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Distributed Systems for Massive Data: MapReduce

Suitable for batch processing (e.g., index construction)

Open sourece implementation: Hadoop
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Distributed Systems for Massive Data: Dremel
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Distributed Systems for Massive Data: Dremel

No open source implementation yet

Suitable for analytical queries (e.g., extracting a summary)
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(Simplified) Model of Computation

root

node

The root broadcasts a message to initialize computation

Each node computes a summary on its local data

The root combines the summaries to produce a global
summary

Using minimum communication (and load balancing)
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Model of computation

Frequency estimation (heavy hitters)

Quantiles (order statistics)

Outline

Other problems
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Problem: Frequency Estimation

Each node j ∈ [k] holds a subset of S

Input: Multiset S of N items drawn from the universe [u] = {1 . . . u}

Compute yi for each i

For any item i ∈ [u]

xij : total number of i ’s in node j (local count)

yi =
∑k

j=1 xij (global count)

Snode 2 node 3node 1

For any item i ∈ [u]

For example, all IP addresses
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Frequency Estimation: Possible Solutions

Compute exactly: send everything

Approximate each yi within addtive error εN

Sketch size: O(1/ε)

Sketching: Each node computes a sketch of its own data
and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Communication cost: O(k/ε)

Random sampling

Uniformly randomly sample a subset of size O(1/ε2)

We can achieve: O(
√
k/ε)

Typical values of ε = 10−3 ∼ 10−6, k = 102 ∼ 104

We assume k < 1/ε2
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HT estimator [Horvitz and Thompson 56]

Each node holds a set of (item, count) pairs

(1, 20)

(3, 35)

(2, 13)

(5, 5)

(4, 12)

(6, 22)

(item, count)
send each pair (i , xij) with probability g(xij)

node j
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HT estimator [Horvitz and Thompson 56]

Each node holds a set of (item, count) pairs

(1, 20)

(3, 35)

(2, 13)

(5, 5)

(4, 12)

(6, 22)

(item, count)
send each pair (i , xij) with probability g(xij)

node j

root
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HT estimator [Horvitz and Thompson 56]

HT estimator for xij :
Yi,j =

xi,j
g(xi,j )

if it is sampled, otherwise 0

This is an unbiased estimator
Estimator for yi :

Yi = Yi,1 + · · ·+ Yi,n
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HT estimator [Horvitz and Thompson 56]

HT estimator for xij :
Yi,j =

xi,j
g(xi,j )

if it is sampled, otherwise 0

This is an unbiased estimator
Estimator for yi :

Yi = Yi,1 + · · ·+ Yi,n

Var[Yi ] =
∑n

j=1 Var[Yij ] =
∑n

j=1

x2
i,j (1−g(xi,j ))

g(xi,j )

=
x2
i,j (1−g(xi,j ))

g(xi,j )

Var[Yi,j ] = (
xi,j

g(xi,j )
− xi,j)

2g(xi,j) + (xi,j)
2(1− g(xi,j))
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Sampling Function

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN
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Sampling Function

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN

A function is valid, if Var[Yi ] ≤ (εN)2 for all items i

Communication cost:
∑

i,j g(xij)

Optimal valid g(x)?
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A Worst-Case Optimal Sampling Function

g1(x) = min{
√
k

εN x , 1}
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A Worst-Case Optimal Sampling Function

g1(x) = min{
√
k

εN x , 1}
Can show:

Var[Yi ] = −
(

yi√
k
− εN

2

)2

+
(εN)2

4
≤ 1

4
(εN)2,

i.e., g1(x) is valid

Communication cost of using g1(x) is O(
√
k/ε)

Communication cost of any valid sampling function is
Ω(
√
k/ε) in the worst case (i.e., on some input)
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A Worst-Case Optimal Sampling Function

g1(x) = min{
√
k

εN x , 1}
Can show:

Var[Yi ] = −
(

yi√
k
− εN

2

)2

+
(εN)2

4
≤ 1

4
(εN)2,

i.e., g1(x) is valid

Communication cost of using g1(x) is O(
√
k/ε)

Communication cost of any valid sampling function is
Ω(
√
k/ε) in the worst case (i.e., on some input)

A very recent result shows that any algorithm has to
spend Ω(

√
k/ε) bits of communication in the worst

case [Woodruff, Zhang, manuscript]
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Another Sampling Function

g2(x) = (g1(x))2
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local counts
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Another Sampling Function

g2(x) = (g1(x))2

g2 is also valid

Can show:

Clearly, g1(x) ≥ g2(x)

g1’s communication cost is always Θ(
√
k/ε), while

g2 can be much better when there are many small
local counts

A stronger optimality: g2(x) is instance-optimal

Define opt(I ) =
∑

i,j g2(xi,j) on input I : {xi,j}

Can show that on every input I , any valid sampling
function must have cost Ω(opt(I ))
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Instance Optimality

All possible inputs

Comm. cost

√
k/ε g1

g2

any valid sampling
function
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Further Reducing Communication Cost

g1(x) = min{
√
k

εN x , 1}

HT estimator for xij :
Yi,j =

xi,j
g(xi,j )

if it is sampled, otherwise 0

Estimator for yi :
Yi = Yi,1 + · · ·+ Yi,n
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Further Reducing Communication Cost

g1(x) = min{
√
k

εN x , 1}

HT estimator for xij :
Yi,j =

xi,j
g(xi,j )

if it is sampled, otherwise 0

Estimator for yi :
Yi = Yi,1 + · · ·+ Yi,n

Yi = εN√
k

(1 + 0 + 1 + 1 + · · ·+ 0 + 1)

Each site j just needs to tell whether i is sampled or not!

The set of sampled items can be encoded in a Bloom
filter, taking O(1) bits per item
⇒ total cost = O(

√
k/ε) bits
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Bloom Filters

A Bloom filter needs O(log(1/q)) bits per item

No false negatives

False positive probability = q
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Bloom Filters

A Bloom filter needs O(log(1/q)) bits per item

No false negatives

False positive probability = q

Yi =
εN√
k
· Yi,1 + · · ·+ Yi,k − kq

1− q

Change the estimator to
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Sampling with g2(x) = (g1(x))2

g2(x) samples opt(I ) (item, count) pairs, which may be
much smaller than O(

√
k/ε) on many inputs

But it is a nonlinear sampling function

Estimator for yi :

Yi =
xi,1

g2(xi,1)
+ 0 + 0 +

xi,4
g2(xi,4)

+ · · ·+ 0 +
xi,k

g2(xi,k)
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Sampling with g2(x) = (g1(x))2

g2(x) samples opt(I ) (item, count) pairs, which may be
much smaller than O(

√
k/ε) on many inputs

But it is a nonlinear sampling function

Estimator for yi :

Yi =
xi,1

g2(xi,1)
+ 0 + 0 +

xi,4
g2(xi,4)

+ · · ·+ 0 +
xi,k

g2(xi,k)

opt(I ) such terms

Use g2(x) to perform the sampling locally

Then use g1(x) + Bloom filters to sample the
xi,j

g2(xi,j )
’s

Can show this takes O
(
opt(I ) log2

( √
k

ε opt(I )

))
bits
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Simulation Results

k = 1000,N = 109 following Zipf distribution with α = 1.2.
Estimate the frequencies of the 100 most popular items. Variance
computed from 100 runs, and take the worst



18-1

Model of computation

Frequency estimation (heavy hitters)

Quantiles (order statistics)

Outline

Other problems
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Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r .
The 0.5-quantile is the median.

r

r ± εn

63 7 9 11 131 4
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Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r .
The 0.5-quantile is the median.

An ε-approximate (r/n)-quantile is any value ranked between
[r − εn, r + εn].

r

r ± εn

63 7 9 11 131 4
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Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r .
The 0.5-quantile is the median.

r

r ± εn

63 7 9 11 131 4

20% 40% 60% 80%min max

Equi-depth histogram
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Quantiles: Previous Solutions

Sketch size: O(1/ε)

Sketching: Each node computes a sketch of its own data
and sends it to the coordinator.

Communication cost: O(k/ε)

Random sampling

Uniformly randomly sample a subset of size O(1/ε2)

We can achieve: O(
√
k/ε)

Typical values of ε = 10−3 ∼ 10−6, k = 102 ∼ 104

We assume k < 1/ε2
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The Algorithm

Base station

The algorithm for each node

(3, 2) (7, 5) (13, 8) (26, 10)

Base station

Sample each value with probabiltiy p

Compute local ranks

63 9 111 4 16 21 243 7 13 26
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192

r(10)?predecessor

2+1/p

3 +1/p

0 no predecessor
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The Algorithm

Base station

At the base station:

Answering value-to-rank query

Given any value x , estimates its rank r(x)

105 11 151 6

7 16 203 9

124 14 192

r(10)?predecessor

2+1/p

3 +1/p

0 no predecessor

r̂(10) = 5 + 2/p
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Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 1510 111 6

r(10)?
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standard deviation εn.

5 15

r(10)?

?
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Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 15

r(10)?

?

Follows a geometric distribution (almost)

E[?] = 1/p Var[?] ≤ 1/p2
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Correctness

Will show: r̂(x) is an unbiased estimator of r(x) with
standard deviation εn.

5 15

r(10)?

?

Follows a geometric distribution (almost)

E[?] = 1/p Var[?] ≤ 1/p2

Set p =
√
k

εn

Var[r̂(x)] ≤ k/p2 = (εn)2

Total cost: np =
√
k/ε in expectation
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Model of computation

Frequency estimation (heavy hitters)

Quantiles (order statistics)

Outline

Other problems
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ε-approximate range counting

Let P be a set of n points in the plane. Compute a
summary structure so that, for any range Q (from a certain
range space), |P ∩ Q| can be extracted with error εn
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ε-approximations

S ⊆ P is an ε-approximation of P if for any Q (from a
certain range space),

|P ∩ Q| = |S ∩ Q| · n

|S |
± εn
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ε-approximations

Size of ε-approximations

1/ε logO(1)(1/ε) 1/ε4/3
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ε-approximations over k distributed data sets

√
k ·1/ε logO(1)(1/ε) k1/3 ·1/ε4/3
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The General Question

For what probems can we do better than k× sketch size?
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The General Question

For what probems can we do better than k× sketch size?

Some positive results in this talk

Negative results in Qin Zhang’s talk

Number of distinct elements

Frequency moments
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