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Cost of Map-Reduce Computations

�Communication cost = number of key-
value pairs sent to reducers.

�Computation cost = execution time at 
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�Computation cost = execution time at 
reducers.

� Computation at mappers normally 
proportional to communication cost.



Costs – Observations

�These costs are what you pay for at 
EC2.

�Often, communication cost dominates.

4

�Often, communication cost dominates.

�Communication cost typically grows 
with the number of Reduce tasks.

�But latency shrinks with the number of 
tasks, so there is a tradeoff to be made.



Why One Round?

�“Other things being equal,” it saves 
communication.

�But really: whatever you do with map-
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�But really: whatever you do with map-
reduce, each round does something 
that you can study and perform as well 
as possible.



Finding All Instances of a 
Sample Graph
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Communication Cost: Multiway Joins and 
Conjunctive Queries

Computation Cost: “Convertible Algorithms,” 
Graph Decompositions



Triangles

�Given a data graph, find all triples of 
nodes that form a triangle.

�Use one round of map-reduce.

7

�Use one round of map-reduce.

�Data graph represented by relation 
E(A,B).

� A, B are nodes, and A<B (some order).

� (A,B) is an edge.



Partition Method (Suri-Vassilvitskii)

�Partition nodes into b groups S1,…,Sb.

�Each reducer responsible for a set of 
three groups.
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three groups.

�Map to reducer {i,j,k} all edges whose 
nodes are both in the union of Si, Sj, Sk.

�Each reducer has a little graph – finds 
the triangles in that graph.



Partition Method – (2)

�An edge whose ends are in different 
groups is sent to (only) b-2 reducers.

�But an edge with both ends in the same 
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�But an edge with both ends in the same 
group goes to {(b-1) choose 2} 
reducers.

�Communication cost (asymptotically) 
3b/2 per edge.



Convention

�Data graph has n nodes and m edges; 
sample graph has p nodes.

� p = 3 for triangle.
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� p = 3 for triangle.



Our Approach

�Represent triangle-finding by a CQ

E(X,Y) & E(X,Z) & E(Y,Z) & X<Y<Z.

�Use multiway join (Afrati & U, 2010).
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�Use multiway join (Afrati & U, 2010).

�Hash nodes to b buckets.

�Reducer <-> list of buckets for X, Y, Z.

�Trick: < for nodes = bucket number.

� Resolve ties by name of node.



Our Approach – (2)

�As a result, reducer [i,j,k] gets data 
only if i<j<k.

�Number of needed reducers = {(b+2) 
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�Number of needed reducers = {(b+2) 
choose 3}, or approximately b3/6.

�Each edge goes to exactly b reducers.

�Which ones? Sort(node1, node2, any).

�Communication cost bm, vs. 3bm/2 (for 
the same number of reducers).



Generalization to All Sample Graphs

�For an arbitrary sample graph, we need 
one CQ for each order of the nodes.

� p! CQ’s, in principle.
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� p! CQ’s, in principle.

�But the sample graph may have a 
nontrivial automorphism group.

�Example: square has 4! = 24 orders 
but 8 automorphisms.

� Rotate to 4 positions, flip or don’t.



Generalization – (2)

�We want only one CQ for each member 
of the quotient group 
(permutations/automorphisms).
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(permutations/automorphisms).

�Example: square

E(W,X) & E(X,Y) & E(Y,Z) & E(W,Z) & W<X<Y<Z

E(W,X) & E(Y,X) & E(Y,Z) & E(W,Z) & W<Y<X<Z

E(W,X) & E(X,Y) & E(Z,Y) & E(W,Z) & W<X<Z<Y



Generalization – (3)

�Implement with one reducer for each 
nondecreasing sequence of p integers 
in the range [1, b] (number of buckets).
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in the range [1, b] (number of buckets).

�That reducer gets all edges (i, j) if i<j 
and buckets of i and j are both in that 
sequence of integers.

�This reducer implements each of the 
conjunctive queries on its data.



Generalization – (4)

�Asymptotically bp/p! reducers.

�Asymptotically beats generalized 
partition (reducer <-> set of p blocks) 
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partition (reducer <-> set of p blocks) 
by a small factor 1 + 1/(p-1).



Convertible Algorithms

�A serial algorithm is convertible (wrt a 
strategy for creating key-value pairs) if 
the total computation time of this 
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the total computation time of this 
algorithm at the reducers is of the same 
order as the serial algorithm.



Convertible Algorithms – (2)

�Assuming random distribution of edges, 
a serial algorithm running in time namb

is convertible (with respect to partition 
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is convertible (with respect to partition 
or our scheme) iff p < a + 2b.

�For triangles, O(m3/2) is achievable and 
best possible, so convertible.

� 3 < 0 + 2(3/2).



Convertible Serial Algorithms

�There is an O(mp/2) algorithm for many 
sample graphs.

� Graphs with a Hamilton cycle.
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� Graphs with a Hamilton cycle.

� Single edges.

� Any combination of these.

• Take union of graphs.

• Throw in any additional edges you like.



Example
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What If No Such Decomposition?

�If there are q isolated nodes after the 
best decomposition, then there is a 
serial algorithm with running time 
O(nqm(p-q)/2).
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O(nqm(p-q)/2).

�All these algorithms are best possible 
(Noga Alon 1981).
� They match the output size.

�All these algorithms are convertible.



Limited-Degree Data Graphs

�If there are no nodes of degree >
sqrt{m}, then for every connected 
sample graph there is a serial algorithm 

22

sample graph there is a serial algorithm 
that runs in time O(mp/2).

�Again – convertible.



Mapping Schemas
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Definition

Examples: Triangles and Hamming Distance

A Lower Bound



Comments

�Ideas are very new, not published or 
even written up.

�Approach originated with Anish das 
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�Approach originated with Anish das 
Sarma.

�We have results for finding sample 
graphs, Hamming distance, and 
containment join.

�We welcome work in this area.



Definition of Mapping Schema

�Set of inputs (that may be present, 
depending on the input data).

� Distinction: for triangles, every possible edge 
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� Distinction: for triangles, every possible edge 
is an “input”; some will really be there in any 
data set.

�Set of outputs.

�For each output: a set of inputs that must 
be present for that output to be made.



Example: Mapping Schema for 
Triangles

�Inputs = edges = pairs of nodes.

�Outputs = triangles = sets of three 
input edges that must be present for 
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input edges that must be present for 
that triangle to be present in the graph.

Inputs Outputs



Example: Mapping Schema for 
Hamming Distance = 1

�Inputs = binary strings of length b.

�Outputs = pairs of inputs of Hamming 
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�Outputs = pairs of inputs of Hamming 
distance 1.



Mapping-Schema Optimization 
Problem

�Use p reducers.

�Each reducer assigned at most q inputs.

�For each output, its set of inputs must be 
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�For each output, its set of inputs must be 
contained in the set of inputs assigned to at 
least one reducer.

�Find input->reducer assignment to 
minimize replication = pq divided by the 
number of inputs.

� = communication cost per input.



Lower Bound for HD =1

�Theorem (Semih Salihoglu): if a 
reducer gets q inputs, the maximum 
number of output sets it can cover is 
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number of output sets it can cover is 
(q/2) log2q.

�Since there are (b/2)2b outputs:   
p(q/2) log2q > (b/2)2b.

�Replication = pq/2b > b/log2q.



Communication/Computation 
Tradeoff

b One reducer
for each output

Splitting : each string

Splitting generalizes:
replication = i > 2;
log2q = b/i.
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log2q

Replication

2

1

1 b/2 b

All inputs
to one
reducer

Splitting : each string
sent to one reducer for
its first b/2 bits, another
for its last b/2 bits.



Research Program

1. Get upper/lower bounds on 
communication/reducer-size tradeoff 
for many different problems.

2. Relate structure of mapping schema 
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2. Relate structure of mapping schema 
to costs.

� E.g., how does size of min-cuts relate to 
replication.


