kernels, and on the right
are the six matrix-vector kernels, all from Table I.

PGCC tends to do slightly better than ICC, with speedups
ranging from 1.1 to 1.5 times faster. Examining the output of
PGCC shows that all but GESUMMV and GEMVER were
parallelized. However, PGCC’s ability to perform loop fusion
was mixed; it fused the appropriate loops in AXPYDOT,
VADD, and WAXPBY but complained of a “complex flow
graph” on the remaining kernels and only achieved limited
fusion.

The MKL BLAS outperforms ICC by factors ranging from
1.4 to 4.2. The calls to BLAS routines prevent loop fusion,
so significant speedups, such as those observed in AXPYDOT
and GESUMMV, can instead be attributed to parallelism and
well tuned vector implementations of the individual opera-
tions. We were unable to determine why the BLAS perform
so well for AXPYDOT. Surprisingly, the BLAS DGEMV does
not perform as well as Pluto and BTO. Given the lack of fusion
potential in this kernel, we speculate that differences in the
parallel implementations are the cause.

The Pluto results show speedups ranging from 0.7 to 5.7
times faster than ICC. The worst-performing kernels are AX-
PYDOT, ATAX, and DGEMVT. These three kernels represent
the only cases where Pluto did not introduce data parallelism.
For the remaining two vector-vector kernels, VADD and
WAXPBY, Pluto created the best-performing result, slightly
better than the BTO and hand-tuned versions. Inspection shows
that the only difference between Pluto, hand-tuned, and BTO
in these cases was the use of OpenMP for Pluto and Pthreads
for hand-tuned and BTO. The fusion was otherwise identical
and the difference in thread count had little effect. For the
matrix-vector operations, if we enabled fusion but not paral-
lelization with Pluto’s flags, then Pluto matched BTO with re-
spect to fusion. However, with both fusion and parallelization
enabled, Pluto sometimes misses fusion and/or parallelization
opportunities. For example BICGK was parallelized but not
fused. The GEMVER results depend on the loop ordering in
the input file. For GEMVER, Pluto performed either complete
fusion with no parallelism or incomplete fusion with paral-
lelism; the latter provided the best performance and is shown
in Figure 8.

The hand-tuned implementation is intended as a sanity
check. For the vector-vector operations, the hand-tuned version

Sunday, May 20, 2012
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AMD Phenom, 6 core, 3.3 GHz AMD Interlagos, 64 core, 2.2 GHz

8

TABLE III
PERFORMANCE DATA FOR AMD PHENOM. BLAS NUMBERS FROM

AMD’S ACML. SPEEDUPS RELATIVE TO UNFUSED LOOPS COMPILED
WITH PGCC (PGCC PERFORMANCE IS 1 AND NOT SHOWN). BEST

PERFORMING VERSION IN BOLD.

Kernel BLAS Pluto HAND BTO
AXPYDOT 0.97 1.81 1.58 1.86

VADD 0.84 1.33 1.50 1.83
WAXPBY 0.79 1.40 1.68 1.91

ATAX 1.27 0.69 2.92 2.92
BICGK 1.27 0.80 2.80 2.84

DGEMV 1.67 0.71 1.85 1.89
DGEMVT 1.67 0.71 1.85 1.89
GEMVER 1.04 1.61 2.61 2.34

GESUMMV 1.63 0.63 1.74 1.75

is within a few percent of the best implementation. Typically
the fusion in both the hand tuned and the best tool based
version are identical with the primary difference being either
thread count or what appears to be a difference between
Pthreads and OpenMP performance. In the case of the matrix-
vector operations, the hand-tuned version is the best for all
but DGEMV and GESUMMV, where it is equal to the best.

The BTO performance results show speedups ranging from
3.2 to 6.9 times faster than ICC. For the vector-vector oper-
ations, the performance is similar to the hand-tuned version
in all cases. Inspection shows that for AXPYDOT, BTO was
slightly faster than the hand-tuned version because BTO did
not fuse the inner loop while the hand-tuned version did.
BTO performed slightly worse than hand-tuned on WAXPBY
because of a difference in thread count. Similarly, the per-
formance of the matrix-vector operations is close but slightly
lower than that of the hand-tuned version. BTO fused the same
as hand-tuned for BICGK, GEMVER and DGEMVT with
the only difference being in thread count. For ATAX, both
BTO and hand-tuned fused the same and selected the same
number of threads, but BTO was slightly slower because of
where it zeroed out a data structure. In the hand-tuned version
the zeroing occurred in the threads, while in BTO’s case it
occurred in the main thread.

Similar results on AMD Phenom and AMD Interlagos are
shown in Table III and Table IV, respectively. The Pluto-
generated code for the matrix-vector operations tended to
perform worse than that produced for the other methods
evaluated. On this computer, achieving full fusion while
maintaining parallelism is of great importance. As previously
discussed, Pluto tended to achieve fusion or parallelism but
struggled with the combination. These results demonstrate the
difficulty of portable high-performance code generation even
under autotuning scenarios.

Summary: Compared with the best alternative approach
for a given kernel, BTO performance ranges from 16% slower
to 39% faster. Excluding hand-written comparison points, BTO
performs between 14% worse and 229% better. Pluto, ICC,
PGCC, and BLAS all achieve near-best performance for only
a few points; however, BTO’s performance is most consistent
across kernels and computers. Excluding the hand-optimized
results, BTO finds the best version for 7 of 9 kernels on the
Intel Westmere, all 9 kernels on the AMD Phenom, and 7 of

TABLE IV
PERFORMANCE DATA FOR AMD INTERLAGOS. BLAS NUMBERS FROM
AMD’S ACML. SPEEDUPS RELATIVE TO UNFUSED LOOPS COMPILED

WITH PGCC (PGCC PERFORMANCE IS 1 AND NOT SHOWN). BEST
PERFORMING VERSION IN BOLD.

Kernel BLAS Pluto HAND BTO
AXPYDOT 0.82 1.60 1.73 1.61

VADD 0.43 1.05 1.14 1.15
WAXPBY 0.34 1.06 1.16 1.11

ATAX 2.49 0.43 4.09 4.28
BICGK 2.35 1.60 3.03 4.22

DGEMV 2.45 0.89 1.66 2.07
DGEMVT 2.43 0.43 4.08 4.03
GEMVER 1.70 2.00 4.15 4.05

GESUMMV 2.36 0.37 1.65 2.03

9 kernels on the AMD Interlagos. Surprisingly, on the AMD
Phenom, BTO surpassed the hand-optimized code for 7 of the
9 kernels and tied for one kernel.

C. MFGA Compared to Exhaustive Searches

In Section V-B, we presented results showing that BTO’s
MFGA search strategy finds high-performing versions for a
range of kernels. In this section, we show how the performance
of the MFGA search strategy compares with the best version
that can be produced using exhaustive or nearly exhaustive
search strategies on Intel Westmere. These strategies require
long-running searches that can take days to complete. For the
smaller kernels, a completely exhaustive search is possible.
For larger kernels, exhaustive search was not feasible, so we
instead use a strategy that is exhaustive with respect to each
optimization, but orthogonal between optimizations. For the
largest kernels, GEMVER and DGEMV, even the orthogonal
approach took too much time, not completing even after weeks
of running.

We compared the performance of kernels produced by
MFGA as percentage of the exhaustive search for smaller
kernels or as a percentage of the orthogonal search for larger
kernels such as DGEMVT and GESUMMV. The results show
that scalable search produces kernel performance within 1-2%
of the best performance.

D. Evaluation of Search Methods

In the previous sections, we demonstrated that BTO is capa-
ble of generating high-performance routines. In this section,
we examine the data that led to creating the MFGA search
strategy. All of the experiments in this section were performed
on the Intel Westmere.

1) Orthogonality of Fusion and Thread Search: The MFGA
strategy, for the most part, treats decisions regarding fusion
and thread count orthogonally, which significantly reduces the
size of the search space. However, before we could employ
this search method, we first had to show that it would lead to
no degradation in performance.

We define orthogonal search as first searching only the
fusion dimension, then using only the best candidate, searching
every viable thread count. We evaluated the effectiveness and

Speedups relative to PGI
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TABLE III
PERFORMANCE DATA FOR AMD PHENOM. BLAS NUMBERS FROM

AMD’S ACML. SPEEDUPS RELATIVE TO UNFUSED LOOPS COMPILED
WITH PGCC (PGCC PERFORMANCE IS 1 AND NOT SHOWN). BEST

PERFORMING VERSION IN BOLD.

Kernel BLAS Pluto HAND BTO
AXPYDOT 0.97 1.81 1.58 1.86

VADD 0.84 1.33 1.50 1.83
WAXPBY 0.79 1.40 1.68 1.91

ATAX 1.27 0.69 2.92 2.92
BICGK 1.27 0.80 2.80 2.84

DGEMV 1.67 0.71 1.85 1.89
DGEMVT 1.67 0.71 1.85 1.89
GEMVER 1.04 1.61 2.61 2.34

GESUMMV 1.63 0.63 1.74 1.75

is within a few percent of the best implementation. Typically
the fusion in both the hand tuned and the best tool based
version are identical with the primary difference being either
thread count or what appears to be a difference between
Pthreads and OpenMP performance. In the case of the matrix-
vector operations, the hand-tuned version is the best for all
but DGEMV and GESUMMV, where it is equal to the best.

The BTO performance results show speedups ranging from
3.2 to 6.9 times faster than ICC. For the vector-vector oper-
ations, the performance is similar to the hand-tuned version
in all cases. Inspection shows that for AXPYDOT, BTO was
slightly faster than the hand-tuned version because BTO did
not fuse the inner loop while the hand-tuned version did.
BTO performed slightly worse than hand-tuned on WAXPBY
because of a difference in thread count. Similarly, the per-
formance of the matrix-vector operations is close but slightly
lower than that of the hand-tuned version. BTO fused the same
as hand-tuned for BICGK, GEMVER and DGEMVT with
the only difference being in thread count. For ATAX, both
BTO and hand-tuned fused the same and selected the same
number of threads, but BTO was slightly slower because of
where it zeroed out a data structure. In the hand-tuned version
the zeroing occurred in the threads, while in BTO’s case it
occurred in the main thread.

Similar results on AMD Phenom and AMD Interlagos are
shown in Table III and Table IV, respectively. The Pluto-
generated code for the matrix-vector operations tended to
perform worse than that produced for the other methods
evaluated. On this computer, achieving full fusion while
maintaining parallelism is of great importance. As previously
discussed, Pluto tended to achieve fusion or parallelism but
struggled with the combination. These results demonstrate the
difficulty of portable high-performance code generation even
under autotuning scenarios.

Summary: Compared with the best alternative approach
for a given kernel, BTO performance ranges from 16% slower
to 39% faster. Excluding hand-written comparison points, BTO
performs between 14% worse and 229% better. Pluto, ICC,
PGCC, and BLAS all achieve near-best performance for only
a few points; however, BTO’s performance is most consistent
across kernels and computers. Excluding the hand-optimized
results, BTO finds the best version for 7 of 9 kernels on the
Intel Westmere, all 9 kernels on the AMD Phenom, and 7 of

TABLE IV
PERFORMANCE DATA FOR AMD INTERLAGOS. BLAS NUMBERS FROM
AMD’S ACML. SPEEDUPS RELATIVE TO UNFUSED LOOPS COMPILED

WITH PGCC (PGCC PERFORMANCE IS 1 AND NOT SHOWN). BEST
PERFORMING VERSION IN BOLD.

Kernel BLAS Pluto HAND BTO
AXPYDOT 0.82 1.60 1.73 1.61

VADD 0.43 1.05 1.14 1.15
WAXPBY 0.34 1.06 1.16 1.11

ATAX 2.49 0.43 4.09 4.28
BICGK 2.35 1.60 3.03 4.22

DGEMV 2.45 0.89 1.66 2.07
DGEMVT 2.43 0.43 4.08 4.03
GEMVER 1.70 2.00 4.15 4.05

GESUMMV 2.36 0.37 1.65 2.03

9 kernels on the AMD Interlagos. Surprisingly, on the AMD
Phenom, BTO surpassed the hand-optimized code for 7 of the
9 kernels and tied for one kernel.

C. MFGA Compared to Exhaustive Searches

In Section V-B, we presented results showing that BTO’s
MFGA search strategy finds high-performing versions for a
range of kernels. In this section, we show how the performance
of the MFGA search strategy compares with the best version
that can be produced using exhaustive or nearly exhaustive
search strategies on Intel Westmere. These strategies require
long-running searches that can take days to complete. For the
smaller kernels, a completely exhaustive search is possible.
For larger kernels, exhaustive search was not feasible, so we
instead use a strategy that is exhaustive with respect to each
optimization, but orthogonal between optimizations. For the
largest kernels, GEMVER and DGEMV, even the orthogonal
approach took too much time, not completing even after weeks
of running.

We compared the performance of kernels produced by
MFGA as percentage of the exhaustive search for smaller
kernels or as a percentage of the orthogonal search for larger
kernels such as DGEMVT and GESUMMV. The results show
that scalable search produces kernel performance within 1-2%
of the best performance.

D. Evaluation of Search Methods

In the previous sections, we demonstrated that BTO is capa-
ble of generating high-performance routines. In this section,
we examine the data that led to creating the MFGA search
strategy. All of the experiments in this section were performed
on the Intel Westmere.

1) Orthogonality of Fusion and Thread Search: The MFGA
strategy, for the most part, treats decisions regarding fusion
and thread count orthogonally, which significantly reduces the
size of the search space. However, before we could employ
this search method, we first had to show that it would lead to
no degradation in performance.

We define orthogonal search as first searching only the
fusion dimension, then using only the best candidate, searching
every viable thread count. We evaluated the effectiveness and
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DATAFLOW GRAPH

A = A + u1 * v1' + u2 * v2'
x = beta * (A' * y) + z
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Figure 2: Overview of the compilation process.
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Figure 3: Dataflow graph of the GEMVER kernel.

alytic methods to quickly discard unprofitable combinations, then

use empirical testing to select the best. Despite using exhaustive

search, we generate high-performance code in less than two min-

utes (see Section 5). While exhaustive search may not be realistic

for general purpose compilers, our results show that it is effective

in the more restricted setting of linear algebra kernels.

3. THE COMPILATION FRAMEWORK
The BTO compiler generates a high-performance implementa-

tion from a kernel specification. In particular, the input consists

of declarations for the input and output parameters followed by a

sequence of statements written in MATLAB syntax. An example

kernel specification for GEMVER is shown in Listing 1.

GEMVER
in u1 : vector, u2 : vector, v1 : vector,

v2 : vector, alpha : scalar ,
beta : scalar , y : vector, z : vector

inout A : dense column matrix
out x : vector, w : vector {

A = A + u1 ∗ v1’ + u2 ∗ v2’
x = beta ∗ (A’ ∗ y) + z
w = alpha ∗ (A ∗ x)

}

Listing 1: Compiler input for the GEMVER kernel.

The three major phases of the compilation process are input pro-

cessing, optimization, and performance analysis (see Figure 2). We

discuss input processing and optimization in this section and dis-

cuss performance analysis in Section 4.

The compiler parses the kernel specification into a dataflow graph;

the graph for GEMVER is shown in Figure 3. Initially, each node in

the graph represents an input or output parameter or an operation.

Edges between nodes represent the flow of data. After parsing, the

compiler performs type inference to determine the dimensionality

and best traversal pattern for each node.

3.1 Type Inference
The compiler assigns a type to each node in the graph, where

types are given by the following grammar:

orientations O ::= C | R

types τ ::= O τ | S.

The type S is for scalars, such as double-precision floating point

numbers. A type of the form O τ describes a container with el-

ement type τ and orientation O. The orientation is either C for

column or R for row. Orientation plays two roles: it describes the

shape of the node, e.g., C S is a column vector, and it describes

the preferred traversal patterns which are chosen to correspond to

physical memory layout. For example, C R S describes a ma-

trix whose rows are stored in contiguous memory (as in the lan-

guage C) whereas R C S describes a matrix whose columns

are stored in contiguous memory (as in Fortran). We define the

following transpose operator on orientations: R
T = C, C

T = R.

The type inference phase assigns a type to each node and at the

same time chooses how to implement each operation node. The

type inference is data driven, informed by a linear algebra knowl-

edge base of which several rows are shown in Table 1. There is

one row for each algorithm that implements a given operation. An

algorithm is a valid implementation for an operation node in the

graph if 1) the algorithm’s operator (e.g., + or ×) matches the op-

eration label on the node, 2) the operand types match the types of

the operands, and 3) the result type matches the type of the node.

If no algorithm can be inferred for an operation node, the compiler

reports an error.

The notation we use for result types deserves some explanation.

The notation includes the use of the + and × operators within the

type. What this means is that the type inference algorithm is ap-

plied recursively to obtain the result type. For example, consider

the algorithm whose result type is specified as O τl + τr .

Suppose the operands of a node labeled with the operation + both

have type C S . To compute the result type we recursively com-

pute the result type for S + S. The only algorithm that applies is

, so the inner result type is S and therefore the outer result

type is C S .

Consider the type that would be inferred for the node correspond-

ing to u1 * v1’ in the GEMVER kernel of Listing 1. Because matrix

A has type R C S , the node for u1 * v1’ must also have type

R C S . In this case, the only applicable algorithm is and

that algorithm requires that the orientations of the two operands

match. The compiler therefore chooses the algorithm for

u1 * v1’ because that version of outer product has a result type that

matches R C S .

As another example, consider the node corresponding to A’ * y
in Listing 1. The matrix A’ has type C R S and the vector

has type C S . Thus, the algorithm is a match for this

multiplication node and the result type is

C R S × C S = C S .

Multiple algorithms may be valid choices for the same node. For

example, the algorithms and may sometimes be

valid choices for the same node. In such cases, our compiler makes

an arbitrary choice. As future work, we plan to evaluate the perfor-

mance of each option and choose the best.

3.2 Refinement and Optimization
The primary optimization used in the compiler is loop fusion,

so as the compiler generates loops, it also chooses which loops to

2

coarse-grained pruning whereas empirical timing is used to
make the ultimate decisions. To find the best combination of
optimizations within a large search space, BTO uses a genetic
algorithm whose initial population is the result of a greedy,
heuristic search.

We described earlier prototypes of BTO in several papers [5,
6, 20, 32]. In these papers, we considered only a subset of
the optimizations considered here; moreover, at the time of
their writing, we had not yet developed a search algorithm
that was scalable with respect to the number of optimizations
and their parameters. The following are the specific, technical
contributions of this paper.

1) We present an internal representation for optimization
choices that is complete (includes all legal combinations
of loop fusion, array contraction, and multithreading
for data parallelism) but that inherently rules out many
illegal combinations (Section III).

2) We present a scalable and effective search strategy: a
genetic algorithm with an initial population seeded by a
greedy search. We describe this strategy in Section IV
and show in Section V-B that it produces code that
is between 16% slower and 39% faster than hand-
optimized code.

3) We compare this genetic/greedy search strategy with
several other strategies in order to reveal the rationale
behind this strategy (Section V-D).

We discuss related work in Section VI and conclude the
paper in Section VII with a brief discussion of future work.

II. BTO OVERVIEW

Figure 1 shows an example BTO input file for the BATAX
subprogram that performs the operations y ← βATAx for
matrix A, vectors x and y, and scalar β. The user of BTO
specifies the input types, including storage formats and a
sequence of matrix, vector, and scalar operations; but the user
does not specify how the operations are to be implemented.
That is, the user does not identify such details as the kinds of
loops or the number of threads. The BTO compiler produces
a C implementation in two broad steps. It first chooses how to
implement the operations in terms of loops, maximizing spatial
locality by traversing memory via contiguous accesses. It
then searches empirically for the combination of optimization
decisions that maximizes performance. Sections III and IV
describe the search process.

BATAX
in :

x : vector(column), beta : scalar ,
A : matrix(row)

out:
y : vector(column)

{
y = beta ∗ A’ ∗ (A ∗ x)

}

Fig. 1. BTO input file for the BATAX kernel.

Throughout the compilation process, BTO uses a dataflow
graph representation, illustrated in Figure 2 for the BATAX

kernel. The square boxes correspond to the input and output
matrices and vectors, and the circles correspond to the opera-
tions (operations are labeled with numbers, which are used to
identify the operations in the remainder of the paper).

A

x
x x y

T

  β

x
1

2 3

Fig. 2. Dataflow graph for y ← βATAx.

The BTO compiler uses a type system based on a container
abstraction, which describes the iteration space of matrices and
vectors. Containers may be oriented horizontally or vertically
and can be nested. We assume that moving from one element
to the next in a container is a constant-time operation and
good for spatial locality, but we place no other restrictions on
what memory layouts can be viewed as containers. The types
are defined by the following grammar, in which R designates
row, C designates column, and S designates scalar.

orientations O ::= C | R
types T ::= O<T> | S

Figure 3 shows several types with a corresponding diagram
depicting the container shapes: a row container with scalar
elements (upper left), a nested container for a row-major
matrix (right), and a partitioned row container (lower left).
During the creation of the dataflow graph, each node is
assigned a type. The input and outputs are assigned types
derived from the input file specification, whereas the types
associated with intermediate results are inferred by the BTO
compiler.

R<S>

R<R<S>>
C<R<S>>

Fig. 3. Vector, partitioned vector, and matrix with their corresponding types.

Note on the polyhedral model: The type system used
by BTO and the polyhedral model [22] share a common goal:
both describe a schedule to traverse an iteration space. Much of
BTO’s functionality can be accomplished by using polyhedral-
based tools. There are two motivations for using a domain-
specific type system as BTO does: (1) ability to seamlessly
perform additional optimizations (array contraction), and (2)
extensibility with regard to sparse matrix storage formats.

III. SEARCH SPACE

This section describes the search space and challenges with
regard to efficiently representing the space. We present a
domain specific representation that enables BTO to eliminate
many illegal points without spending any search time on them.
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LINEAR ALGEBRA DB

Algo Op and Operands Result Type Pipe

O τl + O τr O τl + τr yes
S + S S no
O τ T

O
T τT yes

S × S S no
R τl × R τr R R τl × τr yes
C τl × C τr C τl × C τr yes
R τl × C τr

P
(τl × τr) no

C τl × R τr C τl × R τr yes
C τl × R τr R C τl × τr yes
S × O τ O S × τ yes

Table 1: Sample of the linear algebra knowledge base.

fuse. However, because of complex global interactions, the prof-
itability of a particular fusion decision cannot be made in isolation,
but rather must be made in the context of all the other decisions. For
example, consider a sequence of three loops that are eligible for fu-
sion. The decision to fuse the first two loops cannot be made with-
out considering the third loop because fusing the second and third
loops might result in better locality than fusing the first and second.
Fusing all three loops, on the other hand, might result in lower per-
formance by increasing register pressure or causing reused data to
fall out of cache. To find the optimal set of choices, the BTO com-
piler quickly explores many combinations of fusion decisions.

The BTO compiler carries out implementation and optimization
decisions by applying graph transformations to the dataflow graph.
A graph transformation consists of a pattern that specifies to what
kind of subgraphs the transformation applies and a rewrite rule
that specifies what nodes and edges should be added or removed
from the graph. The graph transformations we use come in two
varieties, refinements and optimizations. A refinement makes an
implementation choice by expanding higher-level operations into
lower-level operations, such as expanding a vector operation into
a loop over scalar operations. The graph transformations for these
refinements are stored in the linear algebra knowledge base. The
optimizing transformations, on the other hand, replace subgraphs
with functionally-equivalent subgraphs that may provide better per-
formance. The optimizing transformations are stored in a separate
knowledge base.

The REFINE and OPTIMIZE algorithms are shown in Figure 4.
The REFINE algorithm carries out the implementation choices that
were made during type inference. It iterates through the graph,
applying the graph transformation associated with the chosen algo-
rithm. When graph transformations add nodes to the graph, they
give new nodes larger indices than existing nodes. Thus, as nodes
are added to the graph, they too are eligible for further refinement.
We discuss particular refinements in Section 3.2.1.

The OPTIMIZE algorithm takes as input the graph produced by
the REFINE algorithm and then explores optimization choices. We
discuss particular optimizations in Section 3.2.2. The OPTIMIZE
algorithm explores choices in a depth-first manner by maintaining
a stack of tuples that represent work items. Each tuple contains a
version of the dataflow graph and the current node.

If the current node is in the graph, then we push that graph back
onto the stack with the node incremented by one to represent the
decision not to optimize this node. The algorithm then searches
for an applicable optimization and applies the optimization to a
copy of the current graph. The transformed graph is also pushed
onto the stack, with the node incremented by one. When we have
finished making decisions for all the nodes in a graph, then the

REFINE(G)
node ← 0
while node < G.num_nodes do

algorithm [node].apply(G, node)
node ← node +1

return G

OPTIMIZE(G)
S ← create_stack()
best_versions ← create_list ()
S.push(�G, 0�)
while not S.is_empty() do

�G, node� ← S.pop()
if node < G.num_nodes then

S.push(�G, node+1�)
for t in optimizations do

if t .matches(G, node) then

G
� ← G.copy()

t . apply(G�, node)
S.push(�G�, node +1�)

else

ADD-TO-SEARCH-SPACE(G, best_versions)
return best_versions

Figure 4: The REFINE and OPTIMIZE algorithms.

algorithm calls ADD-TO-SEARCH-SPACE, shown Figure 7, which
decides whether the graph should be added to the best_versions list.
ADD-TO-SEARCH-SPACE is described in Section 3.2.3.

The OPTIMIZE algorithm applies one optimization to each node,
in the order in which the nodes are created. This ordering explores
most combinations but is not exhaustive in some situations. We are
currently working on changes to make the algorithm exhaustive.

3.2.1 Graph Refinement

Refinement steps are responsible for reducing high-level matrix
and vector operations into loops and scalar operations. Refinement
steps introduce new nodes to represent loads, stores, and reduc-
tion operations, and they introduce a special kind of subgraph to
represent a generalized form of loop over independent operations.
Depending on the architecture and the nesting of the loops, a gener-
alized loop can be translated into a parallel loop, a sequential loop,
or even a vector instruction.

Generalized loops are created based on the information in Table
1 in the column titled Result Type. For example, in the row,
the result type is O τl+τr . A loop is generated for each container
type (one in this case). In the implementation, we associate extra
information with each container type, such as its size and storage
format, which is needed to generate the loop. The body of the loop
is informed by the container’s element type, in this case τl + τr ,
which means that the body of the loop adds the elements of the
left and right operands. To access elements, we insert nodes to
handle load and store operations. Figure 5 shows an example of
applying two refinements to a matrix addition according to the
algorithm. Each refinement adds two load nodes, one store node,
and a subgraph (surrounded in dotted lines) to represent a loop.

3.2.2 Optimization

The two methods of loop fusion in use by the compiler are shown
in Figure 6. Figure 6(a) shows the graph transformation for the case
when two independent loops access the same data. This transfor-
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SEARCH SPACE

3

This section also sets up the discussion for specific search

strategies in Section IV.

A. Description of Search Space

The optimization search space we consider here has three

dimensions: (1) loop fusion, (2) dimension or direction of data

partitioning, and (3) number of threads. Even considering only

these three dimensions, there is a combinatorial explosion of

optimization combinations that BTO considers. This search

space is sparse, first consisting of a high ratio of illegal

compared to legal programs. Within the legal programs, only

a handful achieve good performance. The search space is

also discrete because performance tends to cluster with no

continuity between clusters. Efficiently searching this space is

the goal, and doing so requires a well-designed representation.

Early versions of BTO’s representation were too specific

and therefore limited the performance. For example, they

applied heuristics such as fusing loops at every opportunity.

Experimental data show that in some cases it is best to back

off from full fusion, and the representation needs to become

more generic to accommodate that.

At the other extreme, we discovered that an overly generic

representation leads to the evaluation of an intractable number

of illegal versions. For example, we tried a string-of-digits

representation that we describe in the next subsection. With

this approach, search time was dominated by the identification

and discarding of illegal programs.

Figure 4 shows a graphical representation of an overly

general search space and what area of that search space BTO

currently searches. The gray areas represent illegal programs.

This area is large and, spending time in it makes search

times intractable. This sections describes a representation that

allows BTO to spend time only on the section labeled BTO

Considered Search Space, which contains many fewer illegal

points. Finally to further improve search times, within the legal

space, BTO prunes points it deems unlikely to be unprofitable.

The rest of this section walks through the findings that led to

our current approach, as well as the representation that enables

a scalable search.

Illegal 

Legal
Complete Search Space

BTO Considered 
Search Space

BTO Legal
Points

BTO Pruned

Fig. 4. Representation of a typical search space showing how BTO avoids

spending time searching a large portion of illegal points.

B. Features of Search Space

In an effort to interface with existing search tools, we

initially represented every fusion and parting decision in an

easy to manipulate set of digits. For fusion we used an

adjacency matrix that created ((n− 1) ∗ n)/2 digits, where n
is the number of operations; partitions were represented with

2n digits, where each operation had a direction of partition

and a thread count. As an example, a three-operation program

would be represented as follows.

f, f, f, w, t, w, t, w, t

0 ≤ f ≤ max loop nest depth
1 ≤ w ≤ 3
0 ≤ t ≤ max thread count

In the presence of one level of data partitioning and for a

matrix-vector type operation with a maximum thread count of

8, there are over 1.2 million combinations of loop fusion and

thread parallelism.

The primary advantage to this approach was that a search

tool could easily manipulate these strings of digits with no

domain knowledge. Unfortunately, search time was dominated

by discarding illegal points. Many of the illegal points were

caused by a disrespect of interaction between digits. We now

summarize two important features that this representation does

not encode.

Fusion is an equivalence relation. If an operation a is

fused with operation b and b is fused with c, then c must

be fused with a. Consider a three-operation program and the

representation of fusion with an adjacency matrix M , where

M [a, b] shows the depth of fusion between the loop nests of

a and b. Below, we show a valid fusion choice on the left and

an invalid fusion choice on the right. Each value in the matrix

specifies fusing up to two levels of nested loops. The matrix on

the left describes fusing the outer loop of all three operations,

but only b and c have the inner loop fused. The matrix on the

right indicates fusing the inner loop of a with b and b with

c, but not a and c, which of course is impossible. We can

describe these constraints as forcing the relation specified in

the adjacency matrix to be an equivalence relation at every

depth.

a b c
a 1 1
b 2
c

a b c
a 2 1
b 2
c

Fused operations must use the same number of threads.
Consider a fuse graph that specifies a fusion of operations a
and b but then a partition that specifies a use 4 threads and

b use 6 threads. Partitioning the two operations with different

thread counts guarantees that fusion of these two operations

is not possible.

Given the previous example program of three matrix-vector

operation with a maximum thread count of 8, respecting these

features will bring the possible points to consider down to a

little over 1,000, or less than one-tenth of a percent of points

to consider without respecting these features.

C. Domain Specific Representation

Designing a representation that respects the previously

discussed features requires domain knowledge. At the expense
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ENUMERATING THE SPACE

We try to avoid even considering illegal points
Loop fusion is an equivalence relation
Can’t fuse inner loops if you haven’t already fused 
their outer loops.

4

of having to custom-build search tools, we designed a repre-
sentation to disallow, with no search time required, a large
number of illegal points.

Loop fusion is represented by fuse sets. Each operation is
given a unique identifier, and loops are represented with {}.
A single loop operation (e.g., dot product) is represented as
{ID}, where ID is a number identifying an operation node in
the dataflow graph. A two-loop operation, such as a matrix-
vector product, is represented as {{ID}}. When discussing a
specific {}, we annotate it using {i}, where i describes an axis
of the iteration space. We use i to describe the iteration over
rows of a matrix and j for columns of a matrix. A complete
iteration space for a matrix can be described as {i{j}} or
{j{i}}.

Fusion is described by putting two operations within the {}.
For example, outer-loop fusion of two matrix-vector products
is described by {j{i1}{i2}}, and fusion including the inner
loops is described by {j{i1 2}}. This notation encodes the
equivalence relation of loop fusion, disallowing a huge number
of illegal fusion combinations.

In BTO, fuse sets are actually more general than described
in the previous paragraph. In addition to representing loops,
fuse sets can represent iterations over tiles, spawning threads
for data parallelism, or loop unrolling. We refer to increasing
the dimensionality of the iteration space in this way as
“partitioning” since it conceptually cuts a matrix or vector
into smaller parts. A matrix-vector operation of {i{j1}} can
be partitioned as {p(i){i{j1}}} or {p(j){i{j1}}}, where the
{}s annotated with p(i) and p(j) describe the new iteration
dimension and the existing i or j loop variables that the
partition affects. The search tool must specify which existing
loop is being modified and how many threads should be used.
The important point here is that we can represent any level
of nesting and describe both C loops and data parallelism. By
extending the fuse set representation to partitioning, thread
counts can be assigned to each set, eliminating the consider-
ation of points with mismatched thread counts within a fused
operation.

BTO uses this representation to enumerate or manipulate
the fuse sets and to generate the search space. This approach
allows BTO to never touch the majority of the illegal points
it encountered with more general-purpose search tools.

D. Discarding Remaining Illegal Points

Recall Figure 4 where the representation applied by BTO
reduces the search space to the area labeled BTO Considered

Search Space. In this search space, a significant number of
illegal points remain. Identifying them as early as possible is
key to a fast search. This section describes how BTO discards
the remaining illegal points. Figure 2 shows the dataflow graph
for the BATAX operation y ← βATAx first described in
Section II. Figure 5 shows each operation in BATAX numbered
according to its corresponding number in the dataflow graph.
Let us assume for simplicity that subgraphs are fixed. Thus,
although the scaling by β could be located differently in the
graph, in this example it cannot.

BTO performs type inference on the initial dataflow graph to
check whether the input program makes sense, assigning types

1t0 = A ∗ x
2t1 = A’ ∗ t0
3y = t1 ∗ beta

Fig. 5. Operation listing for y ← βATAx.

to all operations in the process. As BTO considers different
optimization choices, it incrementally updates the types to
determine quickly whether an optimization choice results in
incompatible types.

In particular, illegal data dependency chains can be created
with the fuse set representation and therefore must be checked
against the data flow graph for correctness. The following is
a partial list of the possible fuse sets for the running example.

a : {{1}}{{2}}{{3}}
b : {{1}{2}}{{3}}
c : {{12}}{{3}}
d : {{1}{3}}{{2}}
e : {{1}{2}{3}}
f : {{123}}

Fuse set d says to fuse operations 1 and 3. However,
referring to the dataflow graph in Figure 2, one can see that
there is a data dependency (operation 2) between 1 and 3.

A more subtle data dependency is caused by reduction
operations. Figure 6 shows the pseudocode for the example.
Examination of the outer loops (lines 1 and 4) show that the
iterations are compatible and are legal to fuse. Looking at the
inner loops (lines 2 and 5) we see compatible loops and assume
fusion is possible. However, on line 3, t0 [ i ] is the destination
of an accumulation and is not available for use until the inner
loop is complete. The next operation consumes this result and
so the inner loops cannot be fused.

1for i in 1 to M
2for j in 1 to N
3t0 [ i ] += A[i , j ] ∗ x[ j ]
4for i in 1 to M
5for j in 1 to N
6t1 [ j ] += A[i , j ] ∗ t0 [ i ]
7for j in 1 to N
8y[ j ] = t1 [ j ] ∗ beta

Fig. 6. Pseudocode for unfused operations as shown in Figure 5.

The introduction of loops, the type inference, and the le-
gality of partition introduction are all based on the underlying
type system employed by BTO. This system is described in
detail in previous papers [5]. Briefly, a set of rules describes
legal linear algebra operations based on the types involved
in the operation. Certain rules cause a reduction, so an
examination of the types involved in an operation provides
the loop nests and flags any loops as performing a reduction.
In order to catch the reduction data dependency, data flow
analysis is combined with the result of examining the type to
determine that results are the destination of a reduction and
that fusion cannot occur.

The legality of every partitioning must also be checked for
each operation. In the absence of fusion, doing so is simply of
a matter of checking the type of each operand and the result
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of having to custom-build search tools, we designed a repre-
sentation to disallow, with no search time required, a large
number of illegal points.

Loop fusion is represented by fuse sets. Each operation is
given a unique identifier, and loops are represented with {}.
A single loop operation (e.g., dot product) is represented as
{ID}, where ID is a number identifying an operation node in
the dataflow graph. A two-loop operation, such as a matrix-
vector product, is represented as {{ID}}. When discussing a
specific {}, we annotate it using {i}, where i describes an axis
of the iteration space. We use i to describe the iteration over
rows of a matrix and j for columns of a matrix. A complete
iteration space for a matrix can be described as {i{j}} or
{j{i}}.

Fusion is described by putting two operations within the {}.
For example, outer-loop fusion of two matrix-vector products
is described by {j{i1}{i2}}, and fusion including the inner
loops is described by {j{i1 2}}. This notation encodes the
equivalence relation of loop fusion, disallowing a huge number
of illegal fusion combinations.

In BTO, fuse sets are actually more general than described
in the previous paragraph. In addition to representing loops,
fuse sets can represent iterations over tiles, spawning threads
for data parallelism, or loop unrolling. We refer to increasing
the dimensionality of the iteration space in this way as
“partitioning” since it conceptually cuts a matrix or vector
into smaller parts. A matrix-vector operation of {i{j1}} can
be partitioned as {p(i){i{j1}}} or {p(j){i{j1}}}, where the
{}s annotated with p(i) and p(j) describe the new iteration
dimension and the existing i or j loop variables that the
partition affects. The search tool must specify which existing
loop is being modified and how many threads should be used.
The important point here is that we can represent any level
of nesting and describe both C loops and data parallelism. By
extending the fuse set representation to partitioning, thread
counts can be assigned to each set, eliminating the consider-
ation of points with mismatched thread counts within a fused
operation.

BTO uses this representation to enumerate or manipulate
the fuse sets and to generate the search space. This approach
allows BTO to never touch the majority of the illegal points
it encountered with more general-purpose search tools.

D. Discarding Remaining Illegal Points

Recall Figure 4 where the representation applied by BTO
reduces the search space to the area labeled BTO Considered

Search Space. In this search space, a significant number of
illegal points remain. Identifying them as early as possible is
key to a fast search. This section describes how BTO discards
the remaining illegal points. Figure 2 shows the dataflow graph
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although the scaling by β could be located differently in the
graph, in this example it cannot.

BTO performs type inference on the initial dataflow graph to
check whether the input program makes sense, assigning types

1t0 = A ∗ x
2t1 = A’ ∗ t0
3y = t1 ∗ beta

Fig. 5. Operation listing for y ← βATAx.

to all operations in the process. As BTO considers different
optimization choices, it incrementally updates the types to
determine quickly whether an optimization choice results in
incompatible types.

In particular, illegal data dependency chains can be created
with the fuse set representation and therefore must be checked
against the data flow graph for correctness. The following is
a partial list of the possible fuse sets for the running example.

a : {{1}}{{2}}{{3}}
b : {{1}{2}}{{3}}
c : {{12}}{{3}}
d : {{1}{3}}{{2}}
e : {{1}{2}{3}}
f : {{123}}

Fuse set d says to fuse operations 1 and 3. However,
referring to the dataflow graph in Figure 2, one can see that
there is a data dependency (operation 2) between 1 and 3.

A more subtle data dependency is caused by reduction
operations. Figure 6 shows the pseudocode for the example.
Examination of the outer loops (lines 1 and 4) show that the
iterations are compatible and are legal to fuse. Looking at the
inner loops (lines 2 and 5) we see compatible loops and assume
fusion is possible. However, on line 3, t0 [ i ] is the destination
of an accumulation and is not available for use until the inner
loop is complete. The next operation consumes this result and
so the inner loops cannot be fused.

1for i in 1 to M
2for j in 1 to N
3t0 [ i ] += A[i , j ] ∗ x[ j ]
4for i in 1 to M
5for j in 1 to N
6t1 [ j ] += A[i , j ] ∗ t0 [ i ]
7for j in 1 to N
8y[ j ] = t1 [ j ] ∗ beta

Fig. 6. Pseudocode for unfused operations as shown in Figure 5.

The introduction of loops, the type inference, and the le-
gality of partition introduction are all based on the underlying
type system employed by BTO. This system is described in
detail in previous papers [5]. Briefly, a set of rules describes
legal linear algebra operations based on the types involved
in the operation. Certain rules cause a reduction, so an
examination of the types involved in an operation provides
the loop nests and flags any loops as performing a reduction.
In order to catch the reduction data dependency, data flow
analysis is combined with the result of examining the type to
determine that results are the destination of a reduction and
that fusion cannot occur.

The legality of every partitioning must also be checked for
each operation. In the absence of fusion, doing so is simply of
a matter of checking the type of each operand and the result

4

of having to custom-build search tools, we designed a repre-
sentation to disallow, with no search time required, a large
number of illegal points.

Loop fusion is represented by fuse sets. Each operation is
given a unique identifier, and loops are represented with {}.
A single loop operation (e.g., dot product) is represented as
{ID}, where ID is a number identifying an operation node in
the dataflow graph. A two-loop operation, such as a matrix-
vector product, is represented as {{ID}}. When discussing a
specific {}, we annotate it using {i}, where i describes an axis
of the iteration space. We use i to describe the iteration over
rows of a matrix and j for columns of a matrix. A complete
iteration space for a matrix can be described as {i{j}} or
{j{i}}.

Fusion is described by putting two operations within the {}.
For example, outer-loop fusion of two matrix-vector products
is described by {j{i1}{i2}}, and fusion including the inner
loops is described by {j{i1 2}}. This notation encodes the
equivalence relation of loop fusion, disallowing a huge number
of illegal fusion combinations.

In BTO, fuse sets are actually more general than described
in the previous paragraph. In addition to representing loops,
fuse sets can represent iterations over tiles, spawning threads
for data parallelism, or loop unrolling. We refer to increasing
the dimensionality of the iteration space in this way as
“partitioning” since it conceptually cuts a matrix or vector
into smaller parts. A matrix-vector operation of {i{j1}} can
be partitioned as {p(i){i{j1}}} or {p(j){i{j1}}}, where the
{}s annotated with p(i) and p(j) describe the new iteration
dimension and the existing i or j loop variables that the
partition affects. The search tool must specify which existing
loop is being modified and how many threads should be used.
The important point here is that we can represent any level
of nesting and describe both C loops and data parallelism. By
extending the fuse set representation to partitioning, thread
counts can be assigned to each set, eliminating the consider-
ation of points with mismatched thread counts within a fused
operation.

BTO uses this representation to enumerate or manipulate
the fuse sets and to generate the search space. This approach
allows BTO to never touch the majority of the illegal points
it encountered with more general-purpose search tools.

D. Discarding Remaining Illegal Points

Recall Figure 4 where the representation applied by BTO
reduces the search space to the area labeled BTO Considered

Search Space. In this search space, a significant number of
illegal points remain. Identifying them as early as possible is
key to a fast search. This section describes how BTO discards
the remaining illegal points. Figure 2 shows the dataflow graph
for the BATAX operation y ← βATAx first described in
Section II. Figure 5 shows each operation in BATAX numbered
according to its corresponding number in the dataflow graph.
Let us assume for simplicity that subgraphs are fixed. Thus,
although the scaling by β could be located differently in the
graph, in this example it cannot.

BTO performs type inference on the initial dataflow graph to
check whether the input program makes sense, assigning types

1t0 = A ∗ x
2t1 = A’ ∗ t0
3y = t1 ∗ beta

Fig. 5. Operation listing for y ← βATAx.

to all operations in the process. As BTO considers different
optimization choices, it incrementally updates the types to
determine quickly whether an optimization choice results in
incompatible types.

In particular, illegal data dependency chains can be created
with the fuse set representation and therefore must be checked
against the data flow graph for correctness. The following is
a partial list of the possible fuse sets for the running example.

a : {{1}}{{2}}{{3}}
b : {{1}{2}}{{3}}
c : {{12}}{{3}}
d : {{1}{3}}{{2}}
e : {{1}{2}{3}}
f : {{123}}

Fuse set d says to fuse operations 1 and 3. However,
referring to the dataflow graph in Figure 2, one can see that
there is a data dependency (operation 2) between 1 and 3.

A more subtle data dependency is caused by reduction
operations. Figure 6 shows the pseudocode for the example.
Examination of the outer loops (lines 1 and 4) show that the
iterations are compatible and are legal to fuse. Looking at the
inner loops (lines 2 and 5) we see compatible loops and assume
fusion is possible. However, on line 3, t0 [ i ] is the destination
of an accumulation and is not available for use until the inner
loop is complete. The next operation consumes this result and
so the inner loops cannot be fused.

1for i in 1 to M
2for j in 1 to N
3t0 [ i ] += A[i , j ] ∗ x[ j ]
4for i in 1 to M
5for j in 1 to N
6t1 [ j ] += A[i , j ] ∗ t0 [ i ]
7for j in 1 to N
8y[ j ] = t1 [ j ] ∗ beta

Fig. 6. Pseudocode for unfused operations as shown in Figure 5.

The introduction of loops, the type inference, and the le-
gality of partition introduction are all based on the underlying
type system employed by BTO. This system is described in
detail in previous papers [5]. Briefly, a set of rules describes
legal linear algebra operations based on the types involved
in the operation. Certain rules cause a reduction, so an
examination of the types involved in an operation provides
the loop nests and flags any loops as performing a reduction.
In order to catch the reduction data dependency, data flow
analysis is combined with the result of examining the type to
determine that results are the destination of a reduction and
that fusion cannot occur.

The legality of every partitioning must also be checked for
each operation. In the absence of fusion, doing so is simply of
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coarse-grained pruning whereas empirical timing is used to
make the ultimate decisions. To find the best combination of
optimizations within a large search space, BTO uses a genetic
algorithm whose initial population is the result of a greedy,
heuristic search.

We described earlier prototypes of BTO in several papers [5,
6, 20, 32]. In these papers, we considered only a subset of
the optimizations considered here; moreover, at the time of
their writing, we had not yet developed a search algorithm
that was scalable with respect to the number of optimizations
and their parameters. The following are the specific, technical
contributions of this paper.

1) We present an internal representation for optimization
choices that is complete (includes all legal combinations
of loop fusion, array contraction, and multithreading
for data parallelism) but that inherently rules out many
illegal combinations (Section III).

2) We present a scalable and effective search strategy: a
genetic algorithm with an initial population seeded by a
greedy search. We describe this strategy in Section IV
and show in Section V-B that it produces code that
is between 16% slower and 39% faster than hand-
optimized code.

3) We compare this genetic/greedy search strategy with
several other strategies in order to reveal the rationale
behind this strategy (Section V-D).

We discuss related work in Section VI and conclude the
paper in Section VII with a brief discussion of future work.

II. BTO OVERVIEW

Figure 1 shows an example BTO input file for the BATAX
subprogram that performs the operations y ← βATAx for
matrix A, vectors x and y, and scalar β. The user of BTO
specifies the input types, including storage formats and a
sequence of matrix, vector, and scalar operations; but the user
does not specify how the operations are to be implemented.
That is, the user does not identify such details as the kinds of
loops or the number of threads. The BTO compiler produces
a C implementation in two broad steps. It first chooses how to
implement the operations in terms of loops, maximizing spatial
locality by traversing memory via contiguous accesses. It
then searches empirically for the combination of optimization
decisions that maximizes performance. Sections III and IV
describe the search process.

BATAX
in :

x : vector(column), beta : scalar ,
A : matrix(row)

out:
y : vector(column)

{
y = beta ∗ A’ ∗ (A ∗ x)

}

Fig. 1. BTO input file for the BATAX kernel.

Throughout the compilation process, BTO uses a dataflow
graph representation, illustrated in Figure 2 for the BATAX

kernel. The square boxes correspond to the input and output
matrices and vectors, and the circles correspond to the opera-
tions (operations are labeled with numbers, which are used to
identify the operations in the remainder of the paper).
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Fig. 2. Dataflow graph for y ← βATAx.

The BTO compiler uses a type system based on a container
abstraction, which describes the iteration space of matrices and
vectors. Containers may be oriented horizontally or vertically
and can be nested. We assume that moving from one element
to the next in a container is a constant-time operation and
good for spatial locality, but we place no other restrictions on
what memory layouts can be viewed as containers. The types
are defined by the following grammar, in which R designates
row, C designates column, and S designates scalar.

orientations O ::= C | R
types T ::= O<T> | S

Figure 3 shows several types with a corresponding diagram
depicting the container shapes: a row container with scalar
elements (upper left), a nested container for a row-major
matrix (right), and a partitioned row container (lower left).
During the creation of the dataflow graph, each node is
assigned a type. The input and outputs are assigned types
derived from the input file specification, whereas the types
associated with intermediate results are inferred by the BTO
compiler.

R<S>

R<R<S>>
C<R<S>>

Fig. 3. Vector, partitioned vector, and matrix with their corresponding types.

Note on the polyhedral model: The type system used
by BTO and the polyhedral model [22] share a common goal:
both describe a schedule to traverse an iteration space. Much of
BTO’s functionality can be accomplished by using polyhedral-
based tools. There are two motivations for using a domain-
specific type system as BTO does: (1) ability to seamlessly
perform additional optimizations (array contraction), and (2)
extensibility with regard to sparse matrix storage formats.

III. SEARCH SPACE

This section describes the search space and challenges with
regard to efficiently representing the space. We present a
domain specific representation that enables BTO to eliminate
many illegal points without spending any search time on them.
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of a given operation. The challenge is in identifying the set of
partitions for each operation such that fusion remains possible.
The first operation of the BATAX example, t0 = A × x, can
be partitioned in the following ways.

(1) t0(p) = A(p, :)× x {p(i){i{j1}}}
(2) t0+= A(:, p)× x(p) {p(j){i{j1}}}

Here we show the slicing of the matrix using the colon notation
for a complete iteration and p for a subblock on which to
operate in parallel (borrowing notation from MATLAB). On
the right is the representation as a fuse set. Partitioning (1) cuts
the rows of A and vector t0 while the second cuts the columns
of A and the vector x. Partitioning (2) leads to a reduction at
the parallel level, so t0 is not available for use until after a
join. The second operation of the example, t1 = A × t0 can
be partitioned in the following ways.

(3) t1(p) = A(p, :)× t0 {p(j){i{j2}}}
(4) t1+= A(:, p)× t0(p) {p(i){i{j2}}}

The question is how to partition operations 1 and 2 so that
they can achieve fusion. Data dependence analysis says that
the partition of operation 1, which introduces a reduction, will
cause fusion to fail, so operation 1 must be partitioned by
using method (1) thus limiting the options for operation 2. The
matrix A is shared so, to achieve fusion after partitioning, A
needs to be accessed the same way in both partition loops.
From partitioning (1) we see that A is accessed as A(p, :).
Because operation 2 accesses the transpose of A, we must
select partitioning (4), accessing A as A(:, p). By examining
the {} notation we similarly observe that the partitions intro-
duced in (1) and (4) both generate {p(i)}. In large fuse sets,
the likelihood of finding a correct set of operation partitions
randomly is small.

BTO uses a similar approach to that used in the BATAX
example. At the start of a search, BTO enumerates the possible
ways of partitioning for each individual operation. Then, when
given a set of operations to fuse in the presence of partitioning,
a list of operation partitionings that will allow fusion is found
efficiently by comparing the shared data structures in the
operation (e.g., the matrix A in BATAX). This list may consist
of zero to many combinations that work for a fuse set, but
all will be legal. This approach quickly rules out the illegal
combinations, leaving only the legal points to consider.

E. Discarding Unprofitable Points

We again refer back to Figure 4, this time considering
the BTO Legal Points, a small section labeled BTO Pruned

represents legal points that typically exhibit poor performance.
BTO uses a handful of heuristics to prune these poorly
performing points. The first heuristic is to perform fusion only
on operations that share an operand. For example, if one loop
writes to a temporary matrix and another loop reads from the
temporary, then fusing the two loops reduces memory traffic.
Similarly, if two loops read from the same matrix, then fusion
is likely to be profitable. On the other hand, fusing loops that
do not share an operand is unlikely to reduce memory traffic.

The next heuristic is that array contraction is always applied
to temporary data structures in the presence of fusion. Again,
reducing memory traffic almost always improves performance.

The second two heuristics eliminate points without having
to spend any time on those that are unprofitable. The array
contraction is always performed while the contiguous traversal
is encoded in the type system exploited by BTO.

IV. GENETIC/GREEDY SEARCH STRATEGY

This section describes the BTO search strategy based on a
genetic algorithm whose initial population is determined by a
greedy search that tries to maximally fuse loops. We refer to
this search strategy as MFGA, for Maximal Fusion followed
by Genetic Algorithm. Section V explores why this search is
used, and the value of heuristics and alternatives.

We explain MFGA using the y ← βATAx BATAX example
from the previous section. Genetic algorithms are a broad cat-
egory of global optimization techniques inspired by biological
evolution [25]. In genetic algorithms, each code version is
called an organism. A genetic algorithm uses a population
of organisms. At each generation, the worst organisms are
removed from the population and are replaced with newly
generated organisms.

A. Max Fuse

The search begins with a greedy Max-Fuse (MF) heuristic:
we attempt to fuse as many of the loops as possible to the
greatest depth possible, subject to the constraints described in
Section III. The MF search starts from unfused but partitioned
versions of the kernel in which the axis of partitioning has
not yet been decided. Continuing with the BATAX example
from the previous section, the following represents the unfused
partitioned kernel. The X , Y , and Z are unknowns determined
during the MF search.

{X{i{j1}}}{Y {i{j2}}}{Z{j3}}

To fuse the X and Y iterations, we need X = Y , so we
proceed with the fusion and constrain ourselves to X = Y .

{X{i{j1}}}{X{i{j2}}}{Z{j3}}
⇒ {X{i{j1}}{i{j2}}}{Z{j3}}

At this point, X has to be p(i) because the alternative, p(j),
would mean that the necessary results from operation 1 would
not be available for operation 2. Next, we can also fuse the i
iteration of operations 1 and 2.

{p(i){i{j1}}{i{j2}}}{Z{j3}}
⇒ {p(i){i{j1}{j2}}}{Z{j3}}

Because of the reduction in the matrix-vector product (opera-
tion 1), the j iteration of operations 1 and 2 cannot be fused.

Next, we consider whether the p(i) iteration can be fused
with Z. The p(i) iteration requires a reduction before the final
vector scaling of operation 3, so 3 must reside in its own
thread. Finally, there is only one axis of iteration in operation
3, so Z must be p(j). Therefore, the MF search produces the
following organism: {p(i){i{j1}{j2}}}{p(j){j3}}.
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specific {}, we annotate it using {i}, where i describes an axis
of the iteration space. We use i to describe the iteration over
rows of a matrix and j for columns of a matrix. A complete
iteration space for a matrix can be described as {i{j}} or
{j{i}}.

Fusion is described by putting two operations within the {}.
For example, outer-loop fusion of two matrix-vector products
is described by {j{i1}{i2}}, and fusion including the inner
loops is described by {j{i1 2}}. This notation encodes the
equivalence relation of loop fusion, disallowing a huge number
of illegal fusion combinations.

In BTO, fuse sets are actually more general than described
in the previous paragraph. In addition to representing loops,
fuse sets can represent iterations over tiles, spawning threads
for data parallelism, or loop unrolling. We refer to increasing
the dimensionality of the iteration space in this way as
“partitioning” since it conceptually cuts a matrix or vector
into smaller parts. A matrix-vector operation of {i{j1}} can
be partitioned as {p(i){i{j1}}} or {p(j){i{j1}}}, where the
{}s annotated with p(i) and p(j) describe the new iteration
dimension and the existing i or j loop variables that the
partition affects. The search tool must specify which existing
loop is being modified and how many threads should be used.
The important point here is that we can represent any level
of nesting and describe both C loops and data parallelism. By
extending the fuse set representation to partitioning, thread
counts can be assigned to each set, eliminating the consider-
ation of points with mismatched thread counts within a fused
operation.

BTO uses this representation to enumerate or manipulate
the fuse sets and to generate the search space. This approach
allows BTO to never touch the majority of the illegal points
it encountered with more general-purpose search tools.

D. Discarding Remaining Illegal Points

Recall Figure 4 where the representation applied by BTO
reduces the search space to the area labeled BTO Considered

Search Space. In this search space, a significant number of
illegal points remain. Identifying them as early as possible is
key to a fast search. This section describes how BTO discards
the remaining illegal points. Figure 2 shows the dataflow graph
for the BATAX operation y ← βATAx first described in
Section II. Figure 5 shows each operation in BATAX numbered
according to its corresponding number in the dataflow graph.
Let us assume for simplicity that subgraphs are fixed. Thus,
although the scaling by β could be located differently in the
graph, in this example it cannot.

BTO performs type inference on the initial dataflow graph to
check whether the input program makes sense, assigning types

1t0 = A ∗ x
2t1 = A’ ∗ t0
3y = t1 ∗ beta

Fig. 5. Operation listing for y ← βATAx.

to all operations in the process. As BTO considers different
optimization choices, it incrementally updates the types to
determine quickly whether an optimization choice results in
incompatible types.

In particular, illegal data dependency chains can be created
with the fuse set representation and therefore must be checked
against the data flow graph for correctness. The following is
a partial list of the possible fuse sets for the running example.

a : {{1}}{{2}}{{3}}
b : {{1}{2}}{{3}}
c : {{12}}{{3}}
d : {{1}{3}}{{2}}
e : {{1}{2}{3}}
f : {{123}}

Fuse set d says to fuse operations 1 and 3. However,
referring to the dataflow graph in Figure 2, one can see that
there is a data dependency (operation 2) between 1 and 3.

A more subtle data dependency is caused by reduction
operations. Figure 6 shows the pseudocode for the example.
Examination of the outer loops (lines 1 and 4) show that the
iterations are compatible and are legal to fuse. Looking at the
inner loops (lines 2 and 5) we see compatible loops and assume
fusion is possible. However, on line 3, t0 [ i ] is the destination
of an accumulation and is not available for use until the inner
loop is complete. The next operation consumes this result and
so the inner loops cannot be fused.

1for i in 1 to M
2for j in 1 to N
3t0 [ i ] += A[i , j ] ∗ x[ j ]
4for i in 1 to M
5for j in 1 to N
6t1 [ j ] += A[i , j ] ∗ t0 [ i ]
7for j in 1 to N
8y[ j ] = t1 [ j ] ∗ beta

Fig. 6. Pseudocode for unfused operations as shown in Figure 5.

The introduction of loops, the type inference, and the le-
gality of partition introduction are all based on the underlying
type system employed by BTO. This system is described in
detail in previous papers [5]. Briefly, a set of rules describes
legal linear algebra operations based on the types involved
in the operation. Certain rules cause a reduction, so an
examination of the types involved in an operation provides
the loop nests and flags any loops as performing a reduction.
In order to catch the reduction data dependency, data flow
analysis is combined with the result of examining the type to
determine that results are the destination of a reduction and
that fusion cannot occur.

The legality of every partitioning must also be checked for
each operation. In the absence of fusion, doing so is simply of
a matter of checking the type of each operand and the result
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MFGA SEARCH ALGORITHM

We start with a greedy search technique that we call 
max-fuse (MF).

Then we mutate to seed a genetic algorithm (GA).

add or remove fusions

add or remove partitions

change direction of partition (horizontal/vertical)

increment/decrement number of threads assigned 
to a partition
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SEARCH TIME VS. 
PERFORMANCE
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Fig. 8. Performance data for Intel Westmere. Speedups relative to unfused loops compiled with ICC (ICC performance is 1 and not shown). The left three

kernels are vector-vector while the right six are matrix-vector operations. In all cases, BTO generates code that is between 16% slower and 39% faster than

hand-optimized code and significantly faster than library and compiler-optimized versions.

search time of the orthogonal search as compared to an ex-

haustive search using the smaller kernels: ATAX, AXPYDOT,

BICGK, VADD, and WAXPBY. For all kernels, orthogonal

search found the best-performing version while taking 1-8% of

the time of exhaustive search, demonstrating that searching the

space orthogonally dramatically reduces search time without

sacrificing performance. This reduction in search time results

in part from the chosen orthogonal ordering. By searching the

fusion space first, we often dramatically reduce the number

of data-parallel loops and hence the size of the subsequent

thread-count search space.

Thus, we see that fusion and thread search can be conducted

orthogonally without a significant loss of kernel performance.

2) Fusion Search: Next we focus on fusion strategies. In

this section we analyze our choice of using a combination of

a genetic algorithm and the max-fuse heuristic.

We compare four search strategies on our most challenging

kernel, GEMVER. In particular, we test random search, our

genetic algorithm without the max-fuse heuristic, the max-

fuse heuristic by itself, and the combination of the max-fuse

heuristic with the genetic algorithm (MFGA). As described

in Section IV, the random search strategy and the genetic

algorithm use the same mutation schemes, and thus their

comparison shows the benefit of the crossover and selection

methods.

Figure 9 shows the performance over time of each of the

search methods. (MF is a single point near 3 GFLOPS.)

Because the search is stochastic, each of the lines in the chart

is the average of two runs. MFGA finds the optimal point in

less than 10 minutes on average. Without the MF heuristic, GA

alone eventually reaches 90% of MFGA but requires over an

hour of search time. The Random search plateaus without ever

finding the optimal value. The MF heuristic by itself achieves

40% of MFGA.

In conclusion, a combination of GA and MF is the best

strategy for the fusion portion of the search.

3) Thread Search: Using the MFGA heuristic described

in the previous section, we explore several possible thread

search strategies, including the global thread number and the

exhaustive strategies discussed in Section IV-D. The baseline

test is the MFGA search with number of threads set equal

Fig. 9. GEMVER performance over time for different search strategies on

Intel Westmere. MFGA finds the best version more quickly and consistently

than either search individually.

to the number of cores (24 for these experiments), which we

refer to as the const strategy. Recall that the global strategy

starts with MFGA and then searches over a single parameter

for all loop nests for the number of threads. Recall that the

exhaustive search replaces the single thread parameter with

the full space of possible thread counts, i.e., considering the

number of threads for each loop nest individually.

The results for seven kernels are in Figure 10. The top chart

shows the final performance of the best version found in each

case.

Searching over the thread space improves the final perfor-

mance compared with using a constant number of threads

(e.g., equal to the number of cores), with negligible difference

in kernel performance between the global thread count (fixed

count for all threads) and fully exhaustive approaches (varying

thread counts for different operations). The bottom chart in

Figure 10 shows the total search cost of the different thread

search approaches, demonstrating that global thread search

improves scalability without sacrificing performance.

For GEMVER on Intel Westmere, 24 core
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FUTURE WORK/
CONCLUSIONS

We obtain reliable, high-performance matrix algebra

1. high-level specification language

2. careful enumeration of optimization choices

3. search algorithm: max-fuse + genetic

Future work:

More parallelism using MPI, GPUs

More matrix formats: banded, triangular, sparse
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