
1-1

Tight Bounds for Distributed Functional
Monitoring

Jan. 2012

Qin Zhang

MADALGO, Aarhus University

NII Shonan meeting, Japan

Joint with

David Woodruff, IBM Almaden



2-1

The distributed streaming model

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites
A(t) : set of ele-
ments received up to
time t from all sites.
a

aAssume ≤ 1 item
comes at each time unit.

(a.k.a. distributed functional/continuous monitoring)



2-2

The distributed streaming model

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites
A(t) : set of ele-
ments received up to
time t from all sites.
a

aAssume ≤ 1 item
comes at each time unit.

The coordinator needs to
maintain f(A(t)) for all t.

(a.k.a. distributed functional/continuous monitoring)



2-3

The distributed streaming model

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites
A(t) : set of ele-
ments received up to
time t from all sites.
a

aAssume ≤ 1 item
comes at each time unit.

The coordinator needs to
maintain f(A(t)) for all t.

Goal: minimize communication cost

(a.k.a. distributed functional/continuous monitoring)



3-1

Problems

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites

The Distributed Streaming Model

Static case (a one-shot/static
computation at the end)

• Top-k

• Heavy-hitter

• . . .

Dynamic case

• Samplings

• Frequent moments

(F0, F1, F2, . . .)

• Heavy-hitter

• Quantile

• Entropy

• Non-linear functions

• . . .



4-1

What you would like to see:

• Efficient algorithms/protocols

• Practical heuristics

This talk



4-2

What you would like to see:

• Efficient algorithms/protocols

• Practical heuristics

What you (probably) do not want to see:

• “Useless” impossibility results

• Complicated proofs

This talk



4-3

What you would like to see:

• Efficient algorithms/protocols

• Practical heuristics

What you (probably) do not want to see:

• “Useless” impossibility results

• Complicated proofs

Unfortunately, in the next 30 minutes ...

This talk



5-1

The multiparty communication model

x1 = 010011 x2 = 111011

x3 = 111111xk = 100011

We want to compute f(x1, x2, . . . , xk)

f can be bit-wise XOR, OR, AND, MAJ . . .

– A model for lower bounds



5-2

The multiparty communication model

x1 = 010011 x2 = 111011

x3 = 111111xk = 100011

We want to compute f(x1, x2, . . . , xk)

f can be bit-wise XOR, OR, AND, MAJ . . .

Message passing: If x1
talks to x2, others can-
not hear.

Blackboard: One speaks,
everyone else hears.

– A model for lower bounds



5-3

The multiparty communication model

x1 = 010011 x2 = 111011

x3 = 111111xk = 100011

We want to compute f(x1, x2, . . . , xk)

f can be bit-wise XOR, OR, AND, MAJ . . .

Message passing: If x1
talks to x2, others can-
not hear.

Blackboard: One speaks,
everyone else hears.

· · ·S1 S2 S3 Sk

C
coordinator

sites

=

– A model for lower bounds



6-1

Previously

Some works in the blackboard model. Almost nothing in
the message-passing model.



6-2

Previously

1. Ω(nk) for the bitwise-XOR/OR/AND/MAJ.

2. Ω̃(nk) for connectivity.

Some works in the blackboard model. Almost nothing in
the message-passing model.

This SODA, with Jeff Phillips and Elad Verbin we proposed
a general and elegant technique called “symmetrization”
which works in both variants. In particular, we obtained
(in the message-passing model)



6-3

Previously

1. Ω(nk) for the bitwise-XOR/OR/AND/MAJ.

2. Ω̃(nk) for connectivity.

Some works in the blackboard model. Almost nothing in
the message-passing model.

This SODA, with Jeff Phillips and Elad Verbin we proposed
a general and elegant technique called “symmetrization”
which works in both variants. In particular, we obtained
(in the message-passing model)

Artificial? Well ...



6-4

Previously

1. Ω(nk) for the bitwise-XOR/OR/AND/MAJ.

2. Ω̃(nk) for connectivity.

Some works in the blackboard model. Almost nothing in
the message-passing model.

This SODA, with Jeff Phillips and Elad Verbin we proposed
a general and elegant technique called “symmetrization”
which works in both variants. In particular, we obtained
(in the message-passing model)

Artificial? Well ...

In any case, let’s look at real important problems.



7-1

Now, important problems

• Samplings

• Frequent moments

(F0, F1, F2, . . .)

• Heavy-hitter

• Quantile

• Entropy

• . . .



7-2

Now, important problems

• Samplings

• Frequent moments

(F0, F1, F2, . . .)

• Heavy-hitter

• Quantile

• Entropy

• . . .

Solved



7-3

Now, important problems

• Samplings

• Frequent moments

(F0, F1, F2, . . .)

• Heavy-hitter

• Quantile

• Entropy

• . . .

Solved

Our work



8-1

Results



8-2

Results

• (Almost) tight bounds for all these questions

• Static lower bounds (almost) match dynamic upper bounds.

(up to polylog factors)



8-3

Results

• (Almost) tight bounds for all these questions

• Static lower bounds (almost) match dynamic upper bounds.

(up to polylog factors)

Today



9-1

F0 upper bound
(Cormode, Muthu and Yi 2008)



10-1

The (1 + ε)-approximation F0 problem

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F0(∪i∈kXi) up to (1 + ε)-approximation.

1

59

4
5
7

2
8

5
7

6

10

How many distinct items?

A fundamental problem in
data analysis.



10-2

The (1 + ε)-approximation F0 problem

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F0(∪i∈kXi) up to (1 + ε)-approximation.

1

59

4
5
7

2
8

5
7

6

10

How many distinct items?

A fundamental problem in
data analysis.

Current best UB: Õ(k/ε2) (Cormode, Muthu, Yi 2008)

Holds in the dynamic case.



11-1

General idea for the one-shot computation

Each site generates a “sketch” via small-space
streaming algorithms.

The coordinator combines (via communication)
the sketches from the k sites to obtain a global
sketch, from which we can extract the answer.



12-1

The FM sketch

Take a pair-wise independent random hash function
h : {1, . . . , n} → {1, . . . , 2d}, where 2d > n



12-2

The FM sketch

Take a pair-wise independent random hash function
h : {1, . . . , n} → {1, . . . , 2d}, where 2d > n

For each incoming element x, compute h(x)

e.g., h(5) = 10101100010000

Count how many trailing zeros

Remember the max # trailing zeroes in any h(x)



12-3

The FM sketch

Take a pair-wise independent random hash function
h : {1, . . . , n} → {1, . . . , 2d}, where 2d > n

For each incoming element x, compute h(x)

e.g., h(5) = 10101100010000

Count how many trailing zeros

Remember the max # trailing zeroes in any h(x)

Let Y be the max # trailing zeroes

Can show E[2Y ] = #distinct elements



13-1

One-shot case, the FM sketch (cont.)

So 2Y is an unbiased estimator for # distinct elements



13-2

One-shot case, the FM sketch (cont.)

So 2Y is an unbiased estimator for # distinct elements

However, has a large variance

Some techniques [Bar-Yossef et. al. 2002] can produce a
good estimator that has probability 1−δ to be within relative
error ε.

Space increased to Õ(1/ε2)



13-3

One-shot case, the FM sketch (cont.)

So 2Y is an unbiased estimator for # distinct elements

However, has a large variance

Some techniques [Bar-Yossef et. al. 2002] can produce a
good estimator that has probability 1−δ to be within relative
error ε.

Space increased to Õ(1/ε2)

FM sketch has linearity

Y1 from A, Y2 from B, then 2max{Y1,Y2} estimates # distinct
items in A ∪B.



13-4

One-shot case, the FM sketch (cont.)

So 2Y is an unbiased estimator for # distinct elements

However, has a large variance

Some techniques [Bar-Yossef et. al. 2002] can produce a
good estimator that has probability 1−δ to be within relative
error ε.

Space increased to Õ(1/ε2)

FM sketch has linearity

Y1 from A, Y2 from B, then 2max{Y1,Y2} estimates # distinct
items in A ∪B.

Thus, we can use it to design a one-shot algorithm with
communication Õ(k/ε2)



14-1

F0 lower bound



15-1

The F0 problem

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F0(∪i∈kXi) up to (1 + ε)-approximation.

1
59

45
7

2
8 5

7
6

10

How many distinct items?

A fundamental problem in
data analysis.



15-2

The F0 problem

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F0(∪i∈kXi) up to (1 + ε)-approximation.

1
59

45
7

2
8 5

7
6

10

How many distinct items?

A fundamental problem in
data analysis.

(Cormode, Muthu, Yi, 2008)

Holds in the dynamic case.

Our LB: Ω(k/ε2).
Holds in the static and message-passing case.

Current best UB: Õ(k/ε2)

Previous LB: Ω(k) (Cormode, Muthu, Yi, 2008)

Ω(1/ε2) (reduction from Gap-Hamming)



15-3

The F0 problem

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F0(∪i∈kXi) up to (1 + ε)-approximation.

1
59

45
7

2
8 5

7
6

10

How many distinct items?

A fundamental problem in
data analysis.

(Cormode, Muthu, Yi, 2008)

Holds in the dynamic case.

Our LB: Ω(k/ε2).
Holds in the static and message-passing case.

Tight!

Current best UB: Õ(k/ε2)

Previous LB: Ω(k) (Cormode, Muthu, Yi, 2008)

Ω(1/ε2) (reduction from Gap-Hamming)



16-1

The proof framework

Step 1: We first introduce a simpler problem called
k-GAP-MAJ

Step 2: We compose k-GAP-MAJ with the Set Dis-
jointness problem using information cost to prove a
lower bound for F0



17-1

k-GAP-MAJ

We have k sites S1, S2, . . . , Sk. Si holds a bit Zi which is 1 w.p.
β and 0 w.p. 1−β where ω(1/k) ≤ β ≤ 1/2 is a prefixed value.

Our goal: compute the following function.

GM(Z1, Z2, . . . , Zk) =


0, if

∑
i∈[k] Zi ≤ βk −

√
βk,

1, if
∑

i∈[k] Zi ≥ βk +
√
βk,

∗, otherwise,

where “∗” means that the answer can be arbitrary.



17-2

k-GAP-MAJ

We have k sites S1, S2, . . . , Sk. Si holds a bit Zi which is 1 w.p.
β and 0 w.p. 1−β where ω(1/k) ≤ β ≤ 1/2 is a prefixed value.

Our goal: compute the following function.

GM(Z1, Z2, . . . , Zk) =


0, if

∑
i∈[k] Zi ≤ βk −

√
βk,

1, if
∑

i∈[k] Zi ≥ βk +
√
βk,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

Lemma 1: If a protocol P computes k-GAP-MAJ correctly w.p.
0.9999, then w.p. Ω(1), the protocol has to learn at least Ω(k)
of Zi each with Ω(1) bit (that is, H(Zi | Π) ≤ Hb(0.01β)).



17-3

k-GAP-MAJ

We have k sites S1, S2, . . . , Sk. Si holds a bit Zi which is 1 w.p.
β and 0 w.p. 1−β where ω(1/k) ≤ β ≤ 1/2 is a prefixed value.

Our goal: compute the following function.

GM(Z1, Z2, . . . , Zk) =


0, if

∑
i∈[k] Zi ≤ βk −

√
βk,

1, if
∑

i∈[k] Zi ≥ βk +
√
βk,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

Alternatively: I(Z1, Z2, . . . , Zk; Π) = Ω(k)

Lemma 1: If a protocol P computes k-GAP-MAJ correctly w.p.
0.9999, then w.p. Ω(1), the protocol has to learn at least Ω(k)
of Zi each with Ω(1) bit (that is, H(Zi | Π) ≤ Hb(0.01β)).



18-1

Set disjointness (2-DISJ)

Alice Bob

x ∈ {0, 1}n y ∈ {0, 1}n

x ∩ y = ∅?



18-2

Set disjointness (2-DISJ)

Alice Bob

x ∈ {0, 1}n y ∈ {0, 1}n

x ∩ y = ∅?

A classical hard instance:

Distribution µ: X and Y are both random subsets of size ` =
(n+1)/4 from [n] such that |X∩Y | = 1 w.p. β and |X∩Y | = 0
w.p. 1− β.

Razborov [1990] shows an Ω(n) for this hard distribution and
error β/100.



19-1

Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

n = Θ(1/ε2)
` = (n+ 1)/4
β = 1/kε2



19-2

Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

n = Θ(1/ε2)
` = (n+ 1)/4
β = 1/kε2

Step 1: Pick Y = y ⊂ [n] of
size ` uniformly at random

Y



19-3

Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

n = Θ(1/ε2)
` = (n+ 1)/4
β = 1/kε2

Step 1: Pick Y = y ⊂ [n] of
size ` uniformly at random

Step 2: Pick X1, . . . , Xk ⊂ [n] indepedently and randomly from µ|Y =y

Y

X1 X2 X3 Xk



19-4

Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

n = Θ(1/ε2)
` = (n+ 1)/4
β = 1/kε2

Step 1: Pick Y = y ⊂ [n] of
size ` uniformly at random

Step 2: Pick X1, . . . , Xk ⊂ [n] indepedently and randomly from µ|Y =y

Y

X1 X2 X3 Xk

F0(X1, X2, . . . , Xk)?



20-1

The proof

F0(X1, X2, . . . , Xk) ⇐⇒ k-GAP-MAJ(Z1, Z2, . . . , Zk)

(Zi = |Xi ∩ Y |)
⇐⇒ learn Ω(k) Zi’s well

(by Lemma 1)

⇐⇒ need Ω(k/ε2) bits

(learning each Zi = |Xi ∩ Y | well needs
Ω(n) = Ω(1/ε2) bits, by 2-DISJ)

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

Zi = |Xi ∩ Y |
{

1 w.p. β
0 w.p. 1− β



20-2

The proof

F0(X1, X2, . . . , Xk) ⇐⇒ k-GAP-MAJ(Z1, Z2, . . . , Zk)

(Zi = |Xi ∩ Y |)
⇐⇒ learn Ω(k) Zi’s well

(by Lemma 1)

⇐⇒ need Ω(k/ε2) bits

(learning each Zi = |Xi ∩ Y | well needs
Ω(n) = Ω(1/ε2) bits, by 2-DISJ)

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

Zi = |Xi ∩ Y |

Q.E.D.

{
1 w.p. β
0 w.p. 1− β



21-1

Proof:

1. Suppose Π does not satisfy this.

2. Since the Zi are independent given Π,
∑k

i=1 Zi | Π is a sum
of independent Bernoulli random variables.

3. Since most H(Zi | Π) are large, by anti-concentration, both
of the following events occur with constant probability:

•
∑k

i=1 Zi | Π > βk +
√
βk,

•
∑k

i=1 Zi | Π < βk −
√
βk.

4. So P can’t succeed with large probability.

Proof sketch of Lemma 1

Lemma 1: If a protocol P computes k-GAP-MAJ correctly w.p.
0.9999, then w.p. Ω(1), for Ω(k) Zi’s, we have
H(Zi | Π) ≤ Hb(0.01β).



22-1

F2 lower bound



23-1

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F2(∪i∈kXi) up to (1 + ε)-approximation.

What’s the size of self-join?

Another fundamental problem
in data analysis.

The F2 problem

2

7

9

2

4

2

2

7

9

2

4

2

Join



23-2

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F2(∪i∈kXi) up to (1 + ε)-approximation.

What’s the size of self-join?

Another fundamental problem
in data analysis.

The F2 problem

2

7

9

2

4

2

2

7

9

2

4

2

Join

Previous UB: Õ(k2/ε+ k1.5/ε3)
(Cormode, Muthu, Yi 2008)

Our UB: Õ(k/poly(ε)), one way protocol
Holds in the dynamic case.

Previous LB: Ω(k)
Our LB: Ω̃(k/ε2).
Holds in the static and blackboard case.

(Cormode, Muthu, Yi, 2008)



23-3

We have k sites S1, S2, . . . , Sk. Si holds a set Xi.

Our goal: compute F2(∪i∈kXi) up to (1 + ε)-approximation.

What’s the size of self-join?

Another fundamental problem
in data analysis.

The F2 problem

2

7

9

2

4

2

2

7

9

2

4

2

Join

Previous UB: Õ(k2/ε+ k1.5/ε3)
(Cormode, Muthu, Yi 2008)

Our UB: Õ(k/poly(ε)), one way protocol
Holds in the dynamic case.

Previous LB: Ω(k)
Our LB: Ω̃(k/ε2).
Holds in the static and blackboard case.

(Cormode, Muthu, Yi, 2008)
Almost Tight!



24-1

A quick glance: (1 + ε)-approximation F2

2-party gap-hamming: Alice has X = {X1, X2, . . . , X1/ε2}, Bob

has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

where “∗” means that the answer can be arbitrary.



24-2

A quick glance: (1 + ε)-approximation F2

2-party gap-hamming: Alice has X = {X1, X2, . . . , X1/ε2}, Bob

has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

k-DISJ: We have k sites S1, S2, . . . , Sk. Si holds a set Zi. We
promise that either Zi (i = 1, . . . , k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.



24-3

A quick glance: (1 + ε)-approximation F2

2-party gap-hamming: Alice has X = {X1, X2, . . . , X1/ε2}, Bob

has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

k-DISJ: We have k sites S1, S2, . . . , Sk. Si holds a set Zi. We
promise that either Zi (i = 1, . . . , k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.

2 copies

k-XOR



24-4

A quick glance: (1 + ε)-approximation F2

2-party gap-hamming: Alice has X = {X1, X2, . . . , X1/ε2}, Bob

has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

k-BTA

k-DISJ: We have k sites S1, S2, . . . , Sk. Si holds a set Zi. We
promise that either Zi (i = 1, . . . , k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.

2 copies

k-XOR

compose via in-
formation cost



24-5

A quick glance: (1 + ε)-approximation F2

2-party gap-hamming: Alice has X = {X1, X2, . . . , X1/ε2}, Bob

has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

k-BTA

k-DISJ: We have k sites S1, S2, . . . , Sk. Si holds a set Zi. We
promise that either Zi (i = 1, . . . , k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.

CC(k-BTA) = Ω̃(k/ε2)

2 copies

k-XOR

compose via in-
formation cost



24-6

A quick glance: (1 + ε)-approximation F2

2-party gap-hamming: Alice has X = {X1, X2, . . . , X1/ε2}, Bob

has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

where “∗” means that the answer can be arbitrary.

k-BTA

k-DISJ: We have k sites S1, S2, . . . , Sk. Si holds a set Zi. We
promise that either Zi (i = 1, . . . , k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.

CC(k-BTA) = Ω̃(k/ε2)

Finally, we reduce F2 to k-BTA.

2 copies

k-XOR

compose via in-
formation cost



25-1

The end

T HANK YOU

Q and A


