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The distributed streaming model

(a.k.a. distributed functional /continuous monitoring)

coordinator |C

sites Sq So Sg « . Sk

A(t) : set of ele-
S ments received up to
®

time t from all sites.
a

dAssume < 1 item
comes at each time unit.

time
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The distributed streaming model

(a.k.a. distributed functional /continuous monitoring)

coordinator

sites [S4| |52

time

C

The coordinator needs to

maintain f(A(t)) for all t.

A(t) : set of ele-
ments received up to

time t from all sites.
a

dAssume < 1 item
comes at each time unit.
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The distributed streaming model

(a.k.a. distributed functional /continuous monitoring)

The coordinator needs to

coordinator |C maintain f(A(¢)) for all t.
sites |5 |S9 |S3 .- - S

A(t) : set of ele-
S ments received up to
®

time t from all sites.
a

dAssume < 1 item
comes at each time unit.

time Goal: minimize communication cost
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Problems

coordinator
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The Distributed Streaming Model

Static case (a one-shot/static
computation at the end)

o Top-k
e Heavy-hitter

Dynamic case
e Samplings

e Frequent moments
(Fo, F1, Fa,...)

e Heavy-hitter
e Quantile
e Entropy

e Non-linear functions
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@ What you would like to see:

e Efficient algorithms/protocols

e Practical heuristics
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e Complicated proofs



This talk

@ What you would like to see:

e Efficient algorithms/protocols

e Practical heuristics

Y

-

“~~ What you (probably) do not want to see:

e "Useless” impossibility results

e Complicated proofs

Unfortunately, in the next 30 minutes ...
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The multiparty communication model

— A model for lower bounds

r1 = 010011 2o =111011

( ) @
T = 100011‘ _--HH o ’ rs = 111111
-t -
' { } . _:‘l
IR

We want to compute f(x1,x2,...,Tk)
f can be bit-wise XOR, OR, AND, MAJ ...
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The multiparty communication model

— A model for lower bounds Blackboard: One speaks,

1 = 010011 ro = 111011 everyone else hears.

Message passing: |If x4
talks to xo, others can-

‘ * @ ’ not hear.
( ) )
e o
o

2, = 100011 r3 = 111111

@ >
3 d
'()/ \!J)

We want to compute f(x1,x2,...,Tk)
f can be bit-wise XOR, OR, AND, MAJ ...
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The multiparty communication model

— A model for lower bounds

Message passing:

Blackboard: One speaks,
r1 = 010011 ro = 111011 everyone else hears.

|f X1

talks to xo, others can-

‘ % not hear.
T = 100011‘ _

We want to compute f(x1,x2,...,Tk)

f can be bit-wise XOR, OR, AND, MAJ ...

rs = 111111

S

coordinator

8)/ 3‘ ://.

C

52

53

sites




6-1

Previously

O Some works in the blackboard model. Almost nothing in
the message-passing model.
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Previously

O Some works in the blackboard model. Almost nothing in
the message-passing model.

O This SODA, with Jeff Phillips and Elad Verbin we proposed
a general and elegant technique called “symmetrization”
which works in both variants. In particular, we obtained
(in the message-passing model)

1. Q(nk) for the bitwise-XOR/OR/AND /MAJ.

2. Q(nk) for connectivity.
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Previously

Some works in the blackboard model. Almost nothing in
the message-passing model.

This SODA, with Jeff Phillips and Elad Verbin we proposed
a general and elegant technique called “symmetrization”
which works in both variants. In particular, we obtained
(in the message-passing model)

1. Q(nk) for the bitwise-XOR/OR/AND /MAJ.

2. Q(nk) for connectivity.

Artificial? Well ...

In any case, let's look at real important problems.
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Now, important problems

e Samplings

e Frequent moments
(Fy, Fy, Fo, .. .)

e Heavy-hitter
e Quantile

e Entropy
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Now, important problems

e Samplings Solved

e Frequent moments
(Fy, Fy, Fo, .. .)

e Heavy-hitter
e Quantile

e Entropy
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Now, important problems

e Samplings Solved
e Frequent moments A
(Fy, Fy, Fo, .. .)
e Heavy-hitter Our work
e Quantile
e Entropy
\



Results
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Previous work This paper Previous work This paper
Problem LB LB (all static) UB UB
Fy Q(k) [20] Q(k/2?) O(k/<%) [20] —
F, Q(k) [20] Q(k/=2) (BB) é{k?;ﬂ + k15 /23) [20] D(DDM )
F,(p>1) Q(k+1/22) [5.16] Q(kP~1/£2) (BB) O( 1+2 k2P N1=2/P) [20] D(plg';(a )

All-quantile ﬁ(min{"'g‘ == 1) [32]  Q(min{x= vk —g}] (BB) (111111{"”‘ ;lf}) [32] -

Heavy Hitters ﬁ(m{n{% 1) [32] Q(min{ "'“_;k? =}) (BB) (111111{"”‘ +1) [32] -

Entropy Q(1/4/2) [5] (k/=?) (BB) ( ) 15]. O(% } (static) [31] -

t, (p € (0,2]) - Q(k/e?) (BB) O(k/£2) (static) [38] -
Table 1: UB denotes upper bound; LB denotes lower bound: BB denotes blackboard model. N denotes

the universe size. All bounds are for randomized algorithms. We assume all bounds hold in the dynamic
setting by default, and will state explicitly if they hold in the static setting. For lower bounds we assume the
message-passing model by default, and state explicitly if they also hold in the blackboard model.



Results

All-quantile

Heavy Hitters
Entropy

{ (p € (0,2))

Q
QO

(min{%:, £})[32] Q(min{~E, L}) (BB)
(m{n{%;lf}) [32] ﬂ(mm{@:lg}) (BB)

(1/y/7) I5]

(K /2) (BB)
Q(k/?) (BB)

O(min{ ¥k, 1 1) [32]
O(min{*£, 1}) [32]
O(£) [5]. O(%) (static) [31]
“O(k/22) (static) [38]

Previous work This paper Previous work This paper
Problem LB LB (all static) UB UB
Fy Q(k) [20] Q(k/2?) O(k/c?) 20] —
F, Q(k) [20] Q(k/=2) (BB) O(k? /s + k'3 /£3) [20] é(pm‘;m)
F,(p>1) Q(k+1/22%)[5.16] Q(kP~1/22) (BB) @(ﬁkzﬁ_lj\?l_wp) [20] {f}(plg'f}r_(;]
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Table 1: UB denotes upper bound; LB denotes lower bound: BB denotes blackboard model. N denotes
the universe size. All bounds are for randomized algorithms. We assume all bounds hold in the dynamic

setting by default, and will state explicitly if they hold in the static setting. For lower bounds we assume the
message-passing model by default, and state explicitly if they also hold in the blackboard model.

e (Almost) tight bounds for all these questions

e Static lower bounds (almost) match dynamic upper bounds.
(up to polylog factors)
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the universe size. All bounds are for randomized algorithms. We assume all bounds hold in the dynamic

setting by default, and will state explicitly if they hold in the static setting. For lower bounds we assume the
message-passing model by default, and state explicitly if they also hold in the blackboard model.

e (Almost) tight bounds for all these questions

e Static lower bounds (almost) match dynamic upper bounds.
(up to polylog factors)



Fo upper bound
0
(Cormode, Muthu and Yi 2008)
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The (1 + ¢)-approximation F{, problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute Fjy(U;crX;) up to (1 + €)-approximation.

How many distinct items?

A fundamental problem in

data analysis.
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The (1 + ¢)-approximation F{, problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute Fjy(U;crX;) up to (1 + €)-approximation.

% How many distinct items?
A fundamental problem in
data analysis.

CU I’rent beSt UB O(k/€2) (Cormode, Muthu, Yi2008)
Holds in the dynamic case.
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General idea for the one-shot computation

O Each site generates a “sketch” via small-space
streaming algorithms.

O The coordinator combines (via communication)
the sketches from the k sites to obtain a global
sketch, from which we can extract the answer.



The FM sketch

O Take a pair-wise independent random hash function
h:{l,....,n} = {1,...,2%} where 2¢ > n
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The FM sketch

O Take a pair-wise independent random hash function
h:{l,....,n} = {1,...,2%} where 2¢ > n

O For each incoming element z, compute h(x)
O eg., h(5) = 10101100010000
O Count how many trailing zeros

O Remember the max # trailing zeroes in any h(x)
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The FM sketch

O Take a pair-wise independent random hash function
h:{l,....,n} = {1,...,2%} where 2¢ > n

O For each incoming element z, compute h(x)
O e.g., h(5) =10101100010000

O Count how many trailing zeros

O Remember the max # trailing zeroes in any h(x)

O Let Y be the max # trailing zeroes

O Can show E[2”] = #distinct elements

12-3



One-shot case, the FM sketch (cont.)

O So 2¥ is an unbiased estimator for # distinct elements
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One-shot case, the FM sketch (cont.)

O So 2" is an unbiased estimator for # distinct elements
O However, has a large variance

O Some techniques [Bar-Yossef et. al. 2002] can produce a
good estimator that has probability 1 —0 to be within relative
error €.

O Space increased to O(1/&?)

13-2
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One-shot case, the FM sketch (cont.)

O So 2" is an unbiased estimator for # distinct elements
O However, has a large variance

O Some techniques [Bar-Yossef et. al. 2002] can produce a
good estimator that has probability 1 —0 to be within relative
error €.

O Space increased to O(1/&?)

0 FM sketch has linearity

O v, from A, Y5 from B, then 2021Y1:Y2} agtimates # distinct
items in AU B.



One-shot case, the FM sketch (cont.)

O So 2" is an unbiased estimator for # distinct elements
O However, has a large variance

O Some techniques [Bar-Yossef et. al. 2002] can produce a
good estimator that has probability 1 —0 to be within relative
error €.

O Space increased to O(1/&?)

0 FM sketch has linearity

O v, from A, Y5 from B, then 2021Y1:Y2} agtimates # distinct
items in AU B.

O Thus, we can use It to design a one-shot algorithm with
communication O(k/&?)

13-4
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The Fj problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute Fjy(U;crX;) up to (1 + €)-approximation.

.@ How many distinct items?
A fundamental problem in

data analysis.
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The Fy problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute Fjy(U;crX;) up to (1 + €)-approximation.

.@ How many distinct items?
A fundamental problem in

data analysis.

Current best UB: O(k/e?)
(Cormode, Muthu, Yi, 2008)
Holds in the dynamic case.

Previous LB: (k) (Cormode, Muthu, Yi, 2008)
((1/£?) (reduction from Gap-Hamming)
Our LB: Q(k/=?).

Holds in the static and message-passing case.
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The Fy problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute Fjy(U;crX;) up to (1 + €)-approximation.

.@ How many distinct items?
A fundamental problem in

data analysis.

Current best UB: O(k/e?)

(Cormode, Muthu, Yi, 2008)
Holds in the dynamic case.
. | Previous LB: Q(k) (Cormode, Muthu, Yi, 2008)
Tlght' ((1/£?) (reduction from Gap-Hamming)
Our LB: Q(k/c?).

Holds in the static and message-passing case.



The proof framework

Step 1: We first introduce a simpler problem called
k-GAP-MAJ

Step 2: We compose k-GAP-MAJ with the Set Dis-
jointness problem using information cost to prove a

lower bound for Fj

16-1



k-GAP-MAJ

We have k sites 51,59,...,5k. S; holds a bit Z; which is 1 w.p.
B and O w.p. 1 — 3 where w(1/k) < 8 < 1/2is a prefixed value.

Our goal: compute the following function.

{O, if > e Zi < Bk — /B,

GM(Zl,ZQ,...,Zk): 1, IfZE Z; >ﬁk—|—\/

*, otherW|se

where “x" means that the answer can be arbitrary.

17-1
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k-GAP-MAJ

We have k sites 51,59,...,5k. S; holds a bit Z; which is 1 w.p.
B and O w.p. 1 — 3 where w(1/k) < 8 < 1/2is a prefixed value.

Our goal: compute the following function.

{O, if > e Zi < Bk — /B,

GM(Zl,ZQ,...,Zk): 1, IfZE Z; >ﬁk—|—\/

*, otherW|se

where “x" means that the answer can be arbitrary.

O Lemma 1: If a protocol P computes k-GAP-MAJ correctly w.p.
0.9999, then w.p. €2(1), the protocol has to learn at least €2(k)
of Z; each with Q(1) bit (that is, H(Z; | II) < H(0.015)).



k-GAP-MAJ

We have k sites 51,59,...,5k. S; holds a bit Z; which is 1 w.p.
B and O w.p. 1 — 3 where w(1/k) < 8 < 1/2is a prefixed value.

Our goal: compute the following function.

0, if> e Zi <Bk— Vv Bk,
{1, |fZE Z>5k—|—\/7

otherW|se

GM(Z1, Za, ..., Z)) =

*,

where “x" means that the answer can be arbitrary.

O Lemma 1: If a protocol P computes k-GAP-MAJ correctly w.p.
0.9999, then w.p. €2(1), the protocol has to learn at least €2(k)
of Z; each with Q(1) bit (that is, H(Z; | II) < H(0.015)).

O Alternatively: I(Z1,Zs, ..., Zy; 11) = Q(k)

17-3



Set disjointness (2-DISJ)

rNy =07

r e {0,1}" y € {0,1}"
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Set disjointness (2-DISJ)

rNy =07

r e {0,1}" y € {0,1}"

0 A classical hard instance:

Distribution p: X and Y are both random subsets of size £ =
(n+1)/4 from [n] such that | XNY | =1w.p. fand [ XNY| =0
w.p. 1 — 0.

Razborov [1990] shows an 2(n) for this hard distribution and
error 3/100.



Next step: Compose k-GAP-MAJ with 2-DISJ

n=0(1/e%)
{=(n+1)/4
B =1/ke?

coordinator C

sites




Next step: Compose k-GAP-MAJ with 2-DISJ

_ 2
n=0(1/e) Step 1: Pick Y = y C [n] of
{=(n+1)/4 size ¢ uniformly at random
B =1/ke?

coordinator C Y

sites
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Next step: Compose k-GAP-MAJ with 2-DISJ

_ 2
n=0(1/e%) Step 1: Pick Y = y C [n] of
{=(n+1)/4 size ¢ uniformly at random
B =1/ke?
Y

coordinator C

i

sites S1 So Ss e Sk

X1 Xo X3 Xk

Step 2: Pick Xi,..., Xk C [n] indepedently and randomly from u|y—,
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Next step: Compose k-GAP-MAJ with 2-DISJ

_ 2
n=0(1/e) Step 1: Pick Y = y C [n] of
{=(n+1)/4 size ¢ uniformly at random
B =1/ke?
di Y
coordinator | ~ Fo(X1, Xo,..., X3)?
sites | S1 S2 S3 i Sk
X1 X2 XS Xk

Step 2: Pick Xi,..., Xk C [n] indepedently and randomly from u|y—,
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The proof

sites

Fo(Xl,XQ, ..

: Y
coordinator | C Zi = |X,NY] 1 w.p. B
S1 So Ss ‘e Sk
X1 Xo X3 X

L, Xi) <= Ek-GAP-MAJ(Z1,Zs,...,Zy;)
(Zs = | XiNY])
<= learn Q(k) Z;'s well
(by Lemma 1)
< need Q(k/e?) bits
(learning each Z;, = | X; N Y| well needs
Q(n) = Q(1/e?) bits, by 2-DISJ)
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The proof

sites

Fo(Xl,XQ, ..

Q.E.D.

: Y
coordinator | C Zi = |X,NY] 1 w.p. B
S1 So Ss ‘e Sk
X1 Xo X3 X

L, Xi) <= Ek-GAP-MAJ(Z1,Zs,...,Zy;)
(Zs = | XiNY])
<= learn Q(k) Z;'s well
(by Lemma 1)
< need Q(k/e?) bits
(learning each Z;, = | X; N Y| well needs
Q(n) = Q(1/e?) bits, by 2-DISJ)



Proof sketch of Lemma 1

Lemma 1: If a protocol P computes k-GAP-MAJ correctly w.p.
0.9999, then w.p. (1), for Q(k) Z;'s, we have
H(Z; | 1) < Hp(0.015).

Proof:
1. Suppose II does not satisfy this.

2. Since the Z; are independent given II, Zle Z; | I 'is a sum
of independent Bernoulli random variables.

3. Since most H(Z; | II) are large, by anti-concentration, both
of the following events occur with constant probability:

e YF  Zy | I > Bk + /BE,
e Y8 Z; | Tl < Bk — /BE.

4. So P can't succeed with large probability.

21-1



F5 lower bound



The F5 problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute F5(U;crX;) up to (1 + €)-approximation.

What's the size of self-join?

Another fundamental problem
Join in data analysis.

23-1
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The F5 problem

We have k sites 57,59, ..

., Sk. S; holds a set X;.

Our goal: compute F5(U;crX;) up to (1 + €)-approximation.

Join

What's the size of self-join?

Another fundamental problem
In data analysis.

Previous UB: O(k?/e + k'°/&3)
(Cormode, Muthu, Yi 2008)

Our UB: O(k/poly(¢)), one way protocol
Holds in the dynamic case.

Previous LB: (k) (Cormode, Muthu, Yi, 2008)
Our LB: Q(k/=2).

Holds in the static and blackboard case.
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The F5 problem

We have k sites S1,55,...,5k. S; holds a set X;.
Our goal: compute F5(U;crX;) up to (1 + €)-approximation.

What's the size of self-join?

Another fundamental problem
Join in data analysis.

Previous UB: O(k?/e + k'°/&3)
(Cormode, Muthu, Yi 2008)

Our UB: O(k/poly(¢)), one way protocol
Holds in the dynamic case.

Previous LB: (k) (Cormode, Muthu, Yi, 2008)
Our LB: Q(k/=2).

Holds in the static and blackboard case.

Almost Tight!
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A quick glance: (1 + ¢)-approximation F5

O 2-party gap-hamming: Alice has X = {X1, Xo,...,X;,.2}, Bob
has Y = {Y1,Yo,... ,Y1/€2}. They want to compute:

GHD(X,Y) =1 1, if>7,cp,2) Xi @Yi > 1/2e” + 1/,
x, otherwise,

where “x” means that the answer can be arbitrary.
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A quick glance: (1 + ¢)-approximation F5

O 2-party gap-hamming: Alice has X = {X1, Xo,...,X;,.2}, Bob
has Y = {Y1,Yo,... ,Y1/€2}. They want to compute:

GHD(X,Y) =1 1, if>7,cp,2) Xi @Yi > 1/2e” + 1/,
x, otherwise,

where “x” means that the answer can be arbitrary.

O k-DISJ: We have k sites S1,59,...,5,. S; holds a set Z;. We
promise that either Z; (¢ = 1, ..., k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.
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A quick glance: (1 + ¢)-approximation F5

O 2-party gap-hamming: Alice has X = {X1, Xo,...,X;,.2}, Bob
has Y = {Y1,Yo,... ,Y1/€2}. They want to compute:

GHD(X,Y) =1 1, if>7,cp,2) Xi @Yi > 1/2e” + 1/,
x, otherwise,

where “x” means that the answer can be arbitrary.

O k-DISJ: We have k sites S1,59,...,5,. S; holds a set Z;. We
promise that either Z; (¢ = 1, ..., k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.
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A quick glance: (1 + ¢)-approximation F5

O 2-party gap-hamming: Alice has X = {X1, Xo,...,X;,.2}, Bob
has Y = {Y1,Yo,... ,Y1/€2}. They want to compute:

GHD(X,Y) =1 1, if>7,cp,2) Xi @Yi > 1/2e” + 1/,
x, otherwise,

where “x” means that the answer can be arbitrary.

N compose via in-

__—" formation cost
k-XOR

/ 2 coples
O k-DISJ: We have k sites S1,59,...,5,. S; holds a set Z;. We

promise that either Z; (¢ = 1, ..., k) are all disjoint, or they intersect
on one element and the rest are all disjoint (sun-flower).

—» k-BTA

The goal is to find out which is the case.
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A quick glance: (1 + ¢)-approximation F5

O 2-party gap-hamming: Alice has X = {X1, Xo,...,X;,.2}, Bob
has Y = {Y1,Yo,... ,Y1/€2}. They want to compute:

GHD(X,Y) =1 1, if>7,cp,2) Xi @Yi > 1/2e” + 1/,

x, otherwise,

where “x” means that the answer can be arbitrary.

N compose via in-

__—" formation cost
k-XOR

/ 2 coples
O k-DISJ: We have k sites S1,59,...,5,. S; holds a set Z;. We
promise that either Z; (¢ = 1, ..., k) are all disjoint, or they intersect

on one element and the rest are all disjoint (sun-flower).

—» k-BTA CC(k-BTA) = Q(k/&?)

The goal is to find out which is the case.
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A quick glance: (1 + ¢)-approximation F5

O 2-party gap-hamming: Alice has X = {X1, Xo,...,X;,.2}, Bob
has Y = {Y1,Yo,... ,Y1/€2}. They want to compute:

GHD(X,Y) =1 1, if>7,cp,2) Xi @Yi > 1/2e” + 1/,
x, otherwise,

where “x” means that the answer can be arbitrary.
N compose via in-

__—" formation cost
k-XOR

/ 2 coples
O k-DISJ: We have k sites S1,59,...,5,. S; holds a set Z;. We
promise that either Z; (¢ = 1, ..., k) are all disjoint, or they intersect

on one element and the rest are all disjoint (sun-flower).

—» k-BTA CC(k-BTA) = Q(k/&?)

The goal is to find out which is the case.

O Finally, we reduce F> to k-BTA.



The end

THANK YOU

Q and A



