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Plan 

• Random Sampling Over Distributed Streams 

 

• Distributed Streaming Models 
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Random Sampling: Definition (1) 

 

 

 

 

• Task: central coordinator must continuously 
maintain a random sample of size s from S 

 

• Cost: Total number of messages sent by the 
protocol over the entire execution of observing n 
elements 
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Random Sampling: Definition (2) 
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Our Results: Upper and Lower Bounds 

• Upper Bound: An algorithm for continuously maintaining a random 
sample of S with message complexity. 
 

 
 
 

• Lower Bound: Any algorithm for continuously maintaining a random 
sample of S must have above message complexity, w.h.p 
 

• k = number of sites, n = stream size, s  = desired sample size 
 

• “Optimal Sampling for Distributed Streams Revisited”,  
DISC 2011: T. and David Woodruff 




























s

k
s

n
k

O

1log

log

7 Distributed Random Sampling 



Prior Work 

• Random Sampling on Distributed Streams 
– Cormode, Muthukrishnan, Yi, and Zhang: Optimal 

sampling from distributed streams. ACM PODS, pages 
77–86, 2010 
 

• Single Stream: Reservoir Sampling Algorithm 
– Waterman (1960s) 
– Vitter: Random sampling with a reservoir. ACM 

Transactions on Mathematical Software, 11(1):37–57, 
1985. 
 

8 Distributed Random Sampling 



Prior Work 

Upper Bound Lower Bound 

Our Result Cormode et al. Our Result Cormode et al. 

s < k/8 O(k log n) 
 

Ω(k + s log n) 
 

s ≥ k/8 O(s log (n/s)) O(s log n) 
 

Ω(s log (n/s)) 
 

 
Ω(s log (n/s)) 
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k = number of sites 
n = Total size of streams 
s  = desired sample size 
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High-Level Idea 

• Each element assigned random weight in [0,1] 

 

• Coordinator Maintains the set of elements 
with the s smallest weights 
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Algorithm 

Coordinator Coordinator 

1 1 2 2 k k 
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Algorithm: Element arrives at 1 

Coordinator Coordinator 

1 1 
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Weight for each element 

Coordinator Coordinator 

1 1 

Weight of each element  
= random number in [0,1] 

0.6 
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Weight for each element 

Coordinator Coordinator 

1 1 

0.6 
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Algorithm 

Coordinator Coordinator 

1 1 

0.6 0.2 
0.33 

2 2 k k 
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Algorithm: Random Sample  

Coordinator Coordinator 

0.2 0.33 

Random Sample = set of 
Elements with s smallest  
Weights 
 
 
 

1 1 2 2 k k 

u = 0.33 
s-th smallest 
weight seen so far 
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Algorithm: Sites “Cache” value of u 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

𝑢1 is 1’s 
view of u 
= 0.6 

𝑢𝑘 = 0.33 
1 1 2 2 k k 𝑢2 = 0.5 
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Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

𝑢1, 𝑢2, … , . are all 
at least u 
So, elements that belong to 
The sample are definitely sent 

𝑢1 = 0.6 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 
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Algorithm: Sites “Cache” value of u 



Element at 1 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

0.7 

𝑢1 = 0.6 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 

19 Distributed Random Sampling 



Discarded Locally 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

0.7 

𝑢1 = 0.6 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 
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Element at 1 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

𝑢1 = 0.6 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 

0.5 
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“Wasteful” Send 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

𝑢1 = 0.6 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 

0.5 
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Discarded by Coordinator 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

0.5 
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𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 
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But: Coordinator Refreshes Site’s View 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

0.5 

𝑢1 = 0.6 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 

u = 0.33 
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Site’s View is Refreshed 

Coordinator Coordinator 

0.2 0.33 

Random Sample 

u = 0.33 

𝑢1 = 0.33 
𝑢𝑘 = 0.33 

1 1 2 2 k k 𝑢2 = 0.5 
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Algorithm Notes 

• A message from site to coordinator either 

– Changes the coordinator’s state 

– Or Refreshes the client’s view 

26 Distributed Random Sampling 



Algorithm at Site i when it receives 
element e 

// ui is i’s view of the minimum weight so far in the system 

// ui is initialized to ∞ 
 

1. Let w(e) be a random number between  
0 and 1 
 

2. If (w(e) < ui) then 
1. Send (e,w(e)) to the coordinator, and receive u’ in 

return 

2. ui  u’ 
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Algorithm at Coordinator 

1. Coordinator maintains u, the s-th smallest 
weight seen in the system so far 
 

2. If it receives a message (e,w(e)) from site i,  

1. If (u > w(e)), then update u and add e to the 
sample 

2. Send u back to i 
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Analysis: High Level View 

• An execution divided into a few “Epochs” 

• Bound the number of epochs 

• Bound the number of messages per epoch 
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Analysis: Epochs 

• Epoch 0: all rounds until u is 1/r 
or smaller 

 

• Epoch i: all rounds after epoch 
(i-1) till u has further reduced 
by a factor r 
 

• Epochs are not known by the 
algorithm, only used for 
analysis 

 

Rounds 

Round = 0 

𝑢 = ∞ 

𝑢 = 𝑚1 ≤
1

𝑟
 

Epoch 0 

𝑢 = 𝑚𝑖  

𝑢 = 𝑚𝑖+1 ≤
𝑚𝑖
𝑟

 

Epoch i 

u is the s-th smallest weight 
seen in the system, so far. 
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Bound on Number of Epochs 

n = stream size 
s  = desired sample size 
r  = a parameter  
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Algorithm B versus A 

• Suppose our algorithm is “A”. We define an algorithm “B” that 
is the same as A, except: 
– At the beginning of each epoch, coordinator broadcasts u (the current 

s-th minimum) to all sites 

– B easier to analyze since the states of all sites are synchronized at the 
beginning of each epoch 
 

• Random sample maintained by “B” is the same as that 
maintained by A 

 

• Lemma: The number of messages sent by A is no more than 
twice the number sent by B 
– Henceforth, we will analyze B 
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Analysis of B: Bound on Messages Per Epoch 

• 𝜇 = total number of messages 

• 𝜇𝑗: number of messages in epoch j         

• 𝑋𝑗: number messages sent to coordinator in epoch j 

• 𝜉:   number of epochs 

 

• 𝜇 =  𝜇𝑗
𝜉−1
𝑗=0  

• 𝜇𝑗 = 𝑘 + 2𝑋𝑗  

• 𝜇 = 𝜉𝑘 + 2 𝑋𝑗
𝜉−1
𝑗=0  

 

Now, only need to bound 𝑋𝑗, the 

number of messages to coordinator in 
epoch j 
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Bound on 𝑋𝑗 

• Lemma: For each epoch j,  𝐸 𝑋𝑗 ≤ 1 + 2𝑟𝑠 

 

• Proof: 

– First compute 𝐸[𝑋𝑗] conditioned on 𝑛𝑗  and 𝑚𝑗  

– Remove the conditioning on 𝑛𝑗  (the number of 

elements in epoch j) 

– Remove the conditioning on 𝑚𝑗  (the value of u at 

the beginning of epoch j) 
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Upper Bound 

k = number of sites 
n = Total size of stream 
s  = desired sample size 
𝜇 = message complexity 
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Lower Bound 

Suppose m elements 
Observed so far 
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Lower Bound: Execution 1 

Suppose m elements 
Observed so far 

Site 1 saw 
𝑚

𝑠
 more elements 

s is the sample size 
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Lower Bound: Execution 1 

Suppose m elements 
Observed so far 

Site 1 saw 
𝑚

𝑠
 more elements 

Constant probability that   
one of site 1’s elements 
will be included in the sample 

s is the sample size 
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Lower Bound: Execution 1 

Suppose m elements 
Observed so far 

Site 1 saw 
𝑚

𝑠
 more elements 

And (on expectation) sent a constant 
number of messages to coordinator 

There is a constant probability 
that  one of site 1’s elements 
will be included in the sample 

s is the sample size 
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Lower Bound: Execution 2 

Suppose m elements 
Observed so far 

Site 2 saw 
𝑚

𝑠
 more elements 

And (on expectation) sent a constant 
number of messages to coordinator 
 

s is the sample size 
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Lower Bound: Execution 3 

Suppose m elements 
Observed so far 

Site 2 saw 
𝑚

𝑠
 more elements 

 Site 1 saw 
𝑚

𝑠
 more elements 

Cannot distinguish from Execution 2, 
unless it received a message from  
coordinator – message cost here 

s is the sample size 
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Lower Bound: Execution 3 

Suppose m elements 
Observed so far 

Site 2 saw 
𝑚

𝑠
 more elements 

 Site 1 saw 
𝑚

𝑠
 more elements 

Cannot distinguish from Execution 2, 
unless it received a message from  
coordinator – message cost here 

Cannot distinguish from Execution 1, 
unless it received a message from  
coordinator – message cost here 
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Lower Bound 

k = number of sites 
n = Total size of stream 
s  = desired sample size 
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Summary 

• Random Sampling without replacement on 
distributed streams, with Optimal message 
complexity 

 

• Algorithm for Random Sampling with 
Replacement 
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Plan 

• Random Sampling Over Distributed Streams 

 

• Distributed Streaming Models 

– When to Evaluate a Query (Triggers) 
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Stream Monitoring:  
When is an Answer Needed? 

 

• One-Shot: only at the end of observation 

 

• Continuous: at each time instant 

– Distributed continuous streaming model 

 

• In general: somewhere in between 

– Specified by a “Trigger” policy 
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Trigger Policies in Streaming Systems 
(Ex: IBM Infosphere Streams) 

 

• Generally: When a function g exceeds a 
threshold, the trigger is fired, and then resets 

 

• Most Popular: 

– Count-based: g = number of tuples observed 

– Time-based:   g = Current Time 

– Sometimes, f = g 
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Centralized vs Distributed Triggers 

• Centralized Trigger Maintenance Usually 
Trivial 

– Count Based 

– Time Based 

 

• Distributed Trigger Maintenance is not 
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Distributed Time-Based Trigger 

• Every t time units, a result must be produced 

– No need to maintain the function continuously 

• Assume clocks are synchronized across sites 

 

 

   

Distributed Random Sampling 49 

Problem 1: Develop Distributed 
Protocols for Function Maintenance 

With Time-Based Triggers 



Distributed Count-Based Trigger 

• Every n elements, a result must be produced 

– Every n element arrivals, a random sample of the 
stream 
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Problem 2: Develop Distributed 
Protocols for Function Maintenance 

Over Count-Based Triggers 



Distributed Count-Based Trigger 
Approach 1 

 

• Use a continuous monitoring algorithm to 
monitor function f at all times (Algo f-Monitor) 

 

• Use a continuous count monitoring algorithm to 
monitor count at all times (Algo count-Monitor) 

 

• When count-Monitor triggers, return the result 
maintained by f-Monitor 
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Distributed Count-Based Trigger 
Problems with Approach 1 

 

• Algo f-Monitor result needed only 
occasionally, yet it is working at all times 
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Distributed Count-Based Trigger: 
Approach 2 

 

• Run count-Monitor continuously 

– Cost: O(k log τ) messages per trigger 

 

• When count-Monitor triggers, contact all sites 
for updates 

– Coordinator refreshes the value of the function 
only at this point 
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Distributed Count-Based Trigger 

• Approach 2 works reasonably well 

 

• Observations: 
1 Performance of count-Monitor very important 

 

2 Performance of f-Monitor does not matter as long as 
it is better than count-Monitor 
 

3 Algorithm f-Monitor should be able to handle 
multiple elements arriving in same instant 
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Research Problem 

• Protocols and Lower Bounds for Distributed 
Stream Monitoring Under 

– Time-based triggers 

– Count-based triggers 
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Questions 


