
Fast Algorithms for BIG DATAFast Algorithms for BIG DATA
(title means “I make slides according to the interests of audience)(title means “I make slides according to the interests of audience)

Fast Algorithms for BIG DATAFast Algorithms for BIG DATA
(title means “I make slides according to the interests of audience)(title means “I make slides according to the interests of audience)

Takeaki Uno Takeaki Uno

14/Jan/2012 NII Shonan-meeting (open problem seminar)

Takeaki Uno Takeaki Uno
National Institute of Informatics

& Graduated School for Advanced Studies

Self Introduction, Self Introduction, for for BBetter Understandingetter UnderstandingSelf Introduction, Self Introduction, for for BBetter Understandingetter Understanding

Takeaki Uno:Takeaki Uno: National Institute of Informatics
(institute for activating joint research)

Research Area:Research Area:Algorithms, (data mining, genome science)

++ Enumeration, Graph algorithms, Pattern mining, Similarity search ++ Enumeration, Graph algorithms, Pattern mining, Similarity search
(Tree algorithms, Dynamic programming, NP-hardness, Reverse

search,…)

++ Implementations for Frequent Itemset Mining,
for String Similarity Search,…

++ Web systems for small business optimizations
++ Problem solver, or implementer, for research colleagues

Algorithm vs. Distributed ComputationAlgorithm vs. Distributed ComputationAlgorithm vs. Distributed ComputationAlgorithm vs. Distributed Computation

•• For fast computation, both “algorithm” and “distributed
computation” are important

•• However, sometimes they conflict

++ distributed algorithms sometimes doesn’t match latest algorithms, ++ distributed algorithms sometimes doesn’t match latest algorithms,
but is faster than the latest

++ new algorithms (or model) sometime vanish
the existing distributed algorithms

We should find “fundamental algorithms” that doesn’t change
in future, and fit distributed computation

Frequent Itemset MiningFrequent Itemset MiningFrequent Itemset MiningFrequent Itemset Mining

Frequent Itemset (pattern) MiningFrequent Itemset (pattern) MiningFrequent Itemset (pattern) MiningFrequent Itemset (pattern) Mining

•• Problem of enumerating all frequently appearing patterns in big data

(itemset = pattern that is a subset of the entire set)

•• Nowadays, one of the fundamental problems in data mining

•• We want to do this in (data) distributed system, but not easy

Observe the difficulties, and possibilities

genomePOS

database miningmining

ATGCGCCGTA

TAGCGGGTGG

TTCGCGTTAG

GGATATAAAT

GCGCCAAATA

ATAATGTATTA

TTGAAGGGCG

ACAGTCTCTCA

ATAAGCGGCT

ATGCGCCGTA

TAGCGGGTGG

TTCGCGTTAG

GGATATAAAT

GCGCCAAATA

ATAATGTATTA

TTGAAGGGCG

ACAGTCTCTCA

ATAAGCGGCT

実験1 実験2 実験3 実験4
● ▲ ▲

● ▲

● ● ▲ ●

● ● ▲ ●

▲ ● ●

● ▲ ●

● ▲ ▲

▲ ▲

・・ 実験1● ,実験3 ▲

・・実験2● ,実験4●

・・実験2●, 実験3 ▲, 実験4●

・・実験2▲ ,実験3 ▲

．

．

．

．

・・ATGCAT

・・ CCCGGGTAA

・・ GGCGTTA

・・ATAAGGG

．

．

．

patternspatterns

Observe the difficulties, and possibilities

History of AlgorithmsHistory of AlgorithmsHistory of AlgorithmsHistory of Algorithms

•• The beginning is early 90’s, and many algorithms follow
•• Several break-through
+ + breadth-first search � depth-first search
+ + naive frequency counting � recursive data compression
+ + heuristic pruning � reverse search

•• Latest algorithm is,

1,2,3,4

•• Latest algorithm is,
basically, composed of
DFS + compression

MINING (X){
output X (,and compress data including X)
for eachX+e

if X+e is frequent call MINING (X+e)

φ

1,31,2

1,2,3 1,2,4 1,3,4 2,3,4

1 2 3 4

3,42,41,4 2,3

Work StealingWork StealingWork StealingWork Stealing

•• DFS is a kind of Branch-and-Bound
�� Work Stealing would work!

•• But,… it DOESN’T!

•• To steal a work, we need to copy a big data!
�� this is the bottle neck�� this is the bottle neck

•• If we copy the original data to everyone, many computers have
to do the same operation, to generate the input to be moved

BottomBottom--widenesswidenessBottomBottom--widenesswideness

•• branch-and-bound explodes as going to deeper levels

�� total computation time is dominated by those of deepest levels

few
long time

Keeping deeper levels shorter time is important for fast enumeration

・・・・・・

long time

a lot of
short time

…so, data compression for recursive call (for deeper levels) is

important , to reduce the time for “frequency counting”

How to Data CompressionHow to Data CompressionHow to Data CompressionHow to Data Compression

•• Reduce the database to speed up the bottom level iterations

In MINING (X), we do

(1) (1) Delete items less than the maximum item in X
(2)(2) Delete items being infrequent on the occurrence set database

(since it never be added in the recursive call)(since it never be added in the recursive call)

(3)(3) unify the same transactions

•• The database size is constant in the

bottom levels in practice

Bottom levels would not be a
great bottleneck

1 3 5

1 2 3 4 6

1 7

2 3 4 6 7

3 4 5 6 7

2 3 4 6 7

X={1,3}, k=1, σ=4

DataData--Distributed ComputingDistributed ComputingDataData--Distributed ComputingDistributed Computing

•• Work stealing doesn’t work, so move to data distributed
�� Then, frequency counting has to be in parallel

•• There are many works! including approximate counting

•• But,… communication cost is too much
�� at least O(m) with m machines�� at least O(m) with m machines

•• On the other hand, bottom levels take O(1) time to generate a
frequent pattern, since the database size is O(1)

WHAT can we do?WHAT can we do?WHAT can we do?WHAT can we do?

•• Distributed computation, distributed data, both are not good
can’t we do something?
�� Yes, we can do, if we can “shift” the focus little bit

•• Suppose that we are allowed to define the data partition policy

•• According to the most frequent k items, we define the database to •• According to the most frequent k items, we define the database to
belong, for each record
�� All records in a data (computer) have the common “suffix”

…000 …100 …010 …110 …*01 …*11

Distributed Distributed data&compdata&comp..Distributed Distributed data&compdata&comp..

•• In the bottom levels, compressed data is composed only of suffix
�� By grouping records having the same suffix, communication is

not needed

�� Data partition policy reduces the communication cost!

•• In upper levels, we need to communicate•• In upper levels, we need to communicate
when we have m machines, suffix length is log2 m
there are possibly O(2log m) frequent itemsets

�� Communication cost per frequent itemset would be constant

…000 …100 …010 …110 …*01 …*11

Is it a Tip?Is it a Tip?Is it a Tip?Is it a Tip?

•• Of course, this is a tip (from algorithm theory, maybe)

•• But, for distributed computation, there are not many tips,
�� we should at least have tips

•• Tips are important in applications
(I think, algorithm society should give algorithm tips to other areas)(I think, algorithm society should give algorithm tips to other areas)

•• We can abstract fundamental problems / extract global techniques
from tips, and it would be a theoretical work

�� Finding tips are also important

Partition Strategy?Partition Strategy?Partition Strategy?Partition Strategy?

•• It seems that strategy for data partition would be important

•• However, the strategy is only for frequent itemset mining
�� Moving data to other machines would take cost

(but, it’s OK if the mining cost is large)

�� Can we determine the policy according only to this?�� Can we determine the policy according only to this?

•• We should know what kind of policies are there, from algorithmic
view points, and which would be frequently used

…000 …100 …010 …110 …*01 …*11

To be ResearchedTo be ResearchedTo be ResearchedTo be Researched

•• Basic algorithms are important to be researched
�� what is basic?

•• ”Basic” is, maybe, I would say,
++ a small/single part of an algorithm for basic problem,

which is common to many algorithmswhich is common to many algorithms
++ small but important “mutation” from usual problems
++ simple, not too much technical,
++ efficiency is clear (easy to understand why it is efficient)

•• …would be fundamentals of large data analyzing algorithms

Similarity (neighbor) SearchSimilarity (neighbor) SearchSimilarity (neighbor) SearchSimilarity (neighbor) Search

Similarity SearchSimilarity SearchSimilarity SearchSimilarity Search

•• The problem to find records from the database that are similar to
the given query record

•• Different from exact search, approximation is not easy
�� binary search paradigm doesn’t work

•• On the other hand, we know that Local Sensitive Hash works•• On the other hand, we know that Local Sensitive Hash works
�� So the problem would be easier

However…

Combination of BitsCombination of BitsCombination of BitsCombination of Bits

•• Some application researchers say “LSH doesn’t work!”

•• LSH maps a record to 01-bit
�� Similar records have the same bit in high probability
�� We have to compare to the records having the same LSH bit

•• To reduce #candidates, we combine some LSH bits to make a hash•• To reduce #candidates, we combine some LSH bits to make a hash
�� For millions of records, we need 15-20 bits

•• As a result, the probability
to have same hash is small

�� we need many hashes, up to
100, to increase the chance

00101110101
10101011101
11101101010
10110101101
10111000101
…

Reducing #hashes by MismatchesReducing #hashes by MismatchesReducing #hashes by MismatchesReducing #hashes by Mismatches

•• Data distribution by hash values can increase the performance
�� but, we need 100 of different data distributions

•• To reduce #bits, we can introduce “mismatches”
�� We compare with records having hash with mismatches
�� 20 bit hash with 2 errors, we can reduce #hashes to about 8�� 20 bit hash with 2 errors, we can reduce #hashes to about 8

•• Finding records of mismatches at most small d can be done in,
practically, short time by some algorithms

•• We can at least reduce #duplicated data
00101011101
10101010101

Block CombinationBlock CombinationBlock CombinationBlock Combination

•• Consider partition of each string into k（（（（>d））））blocks
�� If two strings are similar, they share at least k-d same blocks
�� for each string, candidates of similar strings are those having

at least k-d same blocks

•• For all combinations of k-d blocks, we find the records having the
same blocks (exact search)
•• For all combinations of k-d blocks, we find the records having the
same blocks (exact search)
�� we have to do several times, but not so many

Cost for MismatchesCost for MismatchesCost for MismatchesCost for Mismatches

•• In a data distributed system, records of hashes with mismatches at
most two are, generally, not in a single machine
�� we have to pay communication costs for search with mismatches
�� we have a new difficulty

•• For the problem, we can introduce a restriction of mismatching
positionspositions
�� first h bits have to be the same, but we allow d mismatches in the

remaining positions
�� #necessary hashes is increased only a little bit

exact match match with mismatches

Again, Again, Again, Again,

•• Is this a tip? �� yes!
and…

++ Data partition strategy is important
(my colleague says “partition is important for BFS”)

++ Focus is on a small part (or key part) of the algorithm

++ Simple but would be efficient in practice

Instead of fundamental (algorithmic) problems,
shall we start with fundamental fragments of algorithms?

Other “Fragments” Other “Fragments” Other “Fragments” Other “Fragments”

•• Extracting induced subgraph, for a vertex set
•• Find (some) maximal clique
•• Find (some) path
•• Augment a matching
•• Majority voting
•• Frequency counting for sequence/graphs•• Frequency counting for sequence/graphs
•• Range search
•• All intersections of line segments
•• Convex hull
•• Huff transformation
•• Dynamic Programming
…

Award: Award: Frequent Itemset Mining ImplementationFrequent Itemset Mining ImplementationAward: Award: Frequent Itemset Mining ImplementationFrequent Itemset Mining Implementation

Prize is {Beer, nappy}

…, which is the “Most Frequent Itemset”

Comparison; Human/Mouse GenomeComparison; Human/Mouse GenomeComparison; Human/Mouse GenomeComparison; Human/Mouse Genome

Comparison of
Mouse X and
human X
chromosome
(150MB for each,
with 10% error)

Mouse X chr.

H
um

an
 X

 c
hr

15min. By PC15min. By PC

H
um

an
 X

 c
hr

Note:

BLASTZ BLASTZ 2weeks

MURASAKI MURASAKI
2-3 hours with

1% error

