
「Paraiso」project
for automated generation and tuning

of hyperbolic partial differential equations solvers
for parallel and accelerated computers

in Haskell

Takayuki Muranushi @nushio

Astrophysicist, Assistant professor at

The Hakubi Center, Kyoto University（2010-2015）

http://paraiso-lang.org/wiki/
check!

☞

The Hakubi Center, Kyoto University

• Unique researchers wanted from all the world

• max. 20 people / year, 5 years position

• Any field of science: natural, life, engineering,
social studies, philosophy, …

• Salary of Assistant Prof. / Associate Prof. + research funding

• No mid-career assessment & lay-off

• No education duty

• No PhD required to apply

• No tenure track

Kyoto Univ.

Since 2010

quick start guide

> git clone https://github.com/nushio3/Paraiso.git
> cd Paraiso/
> cabal install
> cd examples/Life/ #Conway’s game of life example
> make lib
> ls output/OM.txt
output/OM.txt #this is analysis result for dataflow graph
> ls dist/
Life.cpp Life.hpp #an OpenMP implementation
> ls dist-cuda/
Life.cu Life.hpp #a CUDA implementation
> cd ../Hydro/ #hydrodynamics simulator example
> make lib #this takes half a minute or so
> ls output/; ls dist/; ls dist-cuda/ #same as above

Install Haskell Platform and git, then type

http://hackage.haskell.org/platform/
http://git-scm.com/

Outlines

1. Problem I want to solve & Related Projects

2. Paraiso Overview
2-1. Orthotope Machine, its Formal Definition

2-2. Frontend (Builder Monad)

2-3. Backend (Code Generator)

3. Benchmark and Tuning Result
3-1. Annotating by Hand

3-2. Automated Tuning based on Genetic
Algorithm

many categories of problems in astrophysics

General Relativity

Magneto-Hydrodynamics
Hydrodynamics

Radiative Transfer
(Relativistic)

Target Problem of Paraiso:
Explicit Solvers of Partial Differential Equations

subset∪

Target Problem: Partial Differential Equations,
Explicit Solvers, on Uniform Mesh

From computational point of view:
• They are d-Dimensional, real-number cell automata.

(also called stencil calculations)
• The state of each cell is a tuple of real numbers.
• The state of the cell at generation (n+1) is defiend as

function of the states of its neighbor cells at generation
(n). This locality makes distributed computation
relatively easy.

n-th generation n+1 -th generation

GPGPU: General-Purpose Computation on GPUs
M. Harris et al (2002) who coined the name

Target hardware: Parallelism!!

Target Machines for Paraiso
• Parallel computers (with / without accelerators

like GPUs) programmed in CUDA, OpenCL or
Fortran. Complex storage hierarchy

• We physicists are destined to use this kind of
machines. then let’s find fun ways of doing so!

 runs 90’832’896 CUDA Thread in Parallel

L1 Cache

L2 Cache

Video Memory

Host Memory

SSD

Hard Disk

GPU Register

Scratchpad

4,386,816 floating operations in Parallel

The K computer, Kobe, Japan

Tsubame2.0
at TiTech

and its awful
hierarchy

The Problem • We astrophysicists
write beautiful codes

• With very beautiful
repeating patterns

• I mean, as beautiful as crystalline
silicate

• OK, but this is not the kind of beauty
functional programmers are
searching for

9

Our Parallel Programming is like this

The amount of programs we write in our life is
the product of the factors who multiply by
copying-and-pasting.

Specify each of the sufficient knowledge modules,
and programs like above are automatically
generated

I want it like this

What a code generator aims for

• Generally you write Nf×Nmath×Neq×Nint×Nhw… lines
of code

• You find a bug / improvement and want Neq = Neq + 1; then you
need to re-write Nf×Nmath×1×Nint×Nhw… lines

• With code generator you only have to write

 Nf + Nmath + Neq + Nint + Nhw… lines

• You want Neq = Neq + 1; then just add 1 line

• You can concentrate on physics

• We have vast possibility for automated tuning

related projects

Fast Fourier
Transformation

Explicit PDE
Solvers

FFTW

Paraiso

Digital Signal
Processing SPIRAL

Problem Code Generator & Automated Tuning

I hope...

related projects

Paraiso
• cannot invent new integration schemes for

you

• offers tensor notations and algorithm
transformers, to avoid repeating yourself.

• can generate programs instead of you
• for CPUs, GPUs, and future machines ...

• can search for better memory & cache usage
pattern for you

• (can search for better communication patterns
for you)

14

manually

OM Builder

OM Compiler

Native compiler

Orthotope Machine (OM)
Virtual machine that
operates on multi-dim.
arrays

result

solver algorithm described in
simple mathematical notation

Equations

Discrete
Algorithm

Orthotope
Machine code

Native Machine
Source code

Executables

equation
you want to solve

Overall design
A

u
to

m
ate

d
 B

e
n

ch
m

ark &
 Tu

n
in

g

manually

OM Builder

OM Compiler

Native compiler

Orthotope Machine (OM)
Virtual machine that
operates on multi-dim.
arrays

result

solution algorithm described in
OM Builder Monad

Equations

Discrete
Algorithm

Orthotope
Machine code

Native Machine
Source code

Executables

equation
you want to solve

Orthotope Machine

Orthotope Machine (OM)
• A virtual machine much like vector computers,

each register is multidimensional array of
infinite size

• arithmetic operations work in parallel on each
mesh, or loads from neighbour cells.

 No intention of buiding a
real hardware:

a thought object to
construct a dataflow graph

Instruction set of Orthotope Machine
and as a physicist I can assure this tiny set can cover any hyperbolic
PDE solving algorithm (for uniform mesh)

Imm
 load constant value
Load （graph starts here）
 read from named array
Store （graph ends here）
 write to named array
Reduce
 array to scalar value
Broadcast
 scalar to array
Shift
 copy each cell to neighbourhood
LoadIndex & LoadSize
 get coordinate of each cell
 get array size
Arith
 various mathematical operations

Store(“future_data”)

Load(“past_data”)

8

46

13

90

9

4

1

6

1
10

4

7

2

5

8

3

6

9

elementary set of
parallel operations(1/5)

Reduce(Min)

10

4

7

2

5

8

3

6

9

2

Broadcast

2

2

2

2

2

2

2

2

2

2

elementary set of parallel operations(2/5)

0

1

2

0

1

2

0

1

2

elementary set of parallel operations(3/5)

Loadindex(0)

2

2

2

0

0

0

1

1

1

Loadindex(1)

Shift(0,1)

1
4

7

2
5

8

3
6

9

1
4

7
2

5

8
3

6

9

elementary set of
parallel operations(4/5)

Arith Add

1
4

7

2
5

8

3
6

9

10
30

70

10
30

70

10
30

70

11
34

77

12
35

78

13
36

79

elementary set of parallel operations(5/5)

Any (mesh) Program is composed of these elements

Mul

Add

Shift(-1,0)

Reduce(Min)

Broadcast

10
4

7

2
5

8

3
6

9

10
4

7

2
5

8

3
6

9

13
10

16

12
9

15

5
11

17

26
20

32

24
18

30

10
22

34

2
2

2

2
2

2

2
2

2

2

NValue NInst

Load(“hoge”)

Store(“hoge”)

a Kernel is a bipartite dataflow graph

Mul

Add

Shift(-1,0)

Reduce(Min)

Broadcast

10
4

7

2
5

8

3
6

9

10
4

7

2
5

8

3
6

9

13
10

16

12
9

15

5
11

17

26
20

32

24
18

30

10
22

34

2
2

2

2
2

2

2
2

2

2

NValue NInst

global value
（scalar value）

local value（Array）

local value（Array）

Load(“hoge”)

Store(“hoge”)

Formal definition of Orthotope
Machine Semantics

• Thanks to Kohei Suenaga, the 3rd batch
Hakubi Member

• math ahead warning

26

Help
me!

OK!

goal

27

28

much like a C++ template programming
when you say
vector2<int> or
vector3<double>

29

A(V1)

ax0

A(V2)

ax0

ax1

A(V3)

ax0

ax1

ax2 can compare or operate in same A(Vd)
but cannot between axes in different A(Vd)

・ ・ ・

30

Vd(G) A(Vd) G ! ::

Vec :~2 :~3 :~5 3 Axis 1

31

13
10

16

12
9

15

5
11

17

an orthotope value（Array）

32

13
10

16

12
9

15

5
11

17

2

global value
（effectively a scalar value）

local value（Array）

10
4

7

2
5

8

3
6

9

33

10
4

7

2
5

8

3
6

9
rho
mx
my
mz
:

setInitialCondition
proceedOneStep

:

NS

K

Es

:

34

10
4

7

2
5

8

3
6

9

10
4

7

2
5

8

3
6

9
rho
mx
my
mz
:

NS
Es

:

setInitialCondition
proceedOneStep

:

35

K

C NT
a0
a1
a2
a3
a4
:
:

36

37

C NT
a0
a1
a2
a3
a4
:
:

38

setInitialCondition
proceedOneStep

:
K

proceedOneStep k

39

1
0

4
7

2
5

8

3
6

9

0
4

7

2
5

8

3
6

9
rho
mx
my
mz
:

NS Es

:

1
0

4
7

2
5

8

3
6

9

0
4

7

2
5

8

3
6

9

:

Es'
rho
mx
my
mz
:

NS

proceedOneStep k

40

NT

C

1
0

4
7

2
5

8

3
6

9

0
4

7

2
5

8

3
6

9
rho
mx
my
mz
:

NS Es

:

ET
a0
a1
a2
a3
a4
:
:

1
0

4
7

2
5

8

3
6

9

0
4

7

2
5

8

3
6

9

:

Es'

proceedOneStep

k

41

Parallelism in array index i
Parallelism in execution order of commands.
No specified order of execution; there are dependencies, though.

42

43

44

Exercise for the readers : prove the lemma.

manually

OM Builder

OM Compiler

Native compiler

Orthotope Machine (OM)
Virtual machine that
operates on multi-dim.
arrays

result

solution algorithm described in
OM Builder Monad

Equations

Discrete
Algorithm

Orthotope
Machine code

Native Machine
Source code

Executables

equation
you want to solve

The Frontend

typelevel-tensor

46

jkijik BAC 

Einstein’s notation

Notation in Haskell
using typelevel-tensor

Implementation in C++





3

1j

jkijik BAC

notation in standard
mathematics terminology

The tensor is Traversable

• t : our tensor type-constructor
• f : some context —a code generation context
• a, b : elements of our tensor

(a->f b) : code generators for one element
t a : a tensor whose elements are of type a
f (t b) : the code generator for the entire tensor

47

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

instance Traversable Vec where
 traverse _ Vec = pure Vec
instance (Traversable n) => Traversable ((:~) n) where
 traverse f (x :~ y) = (:~) <$> traverse f x <*> f y

programming language Paraiso
lacks a usual frontend

• its source code is not a string

• no Lexer, no Parser

• Paraiso is an embedded DSL in Haskell, its

programme written in terms of Builder
monads and their combinators

Builder Monads
constructs dataflow graph

(a state monad that carries the half-built graph)

• User interface is in Type-level

– The type-checker helps user

– and assures type-consistency for the backend

• Dataflow graph under cover is Value-level

– can handle the graph in one type.

Value TLocal Float
-> Value TGlobal Int
-> Value Tlocal Float

Value TLocal Float

Value TGlobal Int

DynValue
-> DynValue
-> DynValue

DynValue

DynValue

User space
Internal
Dataflow
Graph

a helper function to define
binary operators for Builder Monad

Typed user interface

Builder monad being an Additive
Builder monad being a Ring ...

Builder Commutative Diagram

Builder A Builder B Builder C

Program A Program B Program C

Value A Value B Value C

code generation

computation

All these combined...

We can write equations compactly,
which are automatically code generators,
that generate codes corresponding to the equations!

Don’t Repeat Yourself

• Builder Monad is a first class resident in
Haskell

• You can (easily) write code generators, code
generator generators, ...

• Fundamentalistic pursuit of DRY(don’t repeat
yourself) principle

Re: Matthew Sottile’s challenge

combinability

56

A Hydrodynamic type class

• Automated conversion of primitive <-> conserved
variables

• Dead Code Elimination helps

Hydro is Applicative

• Now you can apply functions uniformly to all
the Hydro components, as you need

Interpolation in time

• This piece of code takes a first-order integrator
proceedSingle and constructs a second-order
one

• This single code can handle any integrator that
takes field with any numbers of degree of
freedom

• arbitrary high dimensions

Interpolation in space

• This single code

• can handle any field with any numbers of
degree of freedom

• any direction of arbitrary high dimensions

Select a characteristic from shock-tube
fans

• This single code

• can handle every degree of freedom at once

• any direction of arbitrary high dimensions

Sum up fluxes of every directions

• This single code
• can handle every degree of freedom at once
• any direction of arbitrary high dimensions
• Monads, folds, partial applications.... hard to

read even for me, to tell you the truth
• But, this small code!

Re: Matthew Sottile’s challenge

Array index as a first class object

63

Don’t Repeat Yourself

• Paraiso lacks a string-based frontend

• instead, it uses Builder Monads as a frontend.
Being a first-class citizen, you can put them
into tensor equations, define hydrodynamic
behavior of them, write algorithms and
transform them ... handle them in many and
meta ways.

•DRY!!

--Advanced topic--

a common drawback encountered

when doing

declarative style

to generate codes (or circuits)

65

Duplicated Calculations!

• Although the in-memory representation of Haskell avoids
duplication, user cannot observe the sharing (Mainland &
Morriset 2010).

• let-sharing and λ-sharing ... to recover sharing is
Publishable Results at the International Conferences™
(Elliott et al. 2003, O’Donnell 1993, Bjesse et al. 1998,
Claessen and Sands, 1999, Gill 2009.) 66

let x = calc
let y = x*x
let z = y+y

How the customer
explained it How Haskell internally represents it

x = calc();
y = x*x;
z = y+y;

What the customer
really needed

z = Expr Add
 (Expr Mul calc calc)
 (Expr Mul calc calc)

How Haskell semantically
means it

z =(calc()*calc())+
 (calc()*calc());

What code generated

calc

z Expr□□□

Add Mul

Expr□□□

What speed you get

The Russians Used a Pencil

• I use monad! (Undergraduate™)
• Each term is bound to a node index in the graph in the

State monad, the indices get duplicated, but calculation
doesn’t. The bind keyword does this indexing.

• Then do I need to be careful not to bind unused values?
 NO! dead code elimination takes care of them

67

x <- bind $ someCalc
y <- bind $ x*x
z <- bind $ y+y

void Hello::Hello_sub_0 (const int & a1, int & a5) {
int a1_0_0 = a1;
int a3_0_0 = (a1_0_0) * (a1_0_0);
(a5) = ((a3_0_0) + (a3_0_0));
}

Paraiso generates this code

manually

OM Builder

OM Compiler

Native compiler

Orthotope Machine (OM)
Virtual machine that
operates on multi-dim.
arrays

result

solution algorithm described in
OM Builder Monad

Equations

Discrete
Algorithm

Orthotope
Machine code

Native Machine
Source code

Executables

equation
you want to solve

The Backend

 code generator

Analysis :: OM -> OM
= add annotations
Optimization :: OM -> OM
= transforms graph
Plan = decisions made upon
• how much memory to allocate
• which part of calculation to

take place in same subroutine
Claris
• a C++ -like syntax tree with

CUDA extension.

OM Dataflow
Graph

C++
Code

OMTrans

Plan

Annotated and
Optimized OM

Analysis/Optimization

CUDA
code

ClarisTrans

Claris

PlanTrans

an omnibus interface for
analysis and optimization

70

Optimizers read what type they recognize and transform graphs

Analyzers annotate the graph nodes with values of their favorite types

just one example:
an annotation for memory allocation

• some of the dataflow
graph nodes are
marked ‘Manifest.’

• Manifest nodes are
stored in memory.

• Delayed nodes are re-
computed as needed.

data Allocation
 = Existing -- ^ This entity is already allocated as a static variable.
 | Manifest -- ^ Allocate additional memory for this entity.
 | Delayed -- ^ Do not allocate, re-compute it whenever if needed.
 deriving (Eq, Show, Typeable)

Names inherited from Repa (hackage.haskell.org/package/repa)

http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/repa

Which one better?
no one but benchmark knows

Less computation

for(;;){

 f[i] = calc_f(a[i], a[i+1]);

}

for (;;){

 b[i] += f[i] – f[i-1];

}

Less storage consumption
& bandwidth
for(;;){

 f0 = calc_f(a[i-1], a[i]);

 f1 = calc_f(a[i], a[i+1]);

 b[i] += f1 – f0;

}

a

f

b

a

f

b

as Matsuoka-
san pointed

out

write grouping
Kernel

• a user-defined function that does desired task

• calls several Subkernel

Subkernel

• a set of calculation executed in a loop

• = Fortran subroutine

• = CUDA __global__ kernel

 void Life::proceed () { // example of a kernel calling subkernels
 Life_sub_2(static_2_cell, manifest_1_67);
 Life_sub_3(static_1_generation, manifest_1_67, manifest_1_69,
manifest_1_74);
 (static_0_population) = (manifest_1_69);
 (static_1_generation) = (manifest_1_74);
 (static_2_cell) = (manifest_1_67);
}

a Kernel

write grouping
= a Kernel -> subkernels

• all node written by one
subkernel must have the
same array size

• nodes written by one
subkernel must not depend
on each other

• greedy

a Kernel
Existing nodes

a Kernel
Existing nodes

write group 0

(・A・) dependency! not yet ready for update

(・A・) ready for update, but let us assume this
node had a different array size, so cannot be
updated in the same loop as above

(・∀・) ready for update!

a Kernel
Existing nodes

subkernel 0

a Kernel
Existing nodes

subkernel 0

write group 1

a Kernel
Existing nodes

subkernel 0

subkernel 1

a Kernel
Existing nodes

subkernel 0

subkernel 1

write group 2

a Kernel
Existing nodes

subkernel 0

subkernel 1

subkernel 2

write grouping is done!
see how some nodes are re-calculated
and others not.

e.g. Hydrodynamics written in Paraiso

• # of nodes in graph＝3958

• # of nodes we can choose layout = 1908

• # of possible implementations

21908
=2318631474140359897594479094137816650163390396354617107978538972914676911296
28988952894988789846447793390988399384716551223336856806783982602912691606248
36444577017233503954535729241917880311363490383137914861274921255128950712734
78839740867052195091971420983222926979177135181119534352143339906235134472215
63209222201346475070934362866728885394848451529803078779559205459073953255482
22694867051456609645215932758935244244579084816176470059329340736642337222850
66235895193869829821564571777280892089111508644034200647863717746967240332634
3875446350241918444483542305006944256

manually

OM Builder

OM Compiler

Native compiler

Orthotope Machine (OM)
Virtual machine that
operates on multi-dim.
arrays

result

solution algorithm described in
OM Builder Monad

Equations

Discrete
Algorithm

Orthotope
Machine code

Native Machine
Source code

Executables

equation
you want to solve

The Performance

21908 different implementation of each
10’000 lines of code, generated from

Paraiso

• A framework for writing any
hyperbolic partial
differential equations solver

• 4299 lines

Hydro.hs

HydroMain.hs

• a Navier-Stokes equations
solver written in Paraiso

• 464 lines

Movie

• movie-2-jet.avi

• 1024^2 Resolution

• A shockwave formed by supersonic jet

Benchmark Results

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Paraiso Core i7
920 x8core

2.67GHz

Paraiso GTX460

(単精度)

Paraiso Tesla 2050 Athena Core i7
920 x8core

2.67GHz

Athena: An open-source plasma simulator widely used in
our field. I’m 10 times slower than them! What a shame!

Paraiso generated Codes Athena

↓

Speed

What speed you get

88

Why not see how 21908-1 other
implementation performs?

(Anot.add AnyAnnotation <?>) has an identity type on Builder;
you can freely add any annotation at almost anywhere in builder combinator
equation.

I also add annotations here...

Manifest
Strategy

Hardware size of .cu file number
of CUDA
kernels

memory
consumpt
ion

speed
(mesh/s)

none 13108 lines 7 52 x N 3.03×106

HLLC +
interpolate

GTX 460 3417 lines 15 84 x N 22.38×106

HLLC only GTX 460 2978 lines 11 68 x N 23.37×106

interpolate
only

GTX 460 17462 lines 12 68 x N 0.68×106

HLLC only

Tesla
M2050

2978 lines 11 68 x N 16.97×106

HLLC only Core i7 x8 2978 lines 68 x N 2.48×106

Athena Core i7 x8 2.90×106

Benchmark rev.2

0

5000000

10000000

15000000

20000000

25000000

Paraiso Core i7
920 x8core

2.67GHz

Paraiso GTX460
(Single Precision)

Paraiso Tesla
2050

Athena Core i7
920 x8core

2.67GHz

Speed Paraiso Generated Common

code

↓

By adding two lines of annotation

• We made several tens of nodes Manifest
 (not just two; applicative functors and traversables work as leverage)

• Our generated codes is ¼ in line number

• Our code makes double more CUDA kernel call
per generation

• Our code uses slightly more memory

• and 7 times faster than it used to be!

94

95

What speed you get rev.2

3-2. Automated Tuning
with Genetic Algorithms

96

Automated Tuning System

Given a genome, generate
an individual code,
measure its speed, and
write it into the database.

Tsubame 2.0

Automated
tuning
testbed

Master

Read the database,
create new
genomes and
launch workers

Worker

Database

Three things to optimize:

• C : cuda configuration <<<NT,NB>>>

• M : Manifest/Delay
(Manifest : to store intermediate data on memory

Delayed: not to store and recompute as needed)

• S : __syncthreads()

• more you can add, if you want

98

Three ways to create new genomes

• mutation (1 parent)
ATATATAAATTATATATATAAAAAAAAAAAAT

 ↓

ATATAGCAATTATATCTATAAAAAGTGAAAAT

• crossover (2 parents)
ATATATAAATTATATATATAAAAAAAAAAAAT

GGCCGCGCCCCGCGCGCCCGCGCGCCCGGCGG

 ↓

ATATGCGAATTATATATACGCGCGCCCGGCGT

• triangulation (3 parents)
ATATATAAATTATATATATAAAAAAAAAAAAT

ATATATAAATTATATATATAAAAAAGTTAAAT

ATATAGCAATTATATCTATAAAAAAAAAAAAT

 ↓

ATATAGCAATTATATCTATAAAAAAGTTAAAT

Individuals annotated by hand

100

Indibiduals generated by GA

101

102

evolution tracks

zoom-in (1)

103

zoom-in (2)

104

How are three methods of birth
(mutation, crossover,

triangulation)
working and interacting?

105

try switching off the method of birth

106

both crossover and
triangulation are

important!

107

Which part of family tree are the
methods of birth contributing?

108

Crossovers and triangulations contributes more directly
in generating the champion's family tree, and
triangulations contributes the more.

How do children's scores compare
with their parents'?

109

statistic significance of these
statements analysed ...

110

Family trees as Markov chains

111

Summary : three methods of birth

• Mutations : not efficient in making good
species, but the only way of introducing new
genomes

• Crossover : good at making large jumps

• Triangulations : good at accumulating small
improvements

112

Current implementation of Paraiso
has three things to tune:

• C: cuda configuration <<<NT,NB>>>

• M:Manifest/Delay

• S: __syncthreads()

• how are their contribuitions?

113

114

C: cuda configuration <<<NT,NB>>>
M:Manifest/Delay S: __syncthreads()

115

C: cuda configuration <<<NT,NB>>>
M:Manifest/Delay S: __syncthreads()

of three things to tune:

• C: cuda configuration <<<NT,NB>>>

• M:Manifest/Delay

• S: __syncthreads()

• Manifest/Delay is the major source of
speedup

• Config and Sync are nevertheless important,
without them we lose at least 10-20% each.

116

• So Paraiso's GA is not just
about optimizing a few
parameters: it's really searching
for better memory layouts, and
by doing so found 2x faster
solutions than those

 a human being (me)
 can think of.

117

Existing nodes

subkernel 0

subkernel 1

subkernel 2

automatically tuned codes v.s. hand-
optimized codes by others

118

All you need to change your 2D code
to 3D code

119

3

Benchmark rev.3

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

Paraiso Core
i7 920 x8core

2.67GHz

Paraiso
GTX460

(単精度)

Paraiso Tesla
2050

Paraiso Tesla
2050

Athena Core
i7 920 x8core

2.67GHz

Speed Paraiso+Nushio+Genome

 ↓
Athena

↓

121

What speed you get rev.3

Current State of Paraiso (1/2)

• Can write explicit solvers of PDE using
abstract, mathematical, combinable and
reusable notations.

• Can generate OpenMP and CUDA program for
multicore CPUs as well as GPUs

• On 8-core CPU, the speed of OpenMP version
almost matches that of hand-written codes
widely used.

• CUDA version is 10x faster than them, and
comes for free.

Current State of Paraiso (2/2)

• By adding just 1-2 lines of Annotation by
hand, we can make radical changes on
memory usage/computation structure of the
code, resulting in radical change in
performance of 6x-10x.

• Automated tuning gives yet another 2x
speedup.

Future of Paraiso

• Distributed computation via MPI.

• Other native language backends ... OpenCL,
Fortran and Physis!

This is not a victory; this is where the real fight begins.

to be continued...

