
MapReduce Algorithmics

Sergei Vassilvitskii 

Yahoo! Research 

Based on work with: Bahman Bahmani, Howard Karloff, Ravi Kumar, 

Silvio Lattanzi, Ben Moseley, Siddharth Suri, Andrea Vattani 

Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Dealing With Massive Data

2
Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Dealing With Massive Data

3

RAM 

Streaming

External Memory

Property Testing

Polynomial Sublinear

Memory

Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Dealing With Massive Data

4

RAM 

Streaming

External Memory

Property Testing

PRAM

Polynomial Sublinear

Memory

S
in

g
le

M
u

lt
ip

leP
ro

ce
ss

o
rs

Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Dealing With Massive Data

5

RAM 

Streaming

External Memory

Property Testing

PRAM
MapReduce

Distributed Sketches

Polynomial Sublinear

Memory

S
in

g
le

M
u

lt
ip

leP
ro

ce
ss

o
rs

Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Modeling MapReduce

6
Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Modeling MapReduce

Memory
– Typical datasets 100Gb+

– Cannot store the data in memory

– Insist on sublinear memory

6
Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Modeling MapReduce

Memory
– Typical datasets 100Gb+

– Cannot store the data in memory

– Insist on sublinear memory

Machines
– Machines in a cluster do not share memory

– Shared clusters have 100-1000 machines

– Insist on sublinear number of machines

6
Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Modeling MapReduce

Memory
– Typical datasets 100Gb+

– Cannot store the data in memory

– Insist on sublinear memory

Machines
– Machines in a cluster do not share memory

– Shared clusters have 100-1000 machines

– Insist on sublinear number of machines

Synchronization
– Computation proceeds in rounds 

– Count the number of rounds
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Not Modeling MapReduce

Lies, Damned Lies, Statistics 
– And big-O notation

– And Competitive Analysis

– And...

MapReduce Communication:
– Very important, makes a big difference 

– Many engineering improvements:
• Dealing with Graphs: save graph structure locally between rounds

• Move code to data (and not data to code) 

• Job scheduling (same rack / different racks, etc) 
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Algorithmics

Filtering:
– Reduce the problem size in parallel

– Solve the smaller instance sequentially

How to reduce input size?
– Connectivity: if (u,v) already connected, remove edge 

– MST: remove heaviest edge on every cycle 

– Matching: remove dead edges (see next talk) 

– Clustering: remove nodes that are not in the coreset (see Ben’s talk)

– Set Cover: remove dominated sets

– etc
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Finding Densest Subgraph

Useful Primitive in Graph Analysis:

– Community Detection

– Graph Compression

– Link SPAM Mining

– Many other applications 14
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Finding Densest Subgraph

Useful Primitive in Graph Analysis

Can be solved exactly:

– LP Formulation 

– Multiple Max flow computations
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Finding Densest Subgraphs

Simple Algorithm [Charikar ’00]:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph

22

Best Density: 12/7

Current Density: 12/7

Sunday, February 19, 2012



NII 1/12/2012 Sergei Vassilvitskii

Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs

Simple Algorithm:
– Iteratively remove the lowest degree node and update vertex degrees

– Keep the densest intermediate subgraph
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Finding Dense Subgraphs (Analysis)

Approximation Ratio:
– Guaranteed to return a 2-approximation

Proof:
– Let               be the optimal solution, and                       the optimal 

density.    

– Consider the first time a vertex from       is removed.

– Every vertex in      has degree at least     .
• Otherwise can improve optimum density 

–  Therefore the density of that subgraph is at least: 

27

V ∗ ⊆ V

V ∗

λ∗ =
|E[V ∗]|

|V ∗|

V ∗ λ∗

λ∗|V ∗|
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Finding Dense Subgraphs (Analysis)

Approximation Ratio:
– Guaranteed to return a 2-approximation

Running Time:
– RAM:

• Maintain a heap on vertex degrees

• Update keys upon removing every edge 

• Straightforward implementation in 

– Streaming:
• Seemingly need one pass per vertex to adapt this algorithm

• Can show that need                      memory if using                  passes

– MapReduce?
• Open question in Chierichetti, Kumar and Tompkins WWW ’10.

28

O(m log n)

Ω(n/ log n) O(log n)
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Parallel Dense Subgraphs

Sequential Algorithm:
– Remove the node with the smallest degree
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Parallel Dense Subgraphs

Sequential Algorithm:
– Remove the node with the smallest degree

Parallel Version:
– Remove all nodes with less degree less than           * average degree

– Of course this also includes the smallest degree node

– Every Step:
• Round 1: Count remaining edges, vertices, compute vertex degrees

– Distributed counting 

• Round 2: Remove vertices with degree below threshold 
– Distributed checking

30
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Parallel Dense Subgraphs

Parallel Algorithm:
– Iteratively remove nodes with degree below average and update 

vertex degrees

– Keep the densest intermediate subgraph

31

Best Density: 16/11

Current Density: 16/11

Average Degree: 32/11
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Parallel Dense Subgraphs

Parallel Algorithm:
– Iteratively remove nodes with degree below average and update 

vertex degrees

– Keep the densest intermediate subgraph
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Parallel Dense Subgraphs

Parallel Algorithm:
– Iteratively remove nodes with degree below average and update 

vertex degrees

– Keep the densest intermediate subgraph
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Best Density: 9/5

Current Density: 9/5

Average Degree: 18/5
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Parallel Dense Subgraphs

Parallel Algorithm:
– Iteratively remove nodes with degree below average and update 

vertex degrees

– Keep the densest intermediate subgraph
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Best Density: 9/5

Current Density: 3/3

Average Degree: 6/3
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Parallel Densest Subgraph (Analysis)

Algorithm:
– Each round remove all vertices with degree less than            * average.

How many vertices do we remove? 
– One cannot have too many vertices above average (This is not Lake 

Wobegon) 

– Easy [Markov inequality] : at most a           fraction of vertices remains 
in every round. 

– Therefore algorithm terminates after                       rounds
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Parallel Densest Subgraph (Analysis)

Algorithm:
– Each round remove all vertices with degree less than            * average.

How many vertices do we remove? 
– One cannot have too many vertices above average (This is not Lake 

Wobegon) 

– Easy [Markov inequality] : at most a           fraction of vertices remains 
in every round. 

– Therefore algorithm terminates after                       rounds

Approximation Ratio:
– Achieves a             approximation in the worst case

• Only look at the degree of the nodes removed as compared to average. in
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How well does it work? 

– Quickly reduce the size of the graph.

– Approximation ratio between 1.06 and 1.4 at  
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Improving Sequential Algorithms

Densest Subgraph
– Original algorithm: O(m) heap updates:

• Update vertex degrees every time an edge is removed. 

– New algorithm O(n) heap updates:
• Number of vertices decreases geometrically every round

38
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Improving Sequential Algorithms

Low Memory Algorithms:
– Recall MapReduce requirement of sublinear memory 

– Can run the parallel algorithm sequentially 
• Work efficient algorithms imply identical running time 
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Improving Sequential Algorithms

Low Memory Algorithms:
– Recall MapReduce requirement of sublinear memory 

– Can run the parallel algorithm sequentially 
• Work efficient algorithms imply identical running time 

In practice:
– Low memory algorithms are more efficient

– Take better advantage of caching hierarchy (L1, L2, OS)

– Empirically have observed faster running times running MapReduce 
algorithms sequentially
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Wrapping Up

Conclusion:
- MapReduce combines parallelism with sublinear memory 

- Filtering:
- Reduce input size in parallel 

- Until data is small enough to be processed sequentially 

- Unlike PRAMs, insisting on non-shared memory leads to very good 
cache performance when simulating sequentially. 
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