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Plan

 Random Sampling Over Distributed Streams

* Distributed Streaming Models
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Random Sampling: Definition (1)

* Task: central coordinator must continuously
maintain a random sample of size s from S

* Cost: Total number of messages sent by the

protocol over the entire execution of observing n
elements
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Random Sampling: Definition (2)

Given a data set P of size n, a random sample S is defined
as the result of a process.

1. Sample Without Replacement of Size s (1 <s<n)

Repeat s times

1. e «{arandomlychosen element from P}
2. P&« P—{e}
3 SeSufe}

2. Sample With Replacement of sizes (1 <s)

Repeat s times

1. e «{arandomlychosen element from P}
2. SeSuie}
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Our Results: Upper and Lower Bounds

Upper Bound: An algorithm for continuously maintaining a random
sample of S with message complexity.

kbgn
S

log(l + kj
s

Lower Bound: Any algorithm for continuously maintaining a random
sample of S must have above message complexity, w.h.p

0,

k = number of sites, n = stream size, s = desired sample size

“Optimal Sampling for Distributed Streams Revisited”,
DISC 2011: T. and David Woodruff
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Prior Work

e Random Sampling on Distributed Streams

— Cormode, Muthukrishnan, Yi, and Zhang: Optimal
sampling from distributed streams. ACM PODS, pages
77-86, 2010

* Single Stream: Reservoir Sampling Algorithm
— Waterman (1960s)

— Vitter: Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37-57,
1985.
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Prior Work

k = number of sites
n = Total size of streams
s = desired sample size

Upper Bound Lower Bound
Our Result Cormode et al. Our Result Cormode et al.
s<k/8 |0 klog(n/s) O(klogn) |0 klog(n/s) Q(k +slog n)
log( &/ 5) log(k / 5)
s2k/8 | O(slog(n/s)) | O(slogn) | Q(slog(n/s)) | Q(s log (n/s))
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High-Level Idea

* Each element assigned random weight in [0,1]

e Coordinator Maintains the set of elements
with the s smallest weights
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Algorithm

® @

Distributed Random Sampling
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Algorithm: Element arrives at 1

Qe (= .
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Weight for each element

«i o .

Weight of each element
= random number in [0,1]

Coordinator
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Weight for each element

® @ O
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Algorithm

Coordinator
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Algorithm: Random Sample

® @ O

Random Sample = set of
Elements with s smallest
u=0.33 Weights
s-th smallest

_ Coordinator Q ‘
weight seen so far

0.2 0.33
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Algorithm: Sites “Cache” value of u

Uuq is1’s U, = 0.5
view of u u, = 0.33

=0.6

Random Sample
u=0.33 Coordinator Q ‘
0.2 0.33
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Algorithm: Sites “Cache” value of u

ul =0.6 uZ =0.5
w, = 0.33

Uq, Uy, ..., . areall

at least u

So, elements that belong to
The sample are definitely sent

Random Sample

u=0.33 Coordinator Q ‘

0.2 0.33
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Element at 1
07 @

ul =0.6 uZ =0.5
w, = 0.33

Random Sample

u=0.33 Coordinator Q ‘

0.2 0.33
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Discarded Locally

U, = 0.5
w, = 0.33

Random Sample

u=0.33 Coordinator Q ‘

0.2 0.33
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Element at 1

@

ul = 0-6 uz — 0.5
w, = 0.33

Random Sample

u=0.33 Coordinator Q ‘

0.2 0.33
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ug = 0.6

“Wasteful” Send

U, = 0.5
w, = 0.33

Random Sample

e

0.2 0.33

Coordinator
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ug = 0.6

Discarded by Coordinator

Distributed Random Sampling

@ uy, = 0.33

Random Sample

e

0.2 0.33
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But: Coordinator Refreshes Site’s View

U, = 0.5
w, = 0.33

ug = 0.6

Random Sample

e

0.2 0.33
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Site’s View is Refreshed

u, =0.33 u, =0.5
u, = 0.33

Random Sample

u=0.33 Coordinator Q ‘

0.2 0.33
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Algorithm Notes

A message from site to coordinator either
— Changes the coordinator’s state
— Or Refreshes the client’s view

Distributed Random Sampling
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Algorithm at Site i when it receives
elemente

// u.is i’s view of the minimum weight so far in the system
// u.is initialized to oo

1. Let w(e) be a random number between
Oand 1

2. If (w(e) < uj)then

1. Send (e,w(e)) to the coordinator, and receive v’ in
return

2. u €&u
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Algorithm at Coordinator

1. Coordinator maintains u, the s-th smallest
weight seen in the system so far

2. If it receives a message (e,w(e)) from site i,

1. If (u>w(e)), then update u and add e to the
sample

2. Send ubacktoi

Distributed Random Sampling
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Analysis: High Level View

* An execution divided into a few “Epochs”
* Bound the number of epochs
* Bound the number of messages per epoch

Distributed Random Sampling
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Analysis: Epochs

Rounds

Epoch i

u=m;

Epoch O

Round =0

Distributed Random Sampling

u is the s-th smallest weight
seen in the system, so far.

 Epoch 0: all rounds until uis 1/r
or smaller

 Epochi: all rounds after epoch
(i-1) till u has further reduced
by a factorr

* Epochs are not known by the
algorithm, only used for
analysis

30



Bound on Number of Epochs

Let ¢ denote the number of epochs in an execution

n = stream size
+ 2 s =desired sample size
r =a parameter

Lemma: E[¢] < (l

Proof: E[&] =).;50 Pr[é = (]

At the end of i epochs, u <
At the end of( ogl; ))+] epochs u < E) rl]

n

We can show using Markov rule, Pr [cf ( )+]] <=
logr 7"1
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Algorithm B versus A

e Suppose our algorithm is “A”. We define an algorithm “B” that
is the same as A, except:

— At the beginning of each epoch, coordinator broadcasts u (the current
s-th minimum) to all sites

— B easier to analyze since the states of all sites are synchronized at the
beginning of each epoch

 Random sample maintained by “B” is the same as that
maintained by A

 Lemma: The number of messages sent by A is no more than
twice the number sent by B

— Henceforth, we will analyze B
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Analysis of B: Bound on Messages Per Epoch

e u =total number of messages
* Wj:number of messages in epoch |
* Xj: number messages sent to coordinator in epoch |

e ¢&: number of epochs

o 2] 0 ‘u] Now, only need to bound X;, the
number of messages to coordinator in
o M:k-|—2X epoch j

s =tk +25 00X

Distributed Random Sampling
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Bound on X]-

 Lemma: For each epoch j, E[X] 1+ 2rs

* Proof:
— First compute E[X;] conditioned on n; and m;

— Remove the conditioning on n; (the number of
elements in epoch j)

— Remove the conditioning on m; (the value of u at
the beginning of epoch j)

Distributed Random Sampling
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Upper Bound

Theorem: The expected message complexity is as
follows

+ifs 2% then Elul = 0(s108(%)) i mumerorns

n = Total size of stream

k k log(ﬂ) s = desired sample size
e Ifs < E then E[ﬂ] =0 ks U = message complexity

Proof: E|u] is a function of r. Minimize with respect to
r, to get the desired result.
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Suppose m elements
Observed so far

Lower Bound

Distributed Random Sampling
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Lower Bound: Execution 1

Suppose m elements
Observed so far

AN

. m
Site 1 saw ? more elements

Distributed Random Sampling

s is the sample size
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Lower Bound: Execution 1

AN

. m
Site 1 saw ? more elements

Suppose m elements
Observed so far

Constant probability that
one of site 1’s elements
will be included in the sample

Distributed Random Sampling

s is the sample size
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Lower Bound: Execution 1

N
. m
Site 1 saw ~ more elements
And (on expectation) sent a constant
Suppose m elements 5 number of messages to coordinator

Observed so far
There is a constant probability

that one of site 1’s elements
will be included in the sample

s is the sample size
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Lower Bound: Execution 2

O
>
. m
Site 2 saw ~ more elements
And (on expectation) sent a constant
number of messages to coordinator
Y >

Suppose m elements
Observed so far

s is the sample size
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Lower Bound: Execution 3

Cannot distinguish from Execution 2,

unless it received a message from

coordinator — message cost here

AN

. m
Site 2 saw " more elements

v

. m
Site 1 saw ? more elements

>

Suppose m elements

Observed so far

Distributed Random Sampling

s is the sample size
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Lower Bound: Execution 3

O

Cannot distinguish from Execution 2,
unless it received a message from
coordinator — message cost here

—>

. m
Site 2 saw ~ more elements -
Site 1 saw ~ Mmore elements
y Cannot distinguish from Execution 1,
unless it received a message from
Suppose m elements coordinator — message cost here

Observed so far

Distributed Random Sampling



Lower Bound

Theorem: For any constant q,0<q <1, any

klog(E)
correct protocol must send () o

10g(1+§)
messages with probability at least 1-q, where

the probability is taken over the protocol’s
internal randomness.

k = number of sites
n = Total size of stream
s =desired sample size

Distributed Random Sampling
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Summary

 Random Sampling without replacement on
distributed streams, with Optimal message

complexity

e Algorithm for Random Sampling with
Replacement

Distributed Random Sampling
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Plan

 Random Sampling Over Distributed Streams

* Distributed Streaming Models
— When to Evaluate a Query (Triggers)

Distributed Random Sampling
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Stream Monitoring:
When is an Answer Needed?

* One-Shot: only at the end of observation

e Continuous: at each time instant

— Distributed continuous streaming model

* |[n general: somewhere in between
— Specified by a “Trigger” policy

Distributed Random Sampling
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Trigger Policies in Streaming Systems
(Ex: IBM Infosphere Streams)

* Generally: When a function g exceeds a
threshold, the trigger is fired, and then resets

* Most Popular:
— Count-based: g = number of tuples observed
— Time-based: g = Current Time
— Sometimes, f=g

Distributed Random Sampling
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Centralized vs Distributed Triggers

* Centralized Trigger Maintenance Usually
Trivial
— Count Based
— Time Based

* Distributed Trigger Maintenance is not

Distributed Random Sampling
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Distributed Time-Based Trigger

e Every t time units, a result must be produced

— No need to maintain the function continuously

* Assume clocks are synchronized across sites

Problem 1: Develop Distributed
Protocols for Function Maintenance
With Time-Based Triggers

Distributed Random Sampling
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Distributed Count-Based Trigger

* Every n elements, a result must be produced

— Every n element arrivals, a random sample of the
stream

Problem 2: Develop Distributed
Protocols for Function Maintenance
Over Count-Based Triggers

Distributed Random Sampling

50



Distributed Count-Based Trigger
Approach 1

e Use a continuous monitoring algorithm to
monitor function f at all times (Algo f-Monitor)

* Use a continuous count monitoring algorithm to
monitor count at all times (Algo count-Monitor)

* When count-Monitor triggers, return the result
maintained by f-Monitor

Distributed Random Sampling
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Distributed Count-Based Trigger
Problems with Approach 1

* Algo f-Monitor result needed only
occasionally, yet it is working at all times

Distributed Random Sampling
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Distributed Count-Based Trigger:
Approach 2

* Run count-Monitor continuously
— Cost: O(k log T) messages per trigger

* When count-Monitor triggers, contact all sites
for updates

— Coordinator refreshes the value of the function
only at this point
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Distributed Count-Based Trigger

* Approach 2 works reasonably well

e Observations:

1

Performance of count-Monitor very important

Performance of f-Monitor does not matter as long as
it is better than count-Monitor

Algorithm f-Monitor should be able to handle
multiple elements arriving in same instant
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Research Problem

 Protocols and Lower Bounds for Distributed
Stream Monitoring Under

— Time-based triggers
— Count-based triggers

Distributed Random Sampling
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Questions



