N R T .
Hakubi

check! Y 1

5= http://paraiso-lang.org/wiki/

M — e

[Paraiso |project
for automated generation and tuning
of hyperbolic partial differential equations solvers

for parallel and accelerated computers
in Haskell

Takayuki Muranushi @nushio

Astrophysicist, Assistant professor at
The Hakubi Center, Kyoto University (2010-2015)

The Hakub Center Kyoto Unlver5|ty

Since 2010

Unique researchers wanted from all the world
max. 20 people / year, 5 years position

Any field of science: natural, life, engineering,

social studies, philosophy, ...

Salary of Assistant Prof. / Associate Prof. + research funding
No mid-career assessment & lay-off

No education duty

No PhD reqwred to apply

quick start guide

Install Haskell Platform and git, then type

> git clone https://github.com/nushio3/Paraiso.git

> c¢d Paraiso/

> cabal install

> cd examples/Life/ #Conway’s game of life example

> make 1lib

> 1ls output/OM. txt

output/OM. txt #this is analysis result for dataflow graph
> 1s dist/

Life.cpp Life.hpp #an OpenMP implementation

> 1s dist-cuda/

Life.cu Life.hpp #a CUDA implementation

> c¢d ../Hydro/ #hydrodynamics simulator example
> make 1lib #this takes half a minute or so

> 1s output/; 1s dist/; 1ls dist-cuda/ #same as above

http://hackage.haskell.org/platform/
http://git-scm.com/

W
o Outlines

1. Problem | want to solve & Related Projects

2. Paraiso Overview o

2-1. Orthotope Machine, its Formal Definition
2-2. Frontend (Builder Monad)
2-3. Backend (Code Generator)

3. Benchmark and Tuning Result

3-1. Annotating by Hand
NEw

3-2. Automated Tuning based on Genetic

many categories of problems in astrophysics

5 B P gl)

L Millennigm Simtsatiop
10.077.696.000 particles /-

BeEe g

ERIE FBEEE REREE BERE

// 0.0 8 -
08~8
g —— ? (j— @
-
.

ERIE FEEE BHERRE PHFE

.)
8~40
\
\
\\
\

ERIE FBEEE BHERRE TIviFk—0

A

subset U Target Problem of Paraiso:
Explicit Solvers of Partlal Differential Equations

General Relativity

E 7 Radiative Transfer
. Magneto- Hydrodynamlcs
Hydrodynamics (Relativistic)

Target Problem: Partial Differential Equations,
Explicit Solvers, on Uniform Mesh

From computational point of view:

* They are d-Dimensional, real-number cell automata.
(also called stencil calculations)

* The state of each cell is a tuple of real numbers.

* The state of the cell at generation (n+1) is defiend as
function of the states of its neighbor cells at generation
(n). This locality makes distributed computation
relatively easy.

N-th generation n+1 -th generation

—
\\

—_—
—

Target hardware: Parallelism!!

GPGPU: General-Purpose Computation on GPUs

M. Harris et al (2002) who coined the name

| e

‘e RRRRRNANNN

@MSI
mMsI /

BMSI AFT

U!\l\l

Target Machines for Paraiso

* Parallel computers (with / without accelerators
like GPUs) programmed in CUDA, OpenCL or
Fortran. Complex storage hierarchy

* We physicists are destined to use this kind of
machines. then let’s find fun ways of doing so!

4,386,816 floating operations in Parallel runs 90°832'896 CUDA Thread in Parallel
| et |
S The K computer, Kobe, Japan -) GPUter
B o = - — Scratchpac

—_——

— L1 Cache
- L2 Cache
Video Memory

Tsubame2.0

Host Memory at TiTech
SSD and its awful
hierarchy

Hard Disk

N

The Problem

unicate_gather

rginSizeY * g5i

density]
= density|

ceal @

real @

buf_dec|0 * kinitSizeY + addr| = displaceme

real dec * val decll + [Aeal|l}=displacemen
§dec) + val_deco

Fladdr, kUnitSizeY}

g5

qs5

g5i

qs5

¥ 2 + gMarginSizeY + & 8
"B

gSizeY 2 * guarginsi + &y, az}
"N H
_inel

§_inc + wval_in

lati

displasemen ec * wal_decl + [Aeal|lj-displacement_real]

Fladdr, 3
y 8z}
L]
1} %
1 +
-
i 2 * gMarginSizeY + sy, sz} @
-BH
2 * gMarginSizeY + sy, sz] @
"B
_x0, gMargins + oy,
: x1l, gMargins + gy,
(Real(l}=displacemen eal_inc) ¢ wal_ined +

£ decj2 * kUnitSizeY + addr] = displacement_real_dec * wal_decl + |Real{l}-displacement_real @

* We astrophysicists
write beautiful codes

* With very beautiful
repeating patterns

* | mean, as beautiful as crystalline

silicate

* OK, but this is not the kind of beauty

functional programmers are
searching for

Our Parallel Programming is like this

The amount of programs we write in our life is
the product of the factors who multiply by
copying-and-pasting.

*eo@@

| want it like this

Specify each of the sufficient knowledge modules,
and programs like above are automatically

() B

What a code generator aims for

Generally you write N; X N
of code

You find a bug / improvement and want Ney= Ngyt+ 1; then you
need to re-write N X N_ . X1 XN XN_ ..lines

X Neg X Ny X Ny lines

math

math

With code generator you only have to write
Ni+ N+ Neg + Nipe + Npy--- lines

You want N, = N, + 1; then just add 1 line
You can concentrate on physics
We have vast possibility for automated tuning

related projects

Problem Code Generator & Automated Tuning

Fast Fourier
Transformation

Digital Signal
SPIRAL
Solvers

related proiects

Y& repa-2.2.0.1: High performance, regular, shape polymorphic parallel arrays. | hackageDB | Style ~

The repa package

Repa provides high performance, regular, multi-dimensional, shape polymorphic parallel arrays. All
numeric data is stored unboxed. Functions written with the Repa combinators are automatically parallel
provided you supply +RTS -Nwhatever on the command line when running the program.

})\—_ accelerate-0.8.1.0: An embedded language for accelerated array processing | hackageDB | Style ~

The accelerate package

This library defines an embedded language for regular, multi-dimensional array computations with
multiple backends to facilitate high-performance implementations. Currently, there are two backends:

(1) an interpreter that serves as a reference implementation of the intended semantics of the language
and (2) a CUDA backend generating code for CUDA-capable NVIDIA GPUs.

EIACM, (2010), This is the anthor's version of the work. i is posted here by permission of ACM for vour personal wse. Mot for
redistribution. The definitive version was published in Proceedings of the third ACM SIGPLAN symposium on Haskell (2010).

Nikola: Embedding Compiled GPU Functions in Haskell

Geoffrey Mainland and Greg Morrisett
Harvard School of Engineering and Applicd Scienoes
{mainland,gregV@eecs harvard.edu

Paraiso

cannot invent new integration schemes for
you

offers tensor notations and algorithm
transformers, to avoid repeating yourself.

can generate programs instead of you
e for CPUs, GPUs, and future machines ...

can search for better memory & cache usage
pattern for you

(can search for better communication patterns
for you)

Overall design

equation T
you want to solve % _ 224,

solver algorithm described in
simple mathematical notation

fE] =]+ At g™,

9

= = gl + S (G 1

—2/"1[i]) ,

Virtual machine that

0,1 E[1,01] 0,1] = ...
— he,0,0] Ll 2,0,8) REv el
operates on multi—-dm.Fil il
[0,0,0] 1,0,0] 2,0,0]
E[0,0,0] E(1,0,0] p E[2,0,0]

arrays

result

manually

Discrete

Algorithm

Orthotope
Machine code

Native Machine

Source code
Native compiler

Executables

Suiun] 9 xjewqaulgg pajewolny

Orthotope Machine m

eguation ou LV.F=0 manually

ou want to solve 9t n
y Discrete

solution algorithm described in Aleorithm
OM Builder Monad 0
. n+1 1 E

atte®

=)—r-%ﬁ- T Orthotope

Orthotope Machine — OM Compiler
Virtual machine that | Fi B B4

operates on multi—dim. Ef FH B
arrays —

Native Machine

Source code
Native compiler

result Executables

Orthotope Machine (OM)

e Avirtual machine much like vector computers,
each register is multidimensional array of
infinite size

e arithmetic operations work in parallel on each
mesh, or loads from neighbour cells.

” No intention of buidinga
real hardware: ,

a thought object to o001 0

_ construct a dataflow graph)

Instruction set of Orthotope Machine

and as a physicist | can assure this tiny set can cover any hyperbolic

PDE solving algorithm (for uniform mesh)

data Inst vector gauge

= Imm Dynamic
Load Name
Store Name
Reduce R.Operator
Broadcast
shift (vector gauge)
LoadIndex (Axis vector)
Arith A.Operator

instance Arity (Inst vector gauge) where

arity a = case a of

Imm -> (0,1)
Load -> (0,1)
Store -> (1,0)
Reduce -> (1,1)
Broadcast -> (1,1)
Shift -> (1,1)

LoadIndex -> (0,1)
Arith op -> arity op

(T N

load constant value
" Load (graph starts here))
read from named array
Store (graph ends here)
write to named array
/" Reduce N
array to scalar value
Broadcast
scalar to array
/“shift N
copy each cell to neighbourhood
LoadIndex & LoadSize
get coordinate of each cell
get array size

/“Arith N

various mathematical operations

elementary set of
parallel operations(1/5)

Load(“past_data”)

Store(“future_data”)

elementary set of parallel operations(2/5)

w02 3

st

}

Broadca

s

a5 e S
/7/f/9/

/Z/ZJ'/Z/

2

Reduce(Min)

s

2

2

2 S S

elementary set of parallel operations(3/5)

Loadindex(0)

|

/ 0 / / 2 Loadindex(1)

S 1,/2 /3 /7
/4,5 /6 7
S 1/8 /9)

!

Shift(0,1)

elementary set of
parallel operations(4/5)

S 1,/8 /9)/
S1/2,/3)/
/4,5 ,/6)/

elementary set of parallel operations(5/5)

1,/ 2 /3)/ /10,10, 10

4,/ 5 /6 7 /30,30, 30
7.8,/ 9 7 /70770 /70 /

N/

Arith Add

Any (mesh) Program is composed of these elements

Load(“hoge”)

/10 / 2 / 3 A&

Nvalue 44575~

NInst

/2 /73 /10 /€

/8/9 /1)

/12/5/13/<

/15 /17 /16 /

Vv

/273732 /€

L 2/2 /2)/

VM >
—_ <
—
(=) 1
i S
- &
=
2
N 3
-
o)
()]
o

Mul

/24 /10 /26 /€
/18 /22 / 20 /-

> Store(“hoge”)

Nvalue

a Kernel is a bipartite dataflow graph
Load(“hoge”)

NINnsSt

v

Shift(-1,0)

12!

Add

local value (Array)

Reduce(Min)

global value é
(scalar value

local value (Array)

!

Broadcast

> Store(“hoge”)

Mul

Formal definition of Orthotope
Machine Semantics

* Thanks to Kohei Suenaga, the 3rd batch
Hakubi Member

@. %ﬂ

* math ahead warning

goal

(0, Imm a,{y}) € C = Er(y) = Ai.a (1)

(0,Load 5,{y}) € C = Er(y) = Es(s) (2)
({z},Store 5,0) e C = FE(s) = Er(z) (3)
({z},Reduce r,{y}) € C = Er(y) = Ai.r(Er(z)) (4)
({z},Broadcast, {y}) € C = Er(y) = Er(x) (5)
({z},shift i',{y}) € C = Er(y) = M.Er(z)(i+1i)) (6)

(0, LoadIndex az,{y}) € C = Er(y) = Ai.ilaz (7)

({Eﬂ: S :-Tm—l}: arith op, {yﬂ: T !yﬂ-—l}} eC
= Er(ys) = M.opg(Er(20)(7), - - ; Er(Tm-1)(2)) (8)

27

Def. An d-dimensional vector of gauge
G, denoted by V4(G), is basically a d-
tuple of G with vector arithmetic defined.

much like a C++ template programming
when you say

vector2<int> or
vector3<double>

28

Def. An d-dimensional vector of gauge
G, denoted by V4(G), is basically a d-
tuple of G with vector arithmetic defined.

Def. A(V,) is the azis space for vec-
tor type- canstructc)r V4, and consists of d

clements: A = {azxg, - - ,arq_1}.
AV, ~AMVy) ~ ANV~
(ax, %—& aXg <+, Caxo .
can compare or operate in same A(V,) Caxz Y

but cannot between axes in different A(V)

29

Def. ! is the component access opera-
tor. For the pair v € V#(G) and az, €
A(Vy), vlaz is defined as the a-th compo-
nent of the vector v if d = d'. v!az is not

defined if d # d'.

Vi(G)

AV, — G

Vec

i~2

:~3

:~5

Axis 1 3

30

Def. An orthotope value of dimension
d, gauge (G and element type E is a func-
tion of type V4(G) — E. The domain
of the orthotope value V4(G) is called the
index space, or simply the index of the or-
thotope. It can be regarded as d-dimensional

array of infinite size with elements of type
4,

12/ 5 /13 /
/9 /11 /10 /
/15 /17 /16 /

an orthotope value (Array)

31

Def. The realm ot an orthotope value
is either global or local. The realm of an
orthotope value z is global iff. for all pair
of index (4, 7) it satisfies z(z) = x(7). The
orthotope value is local otherwise.

5
local value(Array) /9 /11 /10 /

global value
(effectively a scalarvalue) /2 /

32

Def. An orthotope machine of dimen-
sion d, gauge G is a tuple (Ng, Eg, K)
where Ng i1s the set of the static value
names, Fg 1s the static value environment,
and K 1s the set of kernels of the machine.

Ns Es 10/ 2 /3)/
h > /4/5/.6)/
rno 7/8/9&
mx\/4/5/10
my /5 / 6 4 /
m\\\(8/9/ 7/

(setInitiaICondition

K proceedOneStep
L :

33

Ng is just a set of some identifiers (e.g. a
set of strings). EJg is the function from Ng
to orthotope value: for s € Ng, Es(s) is of
type V4(G) — E; where E; is the element
type of static value s. The dimensions d
and gauges G of all the orthotope values
are the same as those of the orthotope ma-
chine itself.

34

A kernel k € K is a pair (N, C) where

N7 1s the set of temporal value names,
and C' 1s the set of commands. A com-
mand ¢ € C'is a triple (zs, inst, ys). The
two zs, ys C N are the domain and the
codomain of the command, and inst is one

of the following; 4)
C
t:;

r setInitialCondition

K proceedOneStep

L : “'Mu."/

35

mstruction
Imm a

Load s
Store s
Reduce r

Broadcast
Shift 7

LoadlIndex ar

arith op

constraint

a is some value of an element type.
s P'lu'r;-_;.

EES P'lu'r;-_;.

r € (V4(G) — E) — E is a reduction
operator for a certain type E.

s Wd['ﬂ:]
op is a function of arity (m,n).

FEach command must comply with the
aritiy of its inst, i.e. (zs, inst,ys) € C =
(lzs, |ys|) = arity(inst).

36

Def. The dataflow graph of a kernel
(N7, C) is a directed graph (V, E') where
the vertices V' = Np & C, and the edges
E are defined as follows:

(a,b) € E &
Jc € O, C = (-TS: 'o‘-ﬂSt, yS) 8.t.
(a € zs ANb=c)
V(a=cAbe ys)
NT Load("“h) C
10/ 2 31/(_
a0 /7//23//39/10 <« shri1o)
5 6 /4
al P—— o
a2 s T
value (Array, Reduce(Min)
a3 pu o 1
a4 lo \alu/e/Z(A;rav/; . 2 > < Broadcast
. 7 2 7 2 7 vy
(75 75 ey stcaithons

Store(“hoge”
L N0/ 38 32) 37

Def. An execution of a kernel. The
state of an orthotope machine, Eg, 1s up-
dated by executing its kernels, one at a
time. The initial state is undefined every-
where; Fg(s)(i) = L for all s € Ng,1 €
V4(G). The state of the machine after the
execution of the kernel &k is NextGen(k, Eg),

where k proceedOneStep

setInitialCondition
proceedOneStep

38

NextGen(k, Es) = E§ &,

JE7. Feasible((k, Es), (Er, EY))
and

El(s) if s € dom(EY)
Eg(s) = { Eg(s) otherwise ’

where s € Ng .
proceedOneStep
rho " [Pho ‘%' "ﬂ
ﬂﬂﬂ my ﬂ"ﬂ

8 9 7
my mz \ :
Mz \ . . :

39

Def. The feasibility of an execution.
Given a kernel £ = (N7, C) and an envi-
ronment F¢ of an orthotope machine, we
say Feasible((k, Es), (ET, EY)) iff. (Er, EX)
1s the least predecessor that satisfies the
following conditions.

proceedOneStep | _ C
N T E Load(“hoge”) \
Ng E
h S 0 2 3 a@ 77 8 ol i * , 0 2 3
rno {2/ 5/ 6/ VWA e pm 4/ 5 /6)/
T al—>,S 5 VSV AVAY
mx .’“"” g P ‘h‘d’ 7737 ./
/5 /6 /a/ a2 > 575 757 /56 /4/
my 8 / 9 7 33 A-yawas v v 8 / 9 7
ocalvalue(Array) _____________Tpodice (Min)
: .4Nﬂc‘iu/efﬂ\; ; 2/ 2 /< Broadcast
4 ﬁ 2 4 2 4 7 .

(0,Imm a,{y}) €C
(0, Load s, {y}) € C
({z},Store 5,0) € C
({z},Reduce r, {y}) € C
({z},Broadcast, {y}) € C
((a},Shige #,{4}) €C = Erly) = XiEr(a)(i +1))

(0, LoadIndex az, {y}) € C Er(y) = M.ilaz

{{:ﬂﬂ: C ::Em—l}: arith op, {yﬂ: S :yﬂ-—l}] e C

= Er(ys) = M.opg(Er(zo)(i), - s Er(Tm-1)(2)) (8)

Er(y) = AM.a

Er(y) = Es(s)
Es(s) = Er(z)
Er(y) = Mi.r(Er(z))
Er(y) = Er(z)

-

o

=

6
7

A 2

e T T o . T 9
N
e S I e,

Parallelism in array index I
Parallelism in execution order of commands.

No specified order of execution; there are dependencies, though.

41

A kernel (N7,C) must satisfy the fol-

lowing conditions.

e For any y € Ny, there exists exactly
one (zs,inst,ys) € C such that y &
yS.

e For any s € Ng, there exists at most

one (zs, inst, ys) € C such that inst =
Store s.

e The dataflow graph of the kernel is acyclic.

42

Lem. For any kernel k = (N7, C') and

any environment Eg of an orthotope ma-
chine, there exists unique (Er, F%) that
satisfies Feasible((k, Es), (ET, E%)).

43

Lem. For any kernel k = (N7, C') and

any environment Eg of an orthotope ma-
chine, there exists unique (Er, F%) that
satisfies Feasible((k, Es), (Er, Ey)).

Exercise for the readers : prove the lemma.

44

The Frontend m

eguation ou LV.F=0 manually
you want to solve 9¢

Discrete
solution algorithm described in Aleorithm
OM Builder Monad

ARE ersRE
- ,_(H:g- - Orthotope
Machine code

OM Compiler

Virtual machine that 2 |
operates on multi—dim.F B B
arrays '

Native Machine

Source code
Native compiler

result Executables

typelevel-tensor

Einstein’s notation

Cik — Aiijk

notation in standard
mathematics terminology

3
Cik — Z Aij Bjk
j=1

Notation in Haskell
using typelevel-tensor

a :: Vecd (Vecd Double)
b :: Vecd (Vecd Double)
C = Ccompose 5 “\1 -»
contract 3 %] ->
compose 3 kK->
a!i!y * b!j'k

Implementation in C++

double a[4]1[3], b[3]1[4];
double c[4][4];
for (int 1 =@; 1 < 4; ++1) {
for (int k =@; k < 4; ++k) {
cli]lk] = @;
for (int 1 =@; j < 3; i) {
} c[i][k] += a[il[i] * p[j1[k]:
}
}

46

The tensor is Traversable

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

instance Traversable Vec where
traverse _ Vec = pure Vec

instance (Traversable n) => Traversable ((:~) n) where
traverse f (x :~y) = (:~) <$> traverse f x <*> f y

e t . our tensor type-constructor
e f : some context —a code generation context
* a, b :elements of our tensor

(a->f b) :code generators for one element
t a . a tensor whose elements are of type a
f (t b) :the code generator for the entire tensor

programming language Paraiso
lacks a usual frontend

its source code is not a string

no Lexer, no Parser

Paraiso is an embedded DSL in Haskell, its
programme written in terms of Builder

monads and their combinators

Builder Monads

constructs dataflow graph
(a state monad that carries the half-built graph)

type Builder (vector:: * -> *) (gauge:: *) (anot:: *) (val::

= State.State (BuilderState vector gauge anot) val

data BuilderState vector gauge anot = BuilderState

{ setup :: Setup vector gauge anot,
context :: BuilderContext anot,
target :: Graph vector gauge anot} deriving (Show)

data BulilderContext anot =
BuilderContext
{ currentAnnotation :: anot } deriving (Show)

*)

/Value TLocal Float

[

YA A4

™

User space

Internal
DynValue Dataflow

\

Value TLocal Float
-> Value TGlobal Int

\>Value Tlocal Float

Value TGlobal Int

Graph

DynValue

/

* User interface is in Type-level
— The type-checker helps user

DynValue
-> DynValue
-> DynValue

— and assures type-consistency for the backend

* Dataflow graph under cover is Value-level

— can handle the graph in one type.

a helper function to define
binary operators for Builder Monad

mkOp2 :: (TRealm r, Typeable c) =>
A.QOperator
~> (Builder v g a EValue r c}

(

~> (Builder v g a |(Value r c)
~> (Builder v g a \(Value r c
mkOp2 op builderl builder2 = do
vl <- builderl
v2 <- builder? Typed user interface

let

rl = Val.realm vl

cl = Val.content vl
nl <- valueToNode vl
n2 <- valueToNode v2
n0 <- addNodeE [nl, n2] $ NInst (Arith op)
n0l <- addNodeE [n0] $ NValue (toDyn vl)
return $ FromNode rl cl n0Ol

Builder monad being an Additive
Builder monad being a Ring ...

instance (TRealm r, Typeable ¢, Additive.C c¢)

=> Additive.C (Builder v g a (Value r c)) where
zero = return $ FromImm unitTRealm Additive.zero
(+) = mkOp2 A.Add
(-) = mkOp2 A.Sub
negate = mkOpl A.Neg

instance (TRealm r, Typeable c, Ring.C c) == Ring.C (Builder v g a (Value r c)) where
one = return > FromImm unitTRealm Ring.one
(*) mkOpZ2 A.Mul

Builder Commutative Diagram

Builder A

Program A

Value A

Builder B l§=H Builder C

code | generation

Program B Program C

computation

1 Value B — Value C

We define various mathematical operations between Builder Monad in a consistent
manner (c.f. Fig. 3). For any operator @, Builder A @ Builder B = Builder C is
defined by Value A @ Value B = Value C, where Value i is the value computed by

Program ¢ which is generated by Builder i.

All these combined...

We can write equations compactly,
which are automatically code generators,
that generate codes corresponding to the equations!

hllec :: Axis Dim -> Hydro BR -> Hydro BR -> B (Hydro BR)
hllc i left right = do
densMid <- bind $ (density left + density right) / 2
soundMid <- bind $ (soundSpeed left + soundSpeed right) / 2
let
speedLeft = velocity left !i
speedRight = velocity right !i
presStar <- bind $ max 0 $ (pressure left + pressure right) / 2 -
densMid * soundMid * (speedRight - speedLeft)
shockLeft <- bind $ velocity left !i -
soundSpeed left * hllcQ presStar (pressure left)
shockRight <- bind $ velocity right !i +
soundSpeed right * hllcQ presStar (pressure right)

shockStar <- bind $ (pressure right - pressure left
+ density left * speedLeft * (shockLeft - speedLeft)

- density right * speedRight * (shockRight - speedRight)

/ (density left * (shockLeft - speedLeft) -

density right * (shockRight - speedRight))
lesta <- starState shockStar shockLeft left
rista <- starState shockStar shockRight right

Don’t Repeat Yourself

e Builder Monad is a first class resident in
Haskell

* You can (easily) write code generators, code
generator generators, ...

 Fundamentalistic pursuit of DRY(don’t repeat
yourself) principle

Re: Matthew Sottile’s challenge

combinability

A Hydrodynamic type class

class Hydrable a where

density :: a -> BR
velocity :: a -> Dim BR
velocity X =

compose (1 -> momentum X !1 / density x)
pressure :: a -> BR
pressure ¥ = (kGamma-1) * internalEnergy x
momentum :: a -> Dim BR
momentum X =

compose (1 -> density x * welocity x 1)

energy :: a -> BR

energy X = kineticEnergy x + 1/(kGamma-1) * pressure x
enthalpy :: a -> BR

enthalpy X = energy X + pressure x

densityFlux :: a -> Dim BR

Automated conversion of primitive <-> conserved
variables

Dead Code Elimination helps

L=u L= HJI LA™ [= = AL B

p— -

Hydro is Applicative

instance Applicative Hydro where
pure x = Hydro
{densityHydro = x, wvelocityHydro = pure x, pressureHydro = x,
momentumHydro = pure X, energyHydro = X, enthalpyHydro = x,
densityFluxHydroe = pure x, momentumFluxHydro = pure (pure x),
energyFluxHydro = pure X, soundSpeedHydro = X,

kineticEnergyHydro = x, internalEnergyHydro = x}

ht <*> hx = Hydro
{densityHydro = densityHydro hf 5 densityHydro hix,
pressureHydro = pressureHydro hf 5 pressureHydro hix
energyHydro = energyHydro hf 5 energyHydro hx,
enthalpyHydro = enthalpyHydro ht > enthalpyHydro hix,
soundspeedHydro = soundSpeedHydro hf 5 soundSpeedHydro hix,
kineticEnergyHydro = KineticEnergyHydro hf 5 kKineticEnergyHydro hx,
internalEnergyHydro = internalEnergyHydro hf 5 internalEnergyHydro hx,
velocityHydro = velocCltyHydro hf <*= welocltyHydro hix
momentumdydro = momentumHydro ht <*> momentumHydro hix,
densityFluxHydro = densityFluxHydro hf <*= densityFluxHydro hx,
energyF luxHydro = energyFluxHydro hf <*> energyFluxHydro hx,
momentumFluxHydro =

compose(“1 -> compose(“j -> (momentumFluxHydro hf!i!j)
{momentumFluxHydro hx!1!3270

* Now you can apply functions uniformly to all
the Hydro components, as you need

Interpolation in time

celld proceedsingle 1 (dt/Z) dR cell cell
cell3 proceed5ingle £ dt dR celll cell

* This piece of code takes a first-order integrator

proceedSingle and constructs a second-order
one

* This single code can handle any integrator that
takes field with any numbers of degree of
freedom

* arbitrary high dimensions

Interpolation in space

interpolate :: Int -> Ax1s Dim -> Hydro BR -> B (Hydro BR, Hydro BR)
interpolate order 1 cell = do

let shifti n = shift 5 compose (] -> i1f 1==] then n else @)

a@ <- mapM (bind . shifti { 2)) cell

al <- mapM (bind . shifti { 1)) cell

a <- mapM (bind . shifti { @)) cell

a3 <- mapM (bind . shifti (-1)) cell

intp <- sequence > interpolatebingle order <> a@ <*> al <*> a <*> a3

* This single code

e can handle any field with any numbers of
degree of freedom

* any direction of arbitrary high dimensions

Select a characteristic from shock-tube

fans
let selector a b Cc d =
select (@ 1t shocklLeft) a %
select (& |t shockStar) b %
select (@ 1t shockRight) c d

mapM bind 3 selector <3> left <*> lesta <*> rista <*> right

* This single code
e can handle every degree of freedom at once
e any direction of arbitrary high dimensions

Sum up fluxes of every directions

proceedSingle :: Int -> BR -> Dim BR -> Hydro BR -> Hydro BR -> B (Hydro BR)
proceediingle order dt dR cellF cells = do
let calcWall 1 = do

(lp,rp) == interpolate order 1 cellF
hllc 1 1p rp
wall <- seguence > compose calcWall
foldll (.) (compose (1 -> (=== addFlux dt dR wall 1))) % return cells

* This single code
e can handle every degree of freedom at once
* any direction of arbitrary high dimensions

 Monads, folds, partial applications.... hard to
read even for me, to tell you the truth

* But, this small code!

Re: Matthew Sottile’s challenge

Array index as a first class object

(VR[i — 3e.), VL[i + ie,]) =
Interpolate(VO[i — e,|, VO[i], VO[i + e,)). (20)

F,[i + e,) = HLLC,(VL[i + Ze.], VR[i + 1e,)). (22)
U2 = AddFlux(At, F,, U1)
= U2(]| = UL[i| + Y

Ar, (F“'[l N éeﬂ-] — Fali+ %ea_])) (23)

63

Don’t Repeat Yourself

* Paraiso lacks a string-based frontend

* instead, it uses Builder Monads as a frontend.
Being a first-class citizen, you can put them
into tensor equations, define hydrodynamic
behavior of them, write algorithms and
transform them ... handle them in many and
meta ways.

*DRY!!

--Advanced topic--

a common drawback encountered
when doing
declarative style
to generate codes (or circuits)

Duplicated Calculations!

How the customer What the customer

explained it really needed How Haskell internally represents it
let x = calc x = calc(); Add Mul| |calc
let y = x*x y = x*x; e = P
let z = y+y Z = y+y; z & Expr'lfllflllfl_l— ExprO0O0

What speed you get

How Haskell semantically

means it What code generated
z = Expr Add z =(calc()*calc())+
(Expr Mul calc calc) (calc()*calc());
(Expr Mul calc calc)

e Although the in-memory representation of Haskell avoids
duplication, user cannot observe the sharing (Mainland &
Morriset 2010).

* |et-sharing and A-sharing ... to recover sharing is
Publishable Results at the International Conferences™
(Elliott et al. 2003, O’Donnell 1993, Bjesse et al. 1998,
Claessen and Sands, 1999, Gill 2009.)

66

The Russians Used a Pencil

X <- bind $ someCalc

<- bind *
32/ ‘. bind i ;+; % Paraiso generates this code

void Hello::Hello sub @ (const int & al, int & a5) {
int al © @ = al;

int a3 0. 0 = (a1 0. 0) * (al © 0);

(a5) = ((a3. 0. 0) + (a3.0.0));

}

* | use monad! (Undergraduate™)

 Each term is bound to a node index in the graph in the
State monad, the indices get duplicated, but calculation
doesn’t. The bind keyword does this indexing.

e Then do | need to be careful not to bind unused values?
— NO! dead code elimination takes care of them

The Backend m

eguation ou LV.F=0 manually
you want to solve 9¢

Discrete
solution algorithm described in Aleorithm
OM Builder Monad

ARE ersRE
- ,_(H:g- - Orthotope
Machine code

Virtual machine that 2 |
operates on multi—dim.F B B
arrays '

Native Machine

Source code
Native compiler

result Executables

code generator

OM Dataflow
Graph

Annotated and
Optimized OM

Analysis/Optimization

Analysis :: OM -> OM

OMTrans = add annotations
Optimization :: OM -> OM
[Plan] = transforms graph
PlanTrans Plan = decisions made upon
* how much memory to allocate
[C@I{is] * which part of calculation to
take place in same subroutine
ClarisTrans Claris

e a C++ -like syntax tree with

C++ CUDA CUDA extension.
Code code

an omnibus interface for
analysis and optimization

type Annotation = [Dynamic]

add :: Typeable a => a -» Annototion -»> Annotation

Add an annotation to a collection.

Analyzers annotate the graph nodes with values of their favorite types
gmap :: (Graph vga -> Graph vga) ->»Mvga->0Mvaga

map the graph optimization to each dataflow graph of the kernel

boundaryAnalysis :: Graph v g Annotation -»> Graph v g Annotation

Optimizers read what type they recognize and transform graphs
optimize :: Ready v g =»> Level -» OM v g Annotation -» OM v g Annotation

just one example:
an annotation for memory allocation

data Allocation

= Existing -- ~ This entity is already allocated as a static variable.
| Manifest -- ~ Allocate additional memory for this entity.
| Delayed -- ~ Do not allocate, re-compute it whenever if needed.

deriving (Eq, Show, Typeable)
e some of the dataflow

graph nodes are
marked ‘Manifest.

® Manifest nodes are
stored in memory.

O Delayed nodes are re-
computed as needed.

Names inherited from Repa (hackage.haskell.org/package/repa)

http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/repa

as Matsuoka: Which one better?

san pointed
out no one but benchmark knows
Less computation Less storage consumption
& bandwidth
for(;;){ for(;;){
f[i] = calc_f(a[i], a[i+1]); fo = calc_f(a[i-1], a[i]);
} f1 = calc_f(a[i], a[i+1]);
for (;;){ b[i] += f1 - fO;
b[i] += f[i] - f[i-1]; }
}
d d
f

write grouping
Kernel
* a user-defined function that does desired task
* calls several Subkernel
Subkernel
* a set of calculation executed in a loop

e = Fortran subroutine
* = CUDA _ global__ kernel

void Life::proceed () { // example of a kernel calling subkernels
Life sub 2(static_2 cell, manifest 1 67);
Life sub 3(static_1 generation, manifest 1 67, manifest 1 69,
manifest 1 74);
(static_© population) = (manifest 1 69);
(static_1 generation) = (manifest 1 74);
(static_2 cell) = (manifest 1 67);
}

a Kernel

write grouping
= a Kernel -> subkernels

* all node written by one
subkernel must have the
same array size

* nodes written by one
subkernel must not depend
on each other

* greedy

a Kernel

Existing nodes

a Kernel

Existing nodes

write group O

(V' *) ready for update!

(=A*") ready for update, but let us assume this
node had a different array size, so cannot be
updated in the same loop as above

(=A*) dependency! not yet ready for update

a Kernel

Existing nodes

subkernel O

a Kernel

Existing nodes

subkernel O

write group 1

a Kernel

//// Existing nodes

subkernel O

subkernel 1

a Kernel

/ Existing nodes

subkernel O

subkernel 1

write group 2

a Kernel

Existing nodes

subkernel O

subkernel 1

subkernel 2

write grouping is done!
see how some nodes are re-calculated
and others not.

e.g. Hydrodynamics written in Paraiso

* # of nodes in graph=3958

* # of nodes we can choose layout = 1908
* # of possible implementations

9 21908

=2318631474140359897594479094137816650163390396354617107978538972914676911296
28988952894988789846447793390988399384716551223336856806783982602912691606248
36444577017233503954535729241917880311363490383137914861274921255128950712734
78839740867052195091971420983222926979177135181119534352143339906235134472215
63209222201346475070934362866728885394848451529803078779559205459073953255482
22694867051456609645215932758935244244579084816176470059329340736642337222850
66235895193869829821564571777280892089111508644034200647863717746967240332634
3875446350241918444483542305006944256

The Performance m

eguation ou LV.F=0 manually
you want to solve 9t

Discrete
solution algorithm described in Algorithm
OM Builder Monad

ARE ersRE
- ,_(H:g- - Orthotope
Machine code

OM Compiler
Virtual machine that

operates on multi—dim. Ef FH B
arrays —

Native Machine
Source code

Native compiler

result i £ Executables

21908 different implementation of each
10’000 lines of code, generated from

Paraiso | Hydro.hs
HydroMain.hs

* Aframework for writingany « 3 Navier-Stokes equations

hyperbolic partial solver written in Paraiso
differential equations solver | 464 lines

e 4299 lines

Movie

* movie-2-jet.avi

e 102412 Resolution

* A shockwave formed by supersonic jet

Benchmark Results

Speed _
3500000 Paraiso generated Codes Athena
500000

- !

I \‘
, 1N I E
Paraiso Core i7 Paraiso GTX460 Paraiso Tesla 2050 Athena Corei7

920 x8core (EFEE) 920 x8core
2.67GHz 2.67GHz

3000000 e

2500000

2000000

1500000

1000000

Athena: An open-source plasma simulator widely used in
our field. I’'m 10 times slower than them! What a shame!

What speed you get

88

We Wﬁﬁ’f:gwe in]

Thank you for your prayers, words, and competitive compassion.

Why not see how 21°%8-1 other
implementation performs?

interpclateSingle :: - - - - - {BR, BR)
interpolateSingle order x0 x1 x2 =x3
if order ==]
then do
return (x1, x2)
alse if order == 2
then do
d0l <- bind § x1-x0
dl2 <- bind § x2-x1
d23 <- bind 5 x3-x2
lat absmaller a b = select ({(a*b) "le” 0) 0 % select (abzs a "1t abs b) a b
dl <- bind § absmaller 401 dl2
d2 <- bind § absmaller dl2 423
l <= bind 5§ x1 + d1/2
r <- bind § x2 - d2/2
return (.add <7> 1, .add <7> r)
alse error 5 show order ++

{<?>) :: (TRealm r, Typeable €) == {(a -» a) -» Builder v g a (Malue r €) -» Builder v g a (Value r c)

(Anot.add AnyAnnotation <?>) has an identity type on Builder;

you can freely add any annotation at almost anywhere in builder combinator
equation.

| also add annotations here...

hllec :: -> -> -> ()
hlle i left right = do
densMid <- bind % (density left + density right y [2
soundMid <- bind $ (soundSpeed left + scundSpeed right) /7 2
lat
speedleft = velocity left !i
speedRight = velocity right !i
presStar <- bind 5 max 0 5 (pressure left + pressure right)} [/ 2 -

densMid * soundMid * (speedRight - speedLeft)
shockLeft <- bind $ wvelocity left !i -
soundSpeed left * hllc) presStar (pressure left)
shockRight <- bind § wvelocity right !i +
soundSpeed right * hllcQ presStar (pressure right)

shockStar <- bind $ (pressure right - pressure left
+ density left * zpeedleft * (shockleft - speedLeft)

- dengity right * speedRight * (shockRight - speedRight))
/ {density left * (shockleft - speedLeft } -
density right * (shockRight - speedRight))
lesta <- starState shockStar shockleft left
rizta <- starState shockStar shockRight right
lat selector a b ¢c d =
(. add <>) %
select (0 "1t shockleft) a 3
select (0 "1t shockStar) b §
select (0 "1t° shockRight) ¢ d
mapM bind $ selector <5> left <*> lesta <*> rizta <*> right

o, e p—

W ELT{E Hardware | size of .cu file | number
of CUDA

Strategy

13108 lines
HLLC + GTX 460 3417 lines
interpolate
HLLConly GTX 460 2978 lines

interpolate GTX 460 17462 lines
only

HLLConly Tesla 2978 lines
M2050

HLLConly Corei7 x8 2978 lines

Athena Corei7 x8

kernels

7
15

11
12

11

memory
consumpt | (mesh/s)
ion

52x N 3.03X10°
84xN 22.38 X106

68 x N 23.37 X 10°
68xN 0.68 X 10°

68 x N 16.97 X 10°

68 x N 2.48 X 10°

2.90 X 10°

Benchmark rev.2

Speed Paraiso Generated Common
25000000
Ve = ~ code
20000000 '
\’
15000000
10000000
5000000
, N B
Paraiso Corei7 Paraiso GTX460 Paraiso Tesla Athena Core i7
920 x8core (Single Precision) 2050 920 x8core

2.67GHz 2.67GHz

By adding two lines of annotation

e We made several tens of nodes Manifest

(not just two; applicative functors and traversables work as leverage)

* Our generated codes is % in line number

 Our code makes double more CUDA kernel call
per generation

* Our code uses slightly more memory
e and 7 times faster than it used to be!

What speed you get rev.2

95

3-2. Automated Tuning
with Genetic Algorithms

Automated Tuning System

Master Database

Wor
§

Read the database,
create new
genomes and
launch workers

ker

/7

Given a genome, generate
an individual code,
measure its speed, and
write it into the database.

Automated
tuning
testbed

Three things to optimize:

C : cuda configuration <<<NT,NB>>>
M : Manifest/Delay

(Manifest : to store intermediate data on memory
Delayed: not to store and recompute as needed)

S: syncthreads()

more you can add, if you want

Three ways to create new genomes

e mutation (1 parent)
ATATATAAATTATATATATAAAAAAAAAAAAT E::::>
!

ATATAGCAATTATATCTATAAAAAGTGAAAAT

e crossover (2 parents)

ATATATAAATTATATATATAAAAAAAAAAAAT - _ .
GGCCGCGLCLCCCGLGELaEeeareaeareacaaeaa | [} E:::i} \
ATATGCGAATTATATATACGCGCGCCCGGCGT

* triangulation (3 parents)

ATATATAAATTATATATATAAAAAAAAAAAAT

ATATATAAATTATATATATAAAAAAGTTAAAT

ATATAGCAATTATATCTATAAAAAAAAAAAAT E:::i>
\

ATATAGCAATTATATCTATAAAAAAGTTAAAT

Individuals annotated by hand

ID config | (1) | (2) | lines | subKernel | memory
Izanagi 32x32 | D | D | 13128 7| 52x N
TIzanami 448 x 256 | D | D | 13128 7| 52 x N
Twatsuchibiko 448 x 256 | M | D | 17494 12| 68 x N
Shinatsuhiko 448 x 256 | D | M 3010 11| 68 x N
Hayaakitsuhime | 448 x 256 | M | M 3462 15| 84 x N

ID score (SP) score (DP)

Izanagi 1.551 =0.0005 | 1.138 & 0.000

Lzanami 5.838 £0.004 | 3.091 £ 0.002

Twatsuchibiko 5.015 £0.002 | 2.491 £ 0.001

Shinatsuhiko 42.682 £ 0.083 | 19.831 £ 0.021

Hayaakitsuhime | 34.100 £ 0.110 | 15.632 £ 0.024

100

Indibiduals generated by GA

RunID | prec. initial score | wct | best ID/total highscore
GA-1 DP 1.138 £ 0.000 | 3870 | 20756 / 20885 | 14.158 £ 0.002
GA-S1 | DP 1.138 +0.000 | 4120 | 33958 / 34328 | 16.247 + 0.002
GA-DE | DP | 19.253 +0.044 | 7928 | 41250 / 41386 | 31.015 &+ 0.032
GA-D | DP | 19.253 £0.044 | 8770 | 59841 / 68138 | 34.968 £ 0.043
GA-4 DP | 19.253 £ 0.044 | 5811 | 39991 / 40262 | 35.303 £ 0.035
GA-F SP | 42.682 £+ 0.083 | 2740 | 23019 / 23062 | 53.300 £ 0.078
GA-F2 | SP | 42.682 +0.083 | 4811 | 22242 / 24887 | 53.656 + 0.078
GA-3D | SP | 24.638 0.001 | 5702 | 38146 / 39200 | 45.443 +0.116
Table 3. The statistics of auto-tuning experiments. The columns are RunID,

precision, the score of initial individual, the wall-clock time for the experiment (in
minutes), the ID of the best individual and the number of individuals generated, the
highscore (in Mcups). Experiments GA-1 and GA-S1 started with Izanagi, others
started with Shinatsuhiko. GA-3D started with Shinatsuhiko, and solved 3D problems.

101

score

evolution tracks

6.0x10"

5.0x10°

4.0x10"

3.0x10’

1.0x10"

0.0x10°

0

20000

40000
individual ID

60000

80000

score

4.0x107

3.5x10"

3.0x10"

2.5x10°

2.0x107

1.5x10"

1.0x107

5.0x10°

0.0x10°

1

| |
individuals
family tree
ancestors

]]] | i !

0

10000 20000 30000 40000 50000 60000 1020000
individual ID

score

zoom-in (1)

2.7x107 — . . ; ; ,
individuals : s 3 il |l 1 £
family tree iy ALl
ancestors : ; :] s ks IE5

26107 |-

2.5x10" |-

2.4x107 |-

2.3x107 - ——i=

15000 16000 17000 18000 19000 20000 21000 22000
individual ID

103

score

zoom-in (2)

2.6)(107 vese ol T T T
individuals ———— : t
family tree ; m“
ancestors ® ; : ' !i

-a‘r"
z:u..:
-—::
"‘5
.-"...‘_
w‘
m
-
.-‘

=

. _—.._—;—
—c
-—-v-
C——

I' dif) s
{' | iii,h:‘; i |
e
; }[TI LII i I?‘{i!l
A
Al W ﬁlhﬂ |
16000 16500 17000 17500 18000 18500 19000

individual ID

104

How are three methods of birth
(mutation, crossover,
triangulation)
working and interacting?

try switching off the method of birth

RunlID | prec. initial score wct | best ID/total | highscore
GB-333-0 | DP | 19.253 £0.044 | TODO | TODO / TODO TODO
GB-333-1 | DP | 19.253 £0.044 | TODO | TODO / TODO TODO
(GB-333-2 | DEP_10253-t00d44 | TODO | TODO /TONO TODO
GB-370-0 | D mutation crossover triangulation
GB-370-1 | D GB-333 | 1/3 1/3 1/3
GB-370-2 | D GB-370 | 1/3 2/3 0
GB-307-0 | D GB-307 | 1/3 0 2/3
GB-307-1 | D
GB-307-2 | DI Table 4. The probability of the master node attempting each method of |

experiment series GB-*.

Table 5. The statistics of GB experiment series. The columns are RunlD, precision,
the score of initial individual, the wall-clock time for the experiment (in minutes), the
ID of the best individual and the number of individuals generated, the highscore (in
Mcups). Experiments started with Shinatsuhiko.

106

3.0x10" :

28107 b B

both crossover and
triangulation are -
important!

2.6x10°

L|
:

sScore

2 4x10°

mutation crossover

triangulation

GB-333

1/3

1/3

1/3

GB-370

1/3

2/3

0

GB-307

1/3

0

2/3

1

L,
L
|

\ble 4. The probability of the master node attempting ea

periment series GB-*.
i

;_I-----......_."....-.-..._., . I ”:____E
0

5000 10000 15000
individual ID

20000

Which part of family tree are the
methods of birth contributing?

d(I) | mutation crossover triangulation total
0 | 785(0.023) 1099(0.071) 1680(0.087) | 3565(0.052)

[1 | 16113(0.482) 6208(0.403) 9699(0.503) | 32020(0.470) J
2 11510(0.344) 6946(0.451 7490(0.389) | 25946(0.381)
3 4509(0.135) 1139(0.074 408(0.021) | 6056(0.089)
4 472(0.014) 13(0.001 1(0.000) 486(0 007)
5 Of 21(

2(

(

21(0.001) 0(0.000 0.000) 0.000)
6 2(0.000) 0(0.000 0(0.000) 0.000)
sum | 33412(1.000) 15405(1.000) 19278(1.000) | 68096(1.000)

B B T

Table 13. Contribution distance analysis for experiment GA-D.

Crossovers and triangulations contributes more directly
in generating the champion's family tree, and
triangulations contributes the more.

108

How do children's scores compare
with their parents'?

M)
mutation Crossover triangulation
33420(1.000) 15412(1.000) 19261(1.000)

S I T & N 5 T o T 0 I 1 O S I T I
30112 2510 788 | 4110 5694 4657 944 | 3899 8372 6382 625
(0.901 0.075 0.024) | (0.267 0.370 0.302 | 0.061) | (0.202 0.434 0.331 0.032)

420 313 52 122 204 648 125 90 370 1134 86
(0.013 0.009 0.002) | (0.008 0.013 0.042 |0.008)| (0.005 0.019 0.059 0.004)
0.014 0.125 0.066 | 0.030 0.036 0.139 | 0.132) 0.023 0.044 0.178 0.138

—
Table 20. Tombi-Taka analysis for Experiment GA-D.

109

statistic significance of these
statements analysed ...

() B0 | falD GA-1 | GA-S1 | GADE | GAD | GA4 | GAF | GA-TF2

(B0 = 1 d(I) = 0 | True 1678.375 | 176.820 | 195.350 | 1101146 | 228436 | 233.275 | 646.900
a(BI) =2 | d(I)=0| True 352072 | 0002 | 40.03e | 144682 | 207 | 31020 | 32800
aBI) =3 | d{I) =0/ True 736020 | 215630 | 92.78¢ | 636.16¢ | 13657 | 145750 | s5201e
Iels] d(I) =0 | True 3086232 | 19347 | 11.85@ | 172658 | 10081 | 5053a | 97.78s
Ie[~] d(I) =0 | True 2384.303 | 1766.643 | 1420.42& | 3566.00& | 1745.43@ | 1513.70S | 1698.94%
Ielg d(I) = 0 | True 8220 | 201792 | 0.08e | 4713e| s013e| 16820 | 0058
Ie(<] d(I) =0 | True 6373.025 | 1482.625 | 1314.952 | 2233.940 | 1283.650 | 923.740 | 1162420
a(B(I)) = 2 d)=0|n@EU@) 22| o0s02| 62382| 106e| 2002 1205e| T15e| 40750
aBI) =3 |dI)=0|nEI)=>2| o0s50z| 62382| 1Loee| 20028| 1205 T15m| 40750
n(B(I)) =2 ITel®| |[T€E 410,39 31795 13.00e | 179.86:&% fid 285 18,816 | 144853
n(B(I)) = 3 Tel» |I€E 410.39a | 31.m9a | 13.00e | 179860 | 64.28c | 188lo | 144850
a(B(I)) =2 Tels] |d)=0 60.m32 | 17e4e | 3me| sruae| 1015 o0%se| 1727e
n(B(I)) =2 Iel[=] [dI)=0 177.77 0.11s 1205 0.03c 0.725 4,608 1.438
a(B(1)) = 3 Tel» |d=0 30945 | 19055 | 2495 | 2371e| 9ms| 377a| 10908
a(B(I)) =3 Tel~ |dI=0 68682 | 22802 | 7T.69e | 10003e| 2056 s5me| 42808
I=7mod 10 d{I} =0 | True 1735 L.38S 0.41 L0 (.98 0.00 0.02s
I =13 mod 100 | d(I) =0 | True 1055 0.69 .06 0.08 0.43 0.08 1.11

Table 8. Chi-sguared test of statistieal independence of predieates. For cach palr of experiment (ecolumns) and theee predicates

S0, Fe(0), Fall), the table shows the X7 statistics of the pull hypothesis “predicates fi(7) and fo(F) are statistivally independent
for the poulation of individuals that satisfy predicate fu(I). " Here, E = {I|n(P(1]) = 2} N3] [=]). @ denotes the positive correration

and © denotes the negative correration.

110

Family trees as Markov chains

RunID | Oth order 1st order 2 — 2 3—3 22—+2 33—-3
GA-1 2263.22 266.28 | ©118.86 @1655.46 @32.54 G71.54
GA-S1 1387.93 70.51 | ©23.98 @1075.96 ©5.19 @7.84
GA-DE 546.42 43.31 @3.34 @42788 S9.85 P3.68
GA-D 1038.15 88.20 | ©42.78 @811.09 @3.90 @1.34
GA-4 755.63 39.91 o7.98 @580.33 ©S2.09 S2.60
GA-F 422.08 22.24 ©2.07 @333.57 @096 ©0.25
GA-F2 490.90 86.34 | ©23.63 D381.72 ©16.29 ©6.09
GB-333-0 666.18 47.52 | ©12.34 @511.62 P1.36 ©2.52
GB-333-1 930.33 25.26 | ©48.06 @727.01 ©0.86 ©0.90
GB-333-2 1208.20 68.11 | ©39.34 @937.37 @0.34 ©&7.59

Table 7. Chi-squared test of the family tree being lower-order Markov processes. The
each column of the table shows the X? statistics of the null hypothesis the family tree
being a n-th order Markov process and having no longer correlation.

111

Summary : three methods of birth

 Mutations : not efficient in making good
species, but the only way of introducing new

genomes
* Crossover : good at making large jumps

* Triangulations : good at accumulating small
Improvements

Current implementation of Paraiso
has three things to tune:

C: cuda configuration <<<NT,NB>>>
M:Manifest/Delay
S: __syncthreads()

how are their contribuitions?

C: cuda configuration <<<NT,NB>>>
M:Manifest/Delay S: syncthreads()

ID (c M s score(Mcups) relative score logscale

Izanagi 0 0 0] 1.13740.003 0.000 == 0.000 0.000 £+ 0.001
0 0 1| 1.1224+0.000 —0.001+0.000 —0.005 =+ 0.000
0 1 0| 5400£0.006 0.300+£0.000 0.599 £ 0.000
0 1 1| 5.300%£0.006 0.293 = 0.000 0.591 £ 0.000
1 0 0| 3.073+0.002 0.136 = 0.000 0.382 + 0.000
1 0 1] 2946+0.000 0.1274+0.000 0.366 = 0.000
1 1 0]15.829+0.027 1.033+0.002 1.012 4+ 0.001

GA-51.33958| 1 1 1] 15.354+0.020 1.000 £ 0.001 1.000 £ 0.001

|

Table 6. The score of the individuals created by artificial crossover between the initial
individual Iy and the best scoring individual I+. The second to fourth columns indicate
which component was taken from which individual. Columns C,M,S correspond
to CUDA kernel execution configuration, Manifest/Delay choice, synchronization
timing, respectively. For each individual I the fifth column shows u(I) & o(I), the
pu(I) L o)

p(Ir) — p(lo) — p(It) — p(lo)
log u(I) —log u(lo) o(I)

log pu(I1) —log u(Io) = (log u(IT) — log p(lo))u(I)

sixth column shows , and the seventh column shows

114

C: cuda configuration <<<NT,NB>>>
M:Manifest/Delay S: syncthreads()

ID [ﬁ] M S\| score(Mcups) relative score logscale

Shinatsuhiko |0 0 0| 19.808 £0.033 0.000 +0.002 0.000 £ 0.003
0 0 1] 19.81740.030 0.001 = 0.002 0.001 £0.003
0 1 0} 32.821 +0.058 0.848 + 0.004 0.880 £ 0.003
0 1 1] 32.69440.057 0.839 + 0.004 0.873 £0.003
1 0 0 19.773 £0.050 —-0.002+0.003 —0.003 4 0.004
1 0 1/ 19.859 £0.058 0.003 = 0.004 0.005 £ 0.005
1 1 0] 32.994 £0.273 0.859 +0.018 0.889 £0.014

GA-4.533991 \1 1 1) 35.160 4 0.082 1.000 £ 0.005 1.000 £ 0.004

Table 6. The score of the individuals created by artificial crossover between the initial
individual Jy and the best scoring individual I+. The second to fourth columns indicate
which component was taken from which individual. Columns C,M,S correspond
to CUDA kernel execution configuration, Manifest/Delay choice, synchronization
timing, respectively. For each individual I the fifth column shows u(I) + o(I), the
pu(I) L o)

p(It) — p(lo) — p(T) —p(l) ’
log u(I) —log u(lo) o(I)

log p(I1) —log pu(lo)” = (log u(I) — log u(Zo))p(I) e

sixth column shows and the seventh column shows

of three things to tune:

C: cuda configuration <<<NT,NB>>>
M:Manifest/Delay
S: __syncthreads()

Manifest/Delay is the major source of
speedup

Config and Sync are nevertheless important,
without them we lose at least 10—-20% each.

e So Paraiso's GA is not just
about optimizing a few
parameters: it's really searching
for better memory layouts, and
by doing so found 2x faster

solutions than those

a human being (me)

can think of.

automatically tuned codes v.s. hand-
optimized codes by others

The automated tuning system can generate and benchmark approximately 10000
individual per day. 20 — 100 workers were running at the same time. It takes a few
days to tune up Izanami to speed comparable to Shinatsuhiko, or speed up Shinatsuhiko
by another factor of 2. The best speed obtained was 35.3Mcups for double precision,

42 4Mcups SP. These are competitive performances to hand-tuned codes for single

GPUs; e.g. Schive et. al. [29] reports_30Mcups per C2050 card (single precision.

118

All you need to change your 2D code
to 3D code

-- Binder monad utilities -- Binder monad utilities

type Real = Double type Real = Double

type Dim = VecZ type Dim = Vec3

type B a = Builder Dim Int Annotation a type B a = Bullder Dim Int Annotation a
type BR = B (Value TLocal Real) type BR = B (Value TLocal Real)

type BGR = B (Value TGlobal Real) type BGR = B (Value TGlobal Real)

bind :: Ba -> B (B a) bind :: Ba -> B (B a)

bind = fmap return bind = fmap return

119

Benchmark rev.3
Speed Paraiso+Nushio+Genome Athena

40000000 l
35000000 ‘L

30000000
25000000

20000000

15000000

10000000

5000000

0
Paraiso Core Paraiso Paraiso Tesla Paraiso Tesla Athena Core
i7 920 x8core GTX460 2050 2050 i7 920 x8core

2.67GHz (EFfFE) 2.67GHz

What speed you get rev.3

Current State of Paraiso (1/2)

Can write explicit solvers of PDE using
abstract, mathematical, combinable and
reusable notations.

Can generate OpenMP and CUDA program for
multicore CPUs as well as GPUs

On 8-core CPU, the speed of OpenMP version
almost matches that of hand-written codes
widely used.

CUDA version is 10x faster than them, and
comes for free.

Current State of Paraiso (2/2)

* By adding just 1-2 lines of Annotation by
hand, we can make radical changes on
memory usage/computation structure of the
code, resulting in radical change in
performance of 6x-10x.

 Automated tuning gives yet another 2x
speedup.

Future of Paraiso

This is not a victory; this is where the real fight begins.

* Distributed computation via MPI.

e Other native language backends ... OpenCL,
Fortran and Physis!

to be continued...

