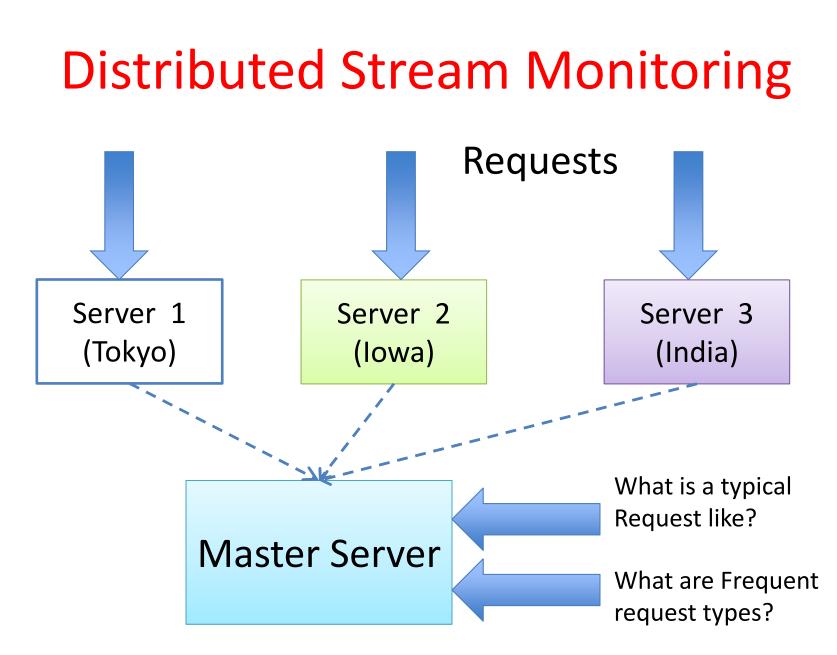
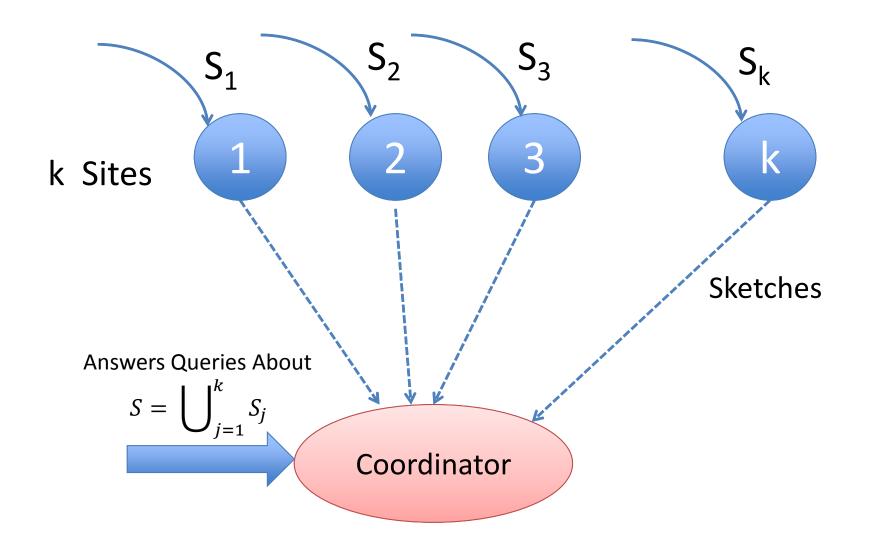
Distributed Random Sampling

Srikanta Tirthapura Iowa State University (joint work with David Woodruff)



Distributed Streams



Plan

• Random Sampling Over Distributed Streams

• Distributed Streaming Models

Random Sampling: Definition (1)

$$S = \bigcup_{1}^{k} S_{i}$$

- Task: central coordinator must continuously maintain a random sample of size *s* from *S*
- Cost: Total number of messages sent by the protocol over the entire execution of observing n elements

Random Sampling: Definition (2)

Given a data set *P* of size *n*, a random sample *S* is defined as the result of a process.

- Sample Without Replacement of Size s (1 ≤ s ≤ n) Repeat s times
 - 1. $e \leftarrow \{a \text{ randomly chosen element from } P\}$
 - 2. $P \leftarrow P \{e\}$
 - $3. \quad S \leftarrow S \cup \{e\}$
- 2. Sample With Replacement of size s ($1 \le s$)

Repeat s times

- 1. $e \leftarrow \{a \text{ randomly chosen element from } P\}$
- 2. $S \leftarrow S \cup \{e\}$

Our Results: Upper and Lower Bounds

• Upper Bound: An algorithm for continuously maintaining a random sample of S with message complexity.

$$O\left(\frac{k\log\frac{n}{s}}{\log\left(1+\frac{k}{s}\right)}\right)$$

- Lower Bound: Any algorithm for continuously maintaining a random sample of S must have above message complexity, w.h.p
- k = number of sites, n = stream size, s = desired sample size
- "Optimal Sampling for Distributed Streams Revisited", DISC 2011: T. and David Woodruff

Prior Work

- Random Sampling on Distributed Streams
 - Cormode, Muthukrishnan, Yi, and Zhang: Optimal sampling from distributed streams. ACM PODS, pages 77–86, 2010
- Single Stream: Reservoir Sampling Algorithm
 - Waterman (1960s)
 - Vitter: Random sampling with a reservoir. ACM
 Transactions on Mathematical Software, 11(1):37–57, 1985.

Prior Work

k = number of sitesn = Total size of streamss = desired sample size

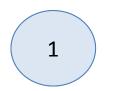
	Upper Bound		Lower Bound	
	Our Result	Cormode et al.	Our Result	Cormode et al.
s < k/8	$O\left(\frac{k\log(n/s)}{\log(k/s)}\right)$	O(k log n)	$O\left(\frac{k\log(n/s)}{\log(k/s)}\right)$	$\Omega(k + s \log n)$
s ≥ k/8	O(s log (n/s))	O(s log n)	Ω(s log (n/s))	Ω(s log (n/s))

High-Level Idea

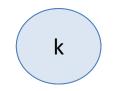
• Each element assigned random weight in [0,1]

 Coordinator Maintains the set of elements with the s smallest weights

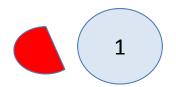
Algorithm

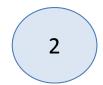


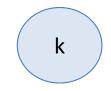


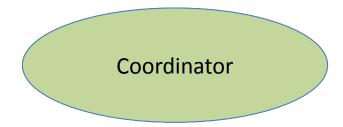


Algorithm: Element arrives at 1

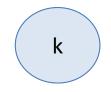






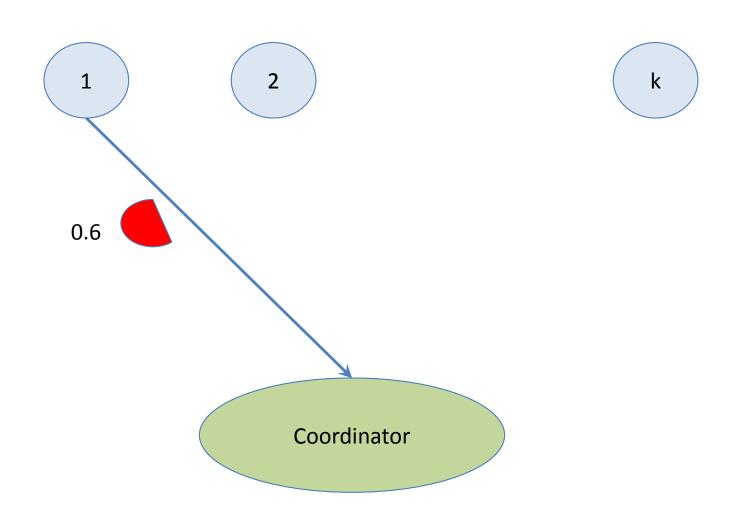


Weight for each element

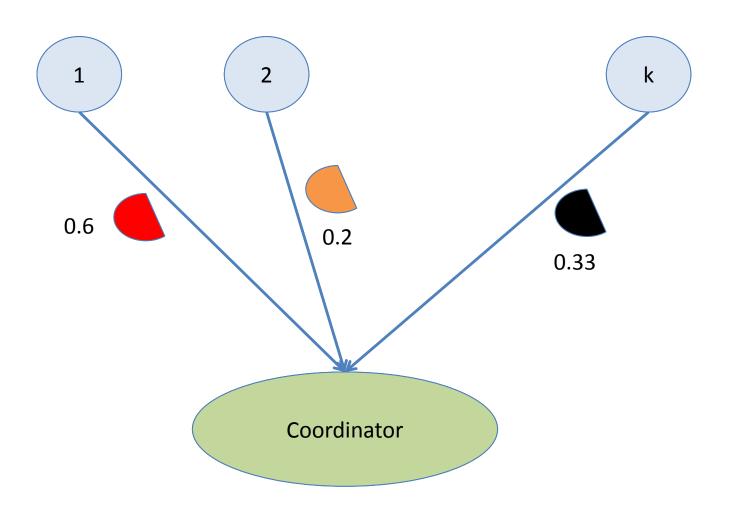


Weight of each element = random number in [0,1]

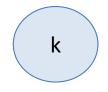
Weight for each element

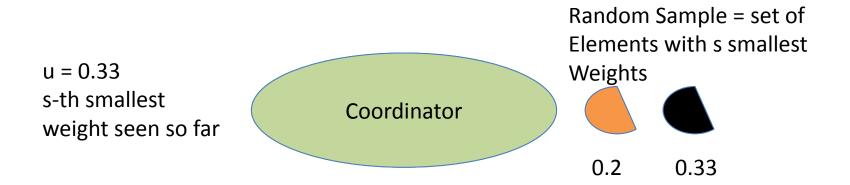


Algorithm

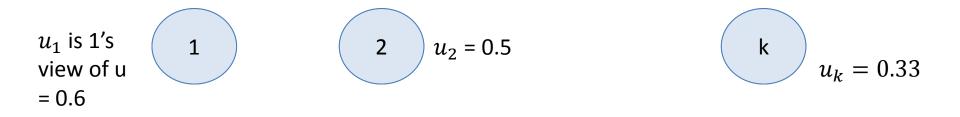


Algorithm: Random Sample





Algorithm: Sites "Cache" value of u

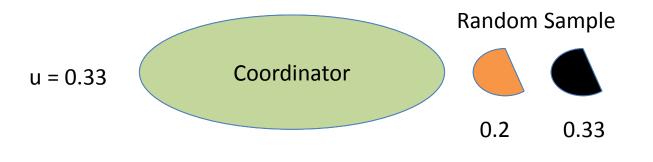


Algorithm: Sites "Cache" value of u

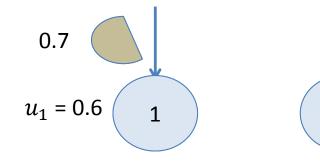
$$u_1 = 0.6$$
 1 2 $u_2 = 0.5$

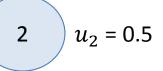
k
$$u_k = 0.33$$

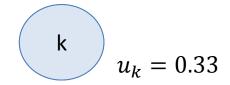
 $u_1, u_2, \dots, .$ are all at least uSo, elements that belong to The sample are definitely sent

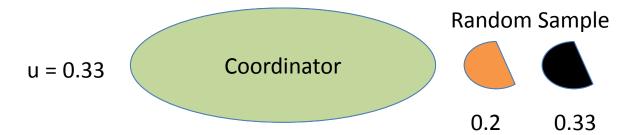


Element at 1

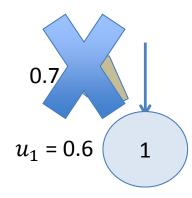


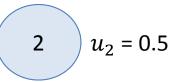


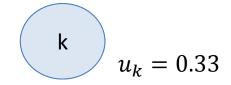




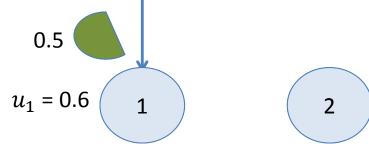
Discarded Locally

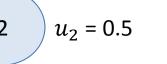


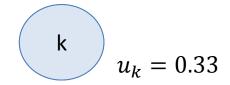




Element at 1

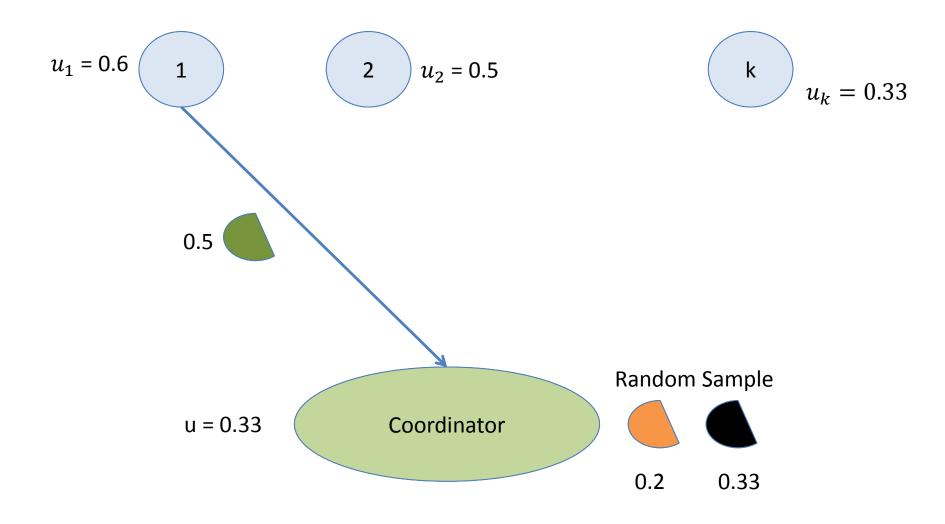




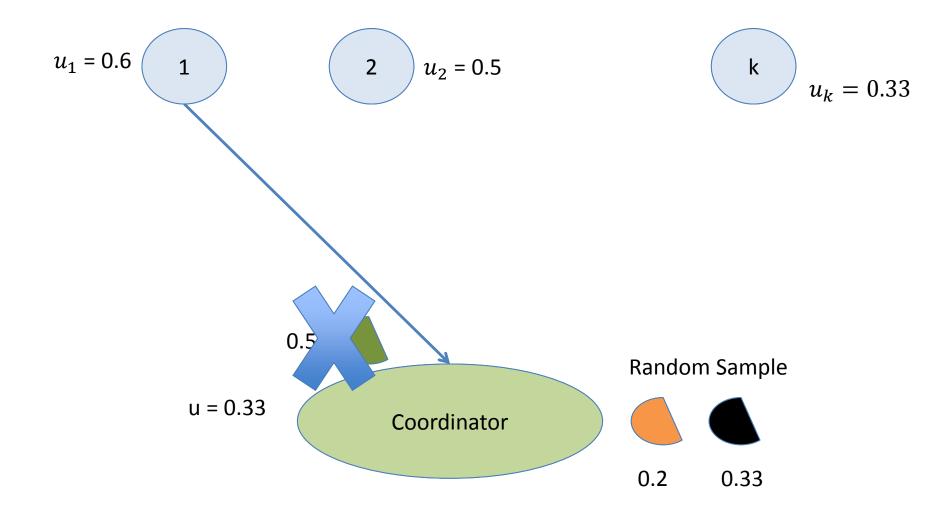




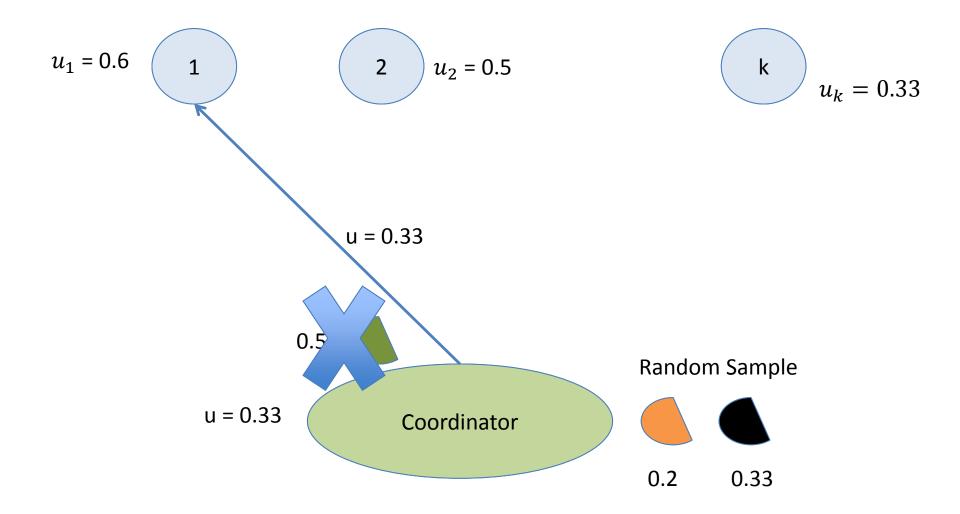
"Wasteful" Send



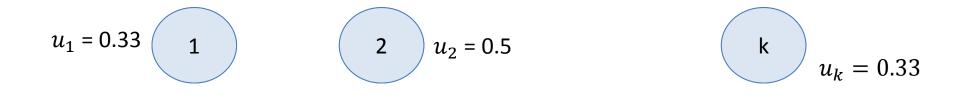
Discarded by Coordinator

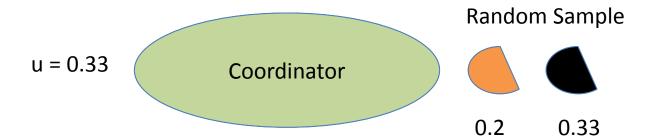


But: Coordinator Refreshes Site's View



Site's View is Refreshed





Algorithm Notes

- A message from site to coordinator either
 - Changes the coordinator's state
 - Or Refreshes the client's view

Algorithm at Site *i* when it receives element *e*

// u_i is i's view of the minimum weight so far in the system // u_i is initialized to ∞

Let w(e) be a random number between
 0 and 1

2. If $(w(e) < u_i)$ then

- 1. Send (*e*, *w*(*e*)) to the coordinator, and receive *u*[′] in return

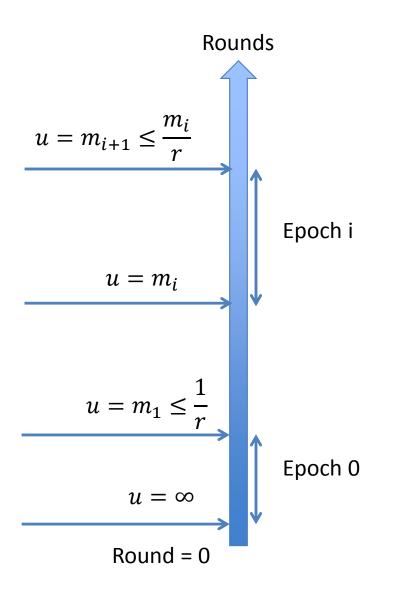
Algorithm at Coordinator

- 1. Coordinator maintains *u*, the *s*-*th* smallest weight seen in the system so far
- 2. If it receives a message (e,w(e)) from site i,
 - If (u > w(e)), then update u and add e to the sample
 - 2. Send u back to i

Analysis: High Level View

- An execution divided into a few "Epochs"
- Bound the number of epochs
- Bound the number of messages per epoch

Analysis: Epochs



u is the s-th smallest weight seen in the system, so far.

- Epoch 0: all rounds until u is 1/r or smaller
- Epoch i: all rounds after epoch (i-1) till u has further reduced by a factor r
- Epochs are not known by the algorithm, only used for analysis

Bound on Number of Epochs

Let ξ denote the number of epochs in an execution

Lemma:
$$E[\xi] \le \left(\frac{\log\left(\frac{n}{s}\right)}{\log r}\right) + 2$$

- *n* = stream size
- *s* = desired sample size
- r = a parameter

Proof: $E[\xi] = \sum_{i\geq 0} \Pr[\xi \geq i]$

At the end of *i* epochs, $u \leq \frac{1}{r^{i}}$ At the end of $\left(\frac{\log\left(\frac{n}{s}\right)}{\log r}\right) + j$ epochs, $u \leq \left(\frac{s}{n}\right)\frac{1}{r^{j}}$ We can show using Markov rule, $\Pr\left[\xi \geq \left(\frac{\log\left(\frac{n}{s}\right)}{\log r}\right) + j\right] \leq \frac{1}{r^{j}}$

Algorithm B versus A

- Suppose our algorithm is "A". We define an algorithm "B" that is the same as A, except:
 - At the beginning of each epoch, coordinator broadcasts *u* (the current *s*-th minimum) to all sites
 - B easier to analyze since the states of all sites are synchronized at the beginning of each epoch
- Random sample maintained by "B" is the same as that maintained by A
- Lemma: The number of messages sent by A is no more than twice the number sent by B
 - Henceforth, we will analyze B

Analysis of B: Bound on Messages Per Epoch

- μ = total number of messages
- μ_j : number of messages in epoch j
- X_j: number messages sent to coordinator in epoch j
- ξ : number of epochs
- $\mu = \sum_{j=0}^{\xi-1} \mu_j$
- $\mu_j = k + 2X_j$
- $\mu = \xi k + 2 \sum_{j=0}^{\xi 1} X_j$

Now, only need to bound X_j , the number of messages to coordinator in epoch j

Bound on *X_j*

• Lemma: For each epoch j, $E[X_i] \le 1 + 2rs$

- Proof:
 - First compute $E[X_j]$ conditioned on n_j and m_j
 - Remove the conditioning on n_j (the number of elements in epoch j)
 - Remove the conditioning on m_j (the value of u at the beginning of epoch j)

Upper Bound

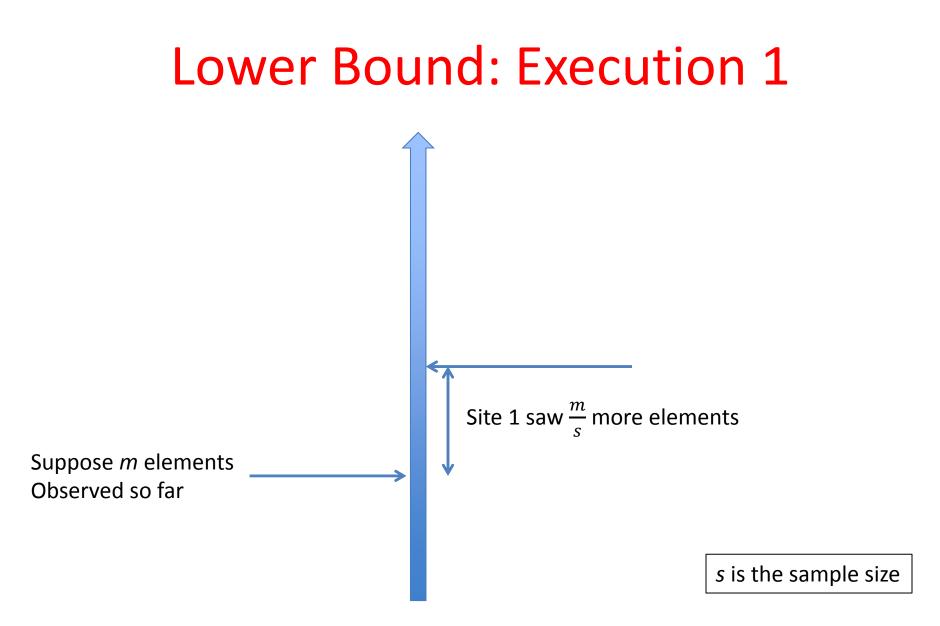
Theorem: The expected message complexity is as follows

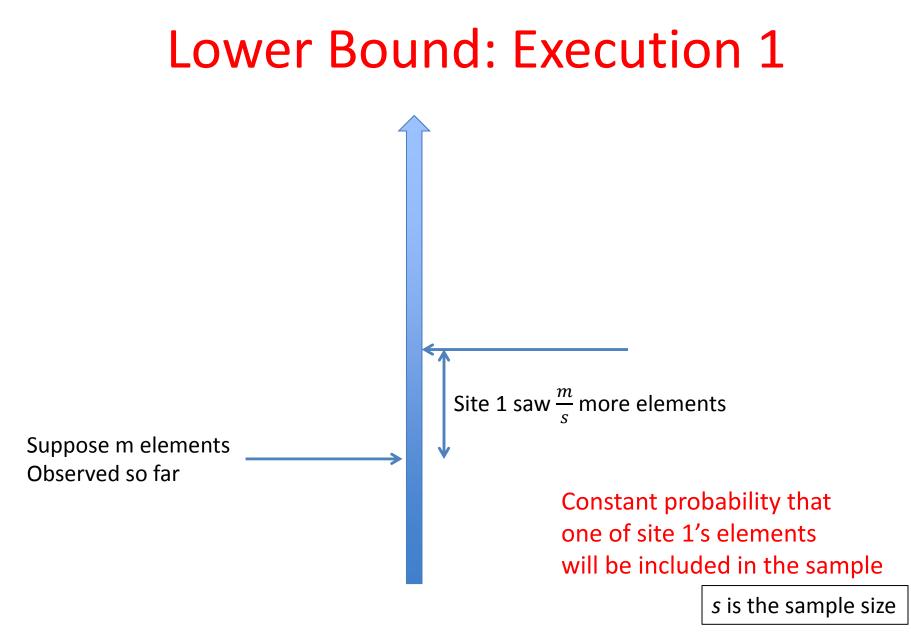
• If
$$s \ge \frac{k}{8}$$
 then $E[\mu] = O\left(s \log\left(\frac{n}{s}\right)\right)$
• If $s < \frac{k}{8}$ then $E[\mu] = O\left(\frac{k \log\left(\frac{n}{s}\right)}{\log\frac{k}{s}}\right)$

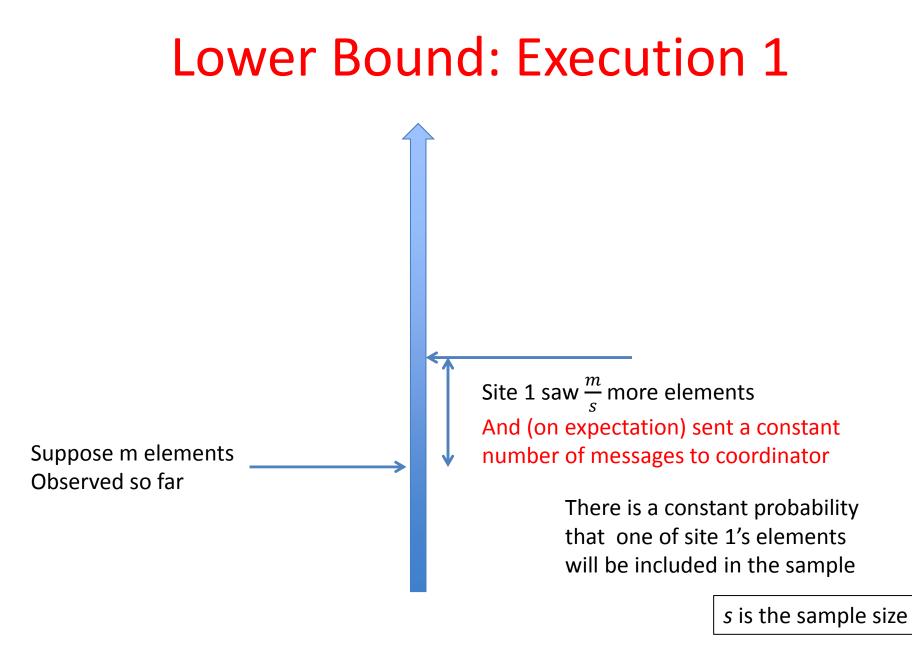
Proof: $E[\mu]$ is a function of r. Minimize with respect to r, to get the desired result.

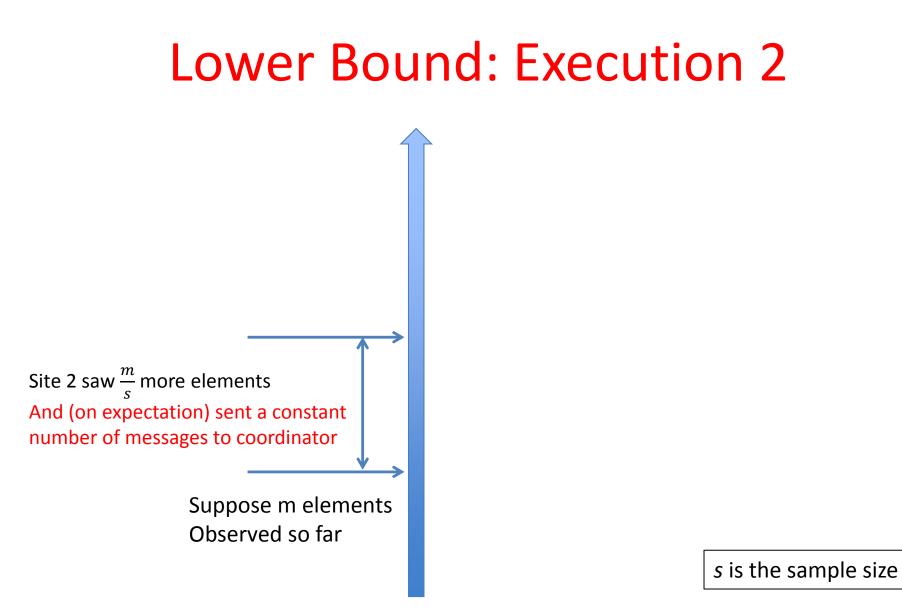
Lower Bound

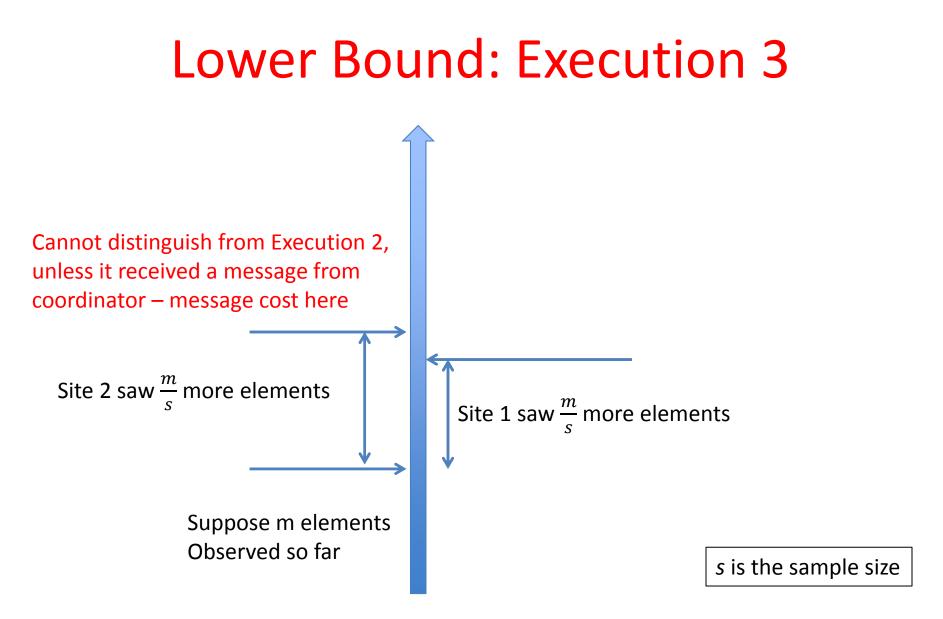
Suppose m elements Observed so far

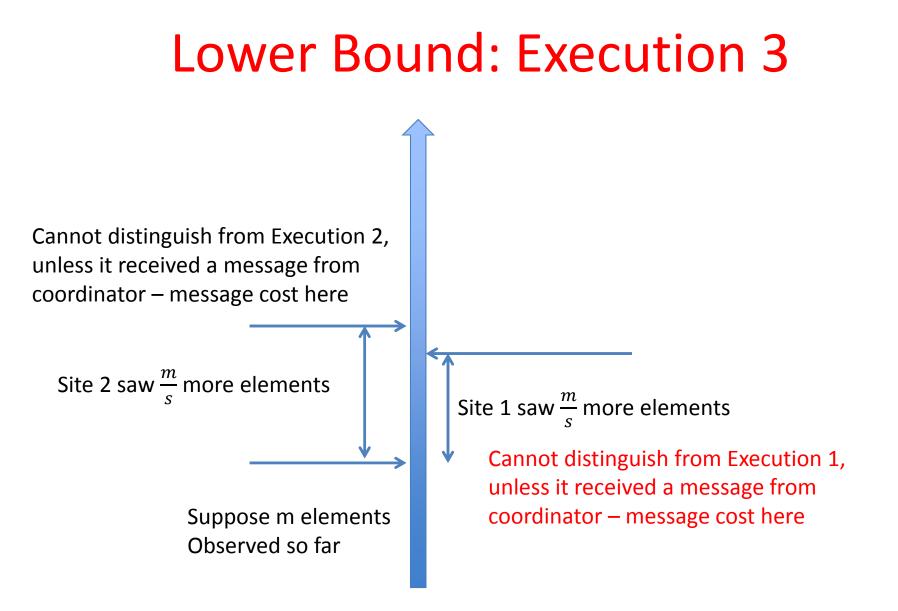












Lower Bound

Theorem: For any constant q, 0 < q < 1, any correct protocol must send $\Omega\left(\frac{k \log\left(\frac{n}{s}\right)}{\log\left(1+\frac{k}{s}\right)}\right)$

messages with probability at least 1–q, where the probability is taken over the protocol's internal randomness.

- k = number of sites
- n = Total size of stream
- s = desired sample size

Summary

 Random Sampling without replacement on distributed streams, with Optimal message complexity

 Algorithm for Random Sampling with Replacement

Plan

• Random Sampling Over Distributed Streams

Distributed Streaming Models

 When to Evaluate a Query (Triggers)

Stream Monitoring: When is an Answer Needed?

• One-Shot: only at the end of observation

Continuous: at each time instant
 Distributed continuous streaming model

In general: somewhere in between
– Specified by a "Trigger" policy

Trigger Policies in Streaming Systems (Ex: IBM Infosphere Streams)

• Generally: When a function g exceeds a threshold, the trigger is fired, and then resets

- Most Popular:
 - Count-based: g = number of tuples observed
 - Time-based: g = Current Time
 - Sometimes, f = g

Centralized vs Distributed Triggers

- Centralized Trigger Maintenance Usually Trivial
 - Count Based
 - Time Based

• Distributed Trigger Maintenance is not

Distributed Time-Based Trigger

- Every t time units, a result must be produced
 No need to maintain the function continuously
- Assume clocks are synchronized across sites

Problem 1: Develop Distributed Protocols for Function Maintenance With Time-Based Triggers

Distributed Count-Based Trigger

- Every n elements, a result must be produced
 - Every n element arrivals, a random sample of the stream

Problem 2: Develop Distributed Protocols for Function Maintenance Over Count-Based Triggers

Distributed Count-Based Trigger Approach 1

- Use a continuous monitoring algorithm to monitor function f at all times (Algo f-Monitor)
- Use a continuous count monitoring algorithm to monitor count at all times (Algo count-Monitor)
- When count-Monitor triggers, return the result maintained by f-Monitor

Distributed Count-Based Trigger Problems with Approach 1

• Algo f-Monitor result needed only occasionally, yet it is working at all times

Distributed Count-Based Trigger: Approach 2

Run count-Monitor continuously

 Cost: O(k log τ) messages per trigger

- When count-Monitor triggers, contact all sites for updates
 - Coordinator refreshes the value of the function only at this point

Distributed Count-Based Trigger

- Approach 2 works reasonably well
- Observations:
 - 1 Performance of count-Monitor very important
 - 2 Performance of f-Monitor does not matter as long as it is better than count-Monitor
 - 3 Algorithm f-Monitor should be able to handle multiple elements arriving in same instant

Research Problem

- Protocols and Lower Bounds for Distributed Stream Monitoring Under
 - Time-based triggers
 - Count-based triggers

Questions