
Towards application of
supercompilation and metacomputation

to high performance computing

Supercompilation 40 years later

Andrei V. Klimov

Head of Program Analysis and Transformation Sector
Keldysh Institute of Applied Mathematics

Russian Academy of Sciences
Moscow, Russia

NII Shonan Meeting, 21 May 2012, Japan

2

Outline

On terminology
Do I understand term “staging” correctly?
Term “metacomputation”

History of supercompilation

Java Supercompiler JScp

Conclusions

3

Do I understand term “staging” correctly?

Program specialization ≠ Staging
partial evaluation, supercompilation...
equivalence transformation
no syntax for specialization time computations
user can choose variants of specialization
user cannot violate equivalence

Staging
syntax for computation at different stages
some means for user-defined transformations
the user can violate equivalence

Macro generation ≠ Staging
special syntax for macro definitions = text processing
the user can do anything

4

Term “metacomputation”

Metacomputation
umbrella term for non-trivial program manipulation

“semantic-based program manipulation”

program specialization
offline/online partial evaluation
supercompilation

close to online partial evaluation

partial deduction (for logic programming languages)
close to supercompilation

...

staging
program inversion
...

5

Metacomputation Workshops
in Pereslavl-Zalessky, Russia
organized by Program Systems Institute, RAS

2008 July 2-5
First International Workshop on Metacomputation in Russia
http://meta2008.pereslavl.ru/

2010 July 1-5
Second International Workshop on Metacomputation in Russia
http://meta2010.pereslavl.ru/

invited speakers
Neil Jones
Simon Peyton Jones

2012 July 5-9
Third International Valentin Turchin Workshop on Metacomputation
http://meta2012.pereslavl.ru/

invited speaker
Neil Jones

Valentin Turchin
(1937-2010)

You are invited to participate!

6

40 years of supercompilation
(and close neighborhood)

1971 Yoshihiko Futamura’s seminal paper

1972 Valentin Turchin’s paper on driving

1974 Valentin Turchin gave lectures on supercompilation to students

1985 Neil Jones et al: Partial evaluation, self-application

1980s Valentin Turchin developed experimental supercompilers for Refal

1990s Valentin Turchin’s supercompiler completed and improved
Andrei Nemytykh

1990s Supercompilation simplified, cross-fertilization with other methods
Robert Glück, Andrei Klimov, Morten Sørensen, Neil Jones

1999-2003 Java Supercompiler
Andrei Klimov, Arkady Klimov, Artem Shvorin

2000s Supercompilation further developed
Ilya Klyuchnikov, Sergei Romanenko
Geoff Hamilton, Neil Mitchel, Peter Jonsson, Simon Peyton Jones

Computers
>1GHz, >1GB

PE and SC
not in practice

yet!

Java Supercompiler JScp

an attempt to go to practice

8

What is the Java Supercompiler?

JScp is a source-to-source program transformer

JScp
“residual”

Java program
(.java files)

libraries
(.class files)

(part of)
a Java program

(.java files)

advice file
(.xml)

9

Java Supercompiler structure

pre-processingpre-processing

parsing,
name resolution

parsing,
name resolution

common part of Java compilerscommon part of Java compilers

future work:
• evaluation of properties
• binding time analysis

future work:
• evaluation of properties
• binding time analysis

• removal of unneeded objects and code
• various foldings (mainly for readability)
future work:
• arity raising
• minimizing the number of local variables

• removal of unneeded objects and code
• various foldings (mainly for readability)
future work:
• arity raising
• minimizing the number of local variables

supercompilation
proper

supercompilation
proper

information is
propagated forward,

hence post-processing

information is
propagated forward,

hence post-processing

post-processingpost-processing

Java code

Java code

10

Sample: expression interpreter

public static double mySqrt(double a, int iters) {
IStatements statements =

Assignments.create(
new String[] { "a", "x" }, // loc var dcl
new Assignment[] {

new Assignment(// x = 0.5 * (x + a/x)
new Var("x",true),
new Bin('*',

new Const(0.5),
new Bin('+',

new Var("x"),
new Bin('/',

new Var("a"),
new Var("x")))))

});

statements.setValues(new double[] {a, 1.0});
for (int i=0; i<iters; i++) {

statements.execute();
}
return statements.getValues()[1];

}

public static double mySqrt (
final double a_1,
final int iters_2)

{
final double[] values_54 = new double[2];
values_54[0] = a_1;
values_54[1] = 1D;
for (int i_135 = 0; i_135 < iters_2; i_135++) {

final double values_1_148 = values_54[1];
values_54[1] = 0.5D *

(values_1_148 + a_1 / values_1_148);
}
return values_54[1];

}

Source code Residual code

11

Driving: building process tree

Ordinary computation

...

...

if (y==1)if (y==1)

… x … y …… x … y …

… y … x …… y … x …

… 1… x …… 1… x … … y … x …… y … x …

… 2 … 5 …… 2 … 5 …

… 5 … 2 …… 5 … 2 …

… “abc” …… “abc” …

… 13 …… 13 …
z=x+1z=x+1 if (x==5)if (x==5)

… y … 5 …… y … 5 … … y … x …… y … x …

... ...
… x … z …… x … z …

……

... ...

Driving

some steps does not
run against variables
some steps does not
run against variables

a residualized
if statement

a residualized
if statement

a statement that
can’t be executed

is residualized

a statement that
can’t be executed

is residualized

A process tree is
a program

tim
e

xxxxxxconfigurationsconfigurations

12

The main notions of supercompilation

Configuration
a set of states = a generalized program state =
a state with variables

a variable may occur wherever a ground value is allowed

Driving
building a potentially infinite process tree
main problem to be solved here

propagation of (just enough) information about configurations

Configuration analysis
folding of a process tree into finite graph

by reduction of a configuration to an equivalent or wider one
by generalization of a configuration to a wider one
by cutting a configuration into parts

main problems to be solved here
termination
choosing suitable residual program(s) among possible ones

13

Configuration analysis of conditional statements

2 alternatives to continue after statements with multiple exits

if (C)if (C)

AA BB

DD

if (C’)if (C’)

A’A’ B’B’

D’D’

if (C’)if (C’)

A’A’ B’B’

D’1D’1 D’2D’2

Source code Residual code 1 Residual code 2

The choice is made by the human

Note the possibility of exponential growth of the residual program

14

Configuration analysis of loops (1)

if (C)if (C)

BB

DD

Source code

Note the possibility of exponential time to construct the residual program

AA

if (C’)if (C’)

B’B’

A’A’

AA

CC BB

?

Driving…

…

How do configurations A and B relate?
B ⊆ A as sets, that is
B = Δ A, where Δ is a substitution
then loop-back with Δ as an assignment

otherwise
either

continue driving from B forward
or

generalize A to some A’ such that
A = Δ A’, where Δ is a substitution
residualize Δ as assignments
between configurations A and A’ ,
and
continue driving from A’

15

Configuration analysis of loops (2)

How do configurations A and B relate?
B ⊆ A as sets, that is
B = Δ A, where Δ is a substitution
then loop-back with Δ as an assignment

otherwise
either

continue driving from B forward
or

generalize A to some A’ such that
A = Δ A’, where Δ is a substitution
residualize Δ as assignments
between configurations A and A’ ,
and
continue driving from A’

if (C)if (C)

BB

DD

Source code

Note the possibility of exponential time to construct the residual program

AA

A’A’

Driving…

AA

ΔΔ

…

16

Configuration analysis of loops (3)

How do configurations A and B relate?
B ⊆ A as sets, that is
B = Δ A, where Δ is a substitution
then loop-back with Δ as an assignment

otherwise
either

continue driving from B forward
or

generalize A to some A’ such that
A = Δ A’, where Δ is a substitution
residualize Δ as assignments
between configurations A and A’ ,
and
continue driving from A’

if (C)if (C)

BB

DD

Source code

Note the possibility of exponential time to construct the residual program

AA

if (C’’)if (C’’)

B’’B’’

A’’A’’

A’A’

C’C’ B’B’

?

Driving…

AA

ΔΔ

17

Conclusions, problems and future work
Why are PE and SC not in practice yet?

Main problem of metacomputation
like partial evaluation and supercompilation

These are not automatic techniques like transformations in optimizing
compilers
User control is required
Good human-computer interface is needed
Integration into studios, IDEs

It seems small (or no) changes are required to supercompile realistic code

Exponential blow-up can be tamed
The computer guarantees equivalence and presents information to the user
The human takes decisions where computer cannot

Result of supercompilation:
Turned out to be understandable by the user (unexpectedly)
Studying residual graph and code helps us understand the source program
Debugging by analyzing residual code
Well-suited for further analysis and transformations, parallelization, verification

Applications!

Similar problems
w.r.t. staging?

