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Distributed Systems for Massive Data: MapReduce

Pre-loaded local
input data

Intermediate data
from mappers

Values exchanged
by shuffle process

Reducing process
generates outputs

Qutputs stored
locally

Node 1

TLLILL

Mapping process

AO000

Node 2

e Evar

Mapping process

(0000

Node 3

T11ETI/

Mapping process

(o000

=K

Node 1

Hy5y

Reducing process

S

Node 2

ey

Reducing process

L

Node 3

NRRNN

Reducing process

m—

Open sourece implementation: Hadoop




Distributed Systems for Massive Data: MapReduce
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Open sourece implementation: Hadoop

Suitable for batch processing (e.g., index construction)
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Distributed Systems for Massive Data: Dremel
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Distributed Systems for Massive Data: Dremel
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storage layer (e.g., GFS)

No open source implementation yet

Suitable for analytical queries (e.g., extracting a summary)
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(Simplified) Model of Computation
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(Simplified) Model of Computation

node

m [ he root broadcasts a message to initialize computation
m Each node computes a summary on its local data

m [ he root combines the summaries to produce a global
summary
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(Simplified) Model of Computation
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node

m [ he root broadcasts a message to initialize computation
m Each node computes a summary on its local data

m [ he root combines the summaries to produce a global
summary

® Using minimum communication (and load balancing)



® Frequency estimation (heavy hitters)
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Problem: Frequency Estimation

u kel

node 1 node 2 node 3

m Input: Multiset S of N items drawn from the universe [u] = {1...u}

For example, all IP addresses

m Each node j € [k] holds a subset of S
For any item i € [u]
x;j: total number of i's in node j (local count)

yi = Zjlle X;j (global count)
m Compute y; for each i
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Frequency Estimation: Possible Solutions

B Compute exactly: send everything
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Frequency Estimation: Possible Solutions

B Compute exactly: send everything

" Approximate each y; within addtive error e N
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Frequency Estimation: Possible Solutions

B Compute exactly: send everything

" Approximate each y; within addtive error e N

m Sketching: Each node computes a sketch of its own data
and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.
Sketch size: O(1/¢)

Communication cost: O(k/¢)
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Frequency Estimation: Possible Solutions

B Compute exactly: send everything

" Approximate each y; within addtive error e N

m Sketching: Each node computes a sketch of its own data
and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.
Sketch size: O(1/¢)
Communication cost: O(k/¢)

® Random sampling

Uniformly randomly sample a subset of size O(1/¢?)
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Frequency Estimation: Possible Solutions

" Compute exactly: send everything
" Approximate each y; within addtive error e N

m Sketching: Each node computes a sketch of its own data
and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.
Sketch size: O(1/¢)
Communication cost: O(k/¢)

® Random sampling

Uniformly randomly sample a subset of size O(1/¢?)

= We can achieve: O(vk/¢)

Typical values of ¢ = 1073 ~ 107, k = 102 ~ 10*
We assume k < 1/&?
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HT estimator [Horvitz and Thompson 56]

Each node holds a set of (item, count) pairs

(item, count)
(1,20)
(2,13)
(3, 35)
(4,12)
(5,5)
(6,22)

send each pair (/, x;;) with probability g(x;;)

node |
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HT estimator [Horvitz and Thompson 56]

Each node holds a set of (item, count) pairs

(item, count)
e send each pair (/, x;;) with probability g(x;;)
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-------

- -y
- ..

~ .
-------

root
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HT estimator [Horvitz and Thompson 56]

HT estimator for Xjj:

Y= gé”(;_f;j) if it is sampled, otherwise 0

This 1s an unbiased estimator

Estimator for y;:
Yi=Yii+ o+ Vi
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HT estimator [Horvitz and Thompson 56]

HT estimator for Xjj:

Y= gé”(;_{j) if it is sampled, otherwise 0

This 1s an unbiased estimator

Estimator for y;:
Yi=Yia+-+ Yin

Var[ Y] = (gresy — xi)28(xig) + (x7)° (1 — g (%))

Xiz,j(l—g(xi,j))
g(xij)

n n Xizj(l_ (Xi,j))
Varl|Y;] = ijl Var[Yj| = > ;i = :

J g(xi ;)
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Sampling Function

Question: What sampling function g(x) should we use
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Sampling Function

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than ¢/
A function is valid, if Var[Y;] < (eN)? for all items i
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Sampling Function

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than ¢/
A function is valid, if Var[Y;] < (eN)? for all items i

Communication cost: Z,J g(xi)
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Sampling Function

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than ¢/
A function is valid, if Var[Y;] < (eN)? for all items i

Communication cost: Z,J g(xi)

Optimal valid g(x)?
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A Worst-Case Optimal Sampling Function

g1(x) = min{¥kx, 1}
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A Worst-Case Optimal Sampling Function

g1(x) = min{¥kx, 1}
Can show:

= Var[Y]] = - (3//’; — %)2 MLy

i.e., g1(x) is valid

" Communication cost of using gi(x) is O(Vk/¢)

m Communication cost of any valid sampling function is
Q(vk/¢) in the worst case (i.e., on some input)
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A Worst-Case Optimal Sampling Function

g1(x) = min{¥kx, 1}
Can show:

s vavl = (-

i.e., g1(x) is valid

® Communication cost of using gi(x) is O(vVk/¢)

m Communication cost of any valid sampling function is
Q(vk/¢) in the worst case (i.e., on some input)

m A very recent result shows that any algorithm has to
spend Q(vk/e) bits of communication in the worst
case [Woodruff, Zhang, manuscript]
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Another Sampling Function

g2(x) = (81(x))’
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Another Sampling Function

g2(x) = (81(x))’

Can show:

® g5 Is also valid
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Another Sampling Function

g2(x) = (81(x))’

Can show:
® g5 Is also valid

= Clearly, g1(x) > ga(x)

g1's communication cost is always ©(v/k/c), while
g> can be much better when there are many small
local counts
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Another Sampling Function

g2(x) = (81(x))’

Can show:

® g5 Is also valid

m Clearly, g1(x) > g2(x)

g1's communication cost is always ©(v/k/¢), while
g> can be much better when there are many small
local counts

m A stronger optimality: g»(x) is instance-optimal
Define opt(/) = > _; : g&2(xi;) on input [ :{x;;}

Can show that on every input /, any valid sampling
function must have cost Q2(opt(/))
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Instance Optimality

Comm. cost

‘ -\
Vk/e N 81
any valid sampling

N
s

All possible inputs
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Further Reducing Communication Cost

g1(x) = min{¥kx, 1}

HT estimator for x;:
Y;; = =L if it is sampled, otherwise 0
’ g(xi ;)

Estimator for y;:
Yi=Yiitoo+ Vi,
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Further Reducing Communication Cost

g1(x) = min{¥kx, 1}

HT estimator for x;:
Y;; = =L if it is sampled, otherwise 0
’ g(xi ;)

Estimator for y;:
Yi=Yiit+ o+ Vi,

Yi=(1+0+1+14 - +0+1)

14-2



Further Reducing Communication Cost

g1(x) = min{¥kx, 1}

HT estimator for x;:
Y;; = =L if it is sampled, otherwise 0
’ g(xi ;)

Estimator for y;:
Yi=Yiit+ o+ Vi,

Y

Yi=(1+0+1+14 - +0+1)

Each site j just needs to tell whether / i1s sampled or not!
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Further Reducing Communication Cost

g1(x) = min{¥kx, 1}

HT estimator for Xjj:

Y= ﬁt) if it is sampled, otherwise 0

Estimator for y;:
Yi=Yiit+ o+ Vi,

Yi=(1+0+1+14 - +0+1)

Each site j just needs to tell whether / i1s sampled or not!

The set of sampled items can be encoded in a Bloom
filter, taking O(1) bits per item
= total cost = O(\Vk/¢) bits
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Bloom Filters

= A Bloom filter needs O(log(1/q)) bits per item

m No false negatives

m False positive probability = g
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Bloom Filters

= A Bloom filter needs O(log(1/q)) bits per item

m No false negatives

m False positive probability = g
Change the estimator to
eN Yii+---4+Yik—kqg
Vi=—
vk 1-g
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2

Sampling with g>(x) = (g1(x))

® g»(x) samples opt(/) (item, count) pairs, which may be
much smaller than O(+/k/€) on many inputs

m But it is a nonlinear sampling function

Estimator for y;:

Yi= 10404 2

o4+ 0+ :
g2(Xi,1) gz(x,-,4)
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Sampling with g (x) = (g1(x))?

® g»(x) samples opt(/) (item, count) pairs, which may be
much smaller than O(+/k/€) on many inputs

m But it is a nonlinear sampling function
Estimator for y;: opt(/) such terms
Xi1 " X k

Vi == 04+ 04 S 0
&) | &%), &2(Xik)

4
’
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Sampling with g (x) = (g1(x))?

® g»(x) samples opt(/) (item, count) pairs, which may be
much smaller than O(+/k/€) on many inputs

m But it is a nonlinear sampling function

Estimator for y;: opt(l) such terms
,'//X' 1 N ,/'Xi 4‘-\\ l/,/Xi k‘\
N SR T N WY A L
| g2 (XI 1) | g2 (XI 4) | | g2 (X,',k)/,'

m Use g»(x) to perform the sampling locally

® Then use g1(x) + Bloom filters to sample the 2( ,J)
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Sampling with g>(x) = (g1(x))?

® g»(x) samples opt(/) (item, count) pairs, which may be
much smaller than O(+/k/€) on many inputs

m But it is a nonlinear sampling function

Estimator for y;: opt(!) such terms
,'//X' 1 N ,/'Xi 4‘-\\ l/,/Xi k‘\\
Yi = +0 40 A 0
| g2(XI 1) ! gz(X: 4) SRR \82(Xi k) ;

m Use g»(x) to perform the sampling locally

® Then use g1(x) + Bloom filters to sample the 2( ,J)

Can show this takes O (opt(l) log? ( vk )) bits

e opt(1)
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Simulation Results
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k = 1000, N = 10° following Zipf distribution with oo = 1.2.
Estimate the frequencies of the 100 most popular items. Variance
17_1computed from 100 runs, and take the worst



m Quantiles (order statistics)
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In a set of n values, the (r/n)-quantile is the value ranked at r.
The 0.5-quantile is the median.

DO®OOOOO6

0ee

r — e&n
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In a set of n values, the (r/n)-quantile is the value ranked at r.
The 0.5-quantile is the median.

DO®OOOOO6

0ee

r — e&n

An e-approximate (r/n)-quantile is any value ranked between
[r —en,r+en.
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In a set of n values, the (r/n)-quantile is the value ranked at r.
The 0.5-quantile is the median.

DO®OOOOO6

. \

r — e&n

Equi-depth histogram
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Quantiles: Previous Solutions

m Sketching: Each node computes a sketch of its own data
and sends it to the coordinator.

Sketch size: O(1/¢)
Communication cost: O(k/¢)

® Random sampling

Uniformly randomly sample a subset of size O(1/¢?)

= We can achieve: O(Vk/¢)

Typical values of ¢ = 1073 ~ 107°, k = 102 ~ 10*
We assume k < 1/¢2
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The Algorithm

Base station

The algorithm for each node
Sample each value with probabiltiy p
DOWOO®OWL® o e

(3,2) (7,5) (13,8) (26,10)

Compute local ranks

Base station
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

L ®b& W

3 ©O® ® ©o
@ @ @
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

e m - -
- -
- -
- -
- -
-
-
-
-

r(10)=5+2/p
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Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7

L ® ©® 1 ®
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Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7
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Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7

® ~ 15
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Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7
® ?\ 15

Follows a geometric distribution (almost)

E[?]=1/p Var[?] < 1/p?
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Correctness

Will show: 7(x) is an unbiased estimator of r(x) with
standard deviation en.

r(10)7
® ?\ 15

Follows a geometric distribution (almost)

E[?]=1/p Var[?] < 1/p?
Set p = g

Var[#(x)] < k/p? = (en)?

Total cost: np = V'k/e in expectation

23-5



m Other problems
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e-approximate range counting

Let P be a set of n points in the plane. Compute a
summary structure so that, for any range Q (from a certain
range space), |P N Q| can be extracted with error en
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e-approximations

S C P is an e-approximation of P if for any @ (from a
certain range space),
n —

PNQRI =|SNQ|-— *+e€n
PNQI=Isnal ¢
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e-approximations

o ®

o

®
o o
o
o
o
o
o o
® o
o o o o
1 /e 1og®D(1/¢) 1/e*3

Size of s-approximations
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e-approximations over k distributed data sets

Vk -1/elog®M(1/e) k3 .1/e3
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The General Question

For what probems can we do better than kx sketch size?
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The General Question

For what probems can we do better than kx sketch size?

m Some positive results in this talk

® Negative results in Qin Zhang's talk

® Number of distinct elements

® Frequency moments
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