
Distributed Random Sampling

Srikanta Tirthapura

Iowa State University

(joint work with David Woodruff)

Distributed Stream Monitoring

Server 1
(Tokyo)

Server 2
(Iowa)

Server 2
(Iowa)

Server 3
(India)

Server 3
(India)

Master Server Master Server

What is a typical
Request like?

What are Frequent
request types?

Requests

2 Distributed Random Sampling

Distributed Streams

1 1 k Sites 2 2 3 3 k k

S1

Coordinator Coordinator

Sketches

Sk S3 S2

Answers Queries About

𝑆 = 𝑆𝑗
𝑘

𝑗=1

3 Distributed Random Sampling

Plan

• Random Sampling Over Distributed Streams

• Distributed Streaming Models

Distributed Random Sampling 4

Random Sampling: Definition (1)

• Task: central coordinator must continuously
maintain a random sample of size s from S

• Cost: Total number of messages sent by the
protocol over the entire execution of observing n
elements


k

iSS
1



5 Distributed Random Sampling

Random Sampling: Definition (2)

Distributed Random Sampling 6

Our Results: Upper and Lower Bounds

• Upper Bound: An algorithm for continuously maintaining a random
sample of S with message complexity.

• Lower Bound: Any algorithm for continuously maintaining a random
sample of S must have above message complexity, w.h.p

• k = number of sites, n = stream size, s = desired sample size

• “Optimal Sampling for Distributed Streams Revisited”,
DISC 2011: T. and David Woodruff




























s

k
s

n
k

O

1log

log

7 Distributed Random Sampling

Prior Work

• Random Sampling on Distributed Streams
– Cormode, Muthukrishnan, Yi, and Zhang: Optimal

sampling from distributed streams. ACM PODS, pages
77–86, 2010

• Single Stream: Reservoir Sampling Algorithm
– Waterman (1960s)
– Vitter: Random sampling with a reservoir. ACM

Transactions on Mathematical Software, 11(1):37–57,
1985.

8 Distributed Random Sampling

Prior Work

Upper Bound Lower Bound

Our Result Cormode et al. Our Result Cormode et al.

s < k/8 O(k log n)

Ω(k + s log n)

s ≥ k/8 O(s log (n/s)) O(s log n)

Ω(s log (n/s))

Ω(s log (n/s))










)/log(

)/log(

sk

snk
O 









)/log(

)/log(

sk

snk
O

k = number of sites
n = Total size of streams
s = desired sample size

9 Distributed Random Sampling

High-Level Idea

• Each element assigned random weight in [0,1]

• Coordinator Maintains the set of elements
with the s smallest weights

Distributed Random Sampling 10

Algorithm

Coordinator Coordinator

1 1 2 2 k k

11 Distributed Random Sampling

Algorithm: Element arrives at 1

Coordinator Coordinator

1 1

12 Distributed Random Sampling

2 2 k k

Weight for each element

Coordinator Coordinator

1 1

Weight of each element
= random number in [0,1]

0.6

13 Distributed Random Sampling

2 2 k k

Weight for each element

Coordinator Coordinator

1 1

0.6

14 Distributed Random Sampling

2 2 k k

Algorithm

Coordinator Coordinator

1 1

0.6 0.2
0.33

2 2 k k

15 Distributed Random Sampling

Algorithm: Random Sample

Coordinator Coordinator

0.2 0.33

Random Sample = set of
Elements with s smallest
Weights

1 1 2 2 k k

u = 0.33
s-th smallest
weight seen so far

16 Distributed Random Sampling

Algorithm: Sites “Cache” value of u

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

𝑢1 is 1’s
view of u
= 0.6

𝑢𝑘 = 0.33
1 1 2 2 k k 𝑢2 = 0.5

17 Distributed Random Sampling

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

𝑢1, 𝑢2, … , . are all
at least u
So, elements that belong to
The sample are definitely sent

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

18 Distributed Random Sampling

Algorithm: Sites “Cache” value of u

Element at 1

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

0.7

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

19 Distributed Random Sampling

Discarded Locally

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

0.7

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

20 Distributed Random Sampling

Element at 1

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

0.5

21 Distributed Random Sampling

“Wasteful” Send

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

0.5

22 Distributed Random Sampling

Discarded by Coordinator

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

0.5

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

23 Distributed Random Sampling

But: Coordinator Refreshes Site’s View

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

0.5

𝑢1 = 0.6
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

u = 0.33

24 Distributed Random Sampling

Site’s View is Refreshed

Coordinator Coordinator

0.2 0.33

Random Sample

u = 0.33

𝑢1 = 0.33
𝑢𝑘 = 0.33

1 1 2 2 k k 𝑢2 = 0.5

25 Distributed Random Sampling

Algorithm Notes

• A message from site to coordinator either

– Changes the coordinator’s state

– Or Refreshes the client’s view

26 Distributed Random Sampling

Algorithm at Site i when it receives
element e

// ui is i’s view of the minimum weight so far in the system

// ui is initialized to ∞

1. Let w(e) be a random number between
0 and 1

2. If (w(e) < ui) then
1. Send (e,w(e)) to the coordinator, and receive u’ in

return

2. ui  u’

27 Distributed Random Sampling

Algorithm at Coordinator

1. Coordinator maintains u, the s-th smallest
weight seen in the system so far

2. If it receives a message (e,w(e)) from site i,

1. If (u > w(e)), then update u and add e to the
sample

2. Send u back to i

28 Distributed Random Sampling

Analysis: High Level View

• An execution divided into a few “Epochs”

• Bound the number of epochs

• Bound the number of messages per epoch

29 Distributed Random Sampling

Analysis: Epochs

• Epoch 0: all rounds until u is 1/r
or smaller

• Epoch i: all rounds after epoch
(i-1) till u has further reduced
by a factor r

• Epochs are not known by the
algorithm, only used for
analysis

Rounds

Round = 0

𝑢 = ∞

𝑢 = 𝑚1 ≤
1

𝑟

Epoch 0

𝑢 = 𝑚𝑖

𝑢 = 𝑚𝑖+1 ≤
𝑚𝑖
𝑟

Epoch i

u is the s-th smallest weight
seen in the system, so far.

30 Distributed Random Sampling

Bound on Number of Epochs

n = stream size
s = desired sample size
r = a parameter

31 Distributed Random Sampling

Algorithm B versus A

• Suppose our algorithm is “A”. We define an algorithm “B” that
is the same as A, except:
– At the beginning of each epoch, coordinator broadcasts u (the current

s-th minimum) to all sites

– B easier to analyze since the states of all sites are synchronized at the
beginning of each epoch

• Random sample maintained by “B” is the same as that
maintained by A

• Lemma: The number of messages sent by A is no more than
twice the number sent by B
– Henceforth, we will analyze B

32 Distributed Random Sampling

Analysis of B: Bound on Messages Per Epoch

• 𝜇 = total number of messages

• 𝜇𝑗: number of messages in epoch j

• 𝑋𝑗: number messages sent to coordinator in epoch j

• 𝜉: number of epochs

• 𝜇 = 𝜇𝑗
𝜉−1
𝑗=0

• 𝜇𝑗 = 𝑘 + 2𝑋𝑗

• 𝜇 = 𝜉𝑘 + 2 𝑋𝑗
𝜉−1
𝑗=0

Now, only need to bound 𝑋𝑗, the

number of messages to coordinator in
epoch j

33 Distributed Random Sampling

Bound on 𝑋𝑗

• Lemma: For each epoch j, 𝐸 𝑋𝑗 ≤ 1 + 2𝑟𝑠

• Proof:

– First compute 𝐸[𝑋𝑗] conditioned on 𝑛𝑗 and 𝑚𝑗

– Remove the conditioning on 𝑛𝑗 (the number of

elements in epoch j)

– Remove the conditioning on 𝑚𝑗 (the value of u at

the beginning of epoch j)

34 Distributed Random Sampling

Upper Bound

k = number of sites
n = Total size of stream
s = desired sample size
𝜇 = message complexity

35 Distributed Random Sampling

Lower Bound

Suppose m elements
Observed so far

36 Distributed Random Sampling

Lower Bound: Execution 1

Suppose m elements
Observed so far

Site 1 saw
𝑚

𝑠
 more elements

s is the sample size

37 Distributed Random Sampling

Lower Bound: Execution 1

Suppose m elements
Observed so far

Site 1 saw
𝑚

𝑠
 more elements

Constant probability that
one of site 1’s elements
will be included in the sample

s is the sample size

38 Distributed Random Sampling

Lower Bound: Execution 1

Suppose m elements
Observed so far

Site 1 saw
𝑚

𝑠
 more elements

And (on expectation) sent a constant
number of messages to coordinator

There is a constant probability
that one of site 1’s elements
will be included in the sample

s is the sample size

39 Distributed Random Sampling

Lower Bound: Execution 2

Suppose m elements
Observed so far

Site 2 saw
𝑚

𝑠
 more elements

And (on expectation) sent a constant
number of messages to coordinator

s is the sample size

40 Distributed Random Sampling

Lower Bound: Execution 3

Suppose m elements
Observed so far

Site 2 saw
𝑚

𝑠
 more elements

 Site 1 saw
𝑚

𝑠
 more elements

Cannot distinguish from Execution 2,
unless it received a message from
coordinator – message cost here

s is the sample size

41 Distributed Random Sampling

Lower Bound: Execution 3

Suppose m elements
Observed so far

Site 2 saw
𝑚

𝑠
 more elements

 Site 1 saw
𝑚

𝑠
 more elements

Cannot distinguish from Execution 2,
unless it received a message from
coordinator – message cost here

Cannot distinguish from Execution 1,
unless it received a message from
coordinator – message cost here

42 Distributed Random Sampling

Lower Bound

k = number of sites
n = Total size of stream
s = desired sample size

43 Distributed Random Sampling

Summary

• Random Sampling without replacement on
distributed streams, with Optimal message
complexity

• Algorithm for Random Sampling with
Replacement

44 Distributed Random Sampling

Plan

• Random Sampling Over Distributed Streams

• Distributed Streaming Models

– When to Evaluate a Query (Triggers)

Distributed Random Sampling 45

Stream Monitoring:
When is an Answer Needed?

• One-Shot: only at the end of observation

• Continuous: at each time instant

– Distributed continuous streaming model

• In general: somewhere in between

– Specified by a “Trigger” policy

Distributed Random Sampling 46

Trigger Policies in Streaming Systems
(Ex: IBM Infosphere Streams)

• Generally: When a function g exceeds a
threshold, the trigger is fired, and then resets

• Most Popular:

– Count-based: g = number of tuples observed

– Time-based: g = Current Time

– Sometimes, f = g

Distributed Random Sampling 47

Centralized vs Distributed Triggers

• Centralized Trigger Maintenance Usually
Trivial

– Count Based

– Time Based

• Distributed Trigger Maintenance is not

Distributed Random Sampling 48

Distributed Time-Based Trigger

• Every t time units, a result must be produced

– No need to maintain the function continuously

• Assume clocks are synchronized across sites

Distributed Random Sampling 49

Problem 1: Develop Distributed
Protocols for Function Maintenance

With Time-Based Triggers

Distributed Count-Based Trigger

• Every n elements, a result must be produced

– Every n element arrivals, a random sample of the
stream

Distributed Random Sampling 50

Problem 2: Develop Distributed
Protocols for Function Maintenance

Over Count-Based Triggers

Distributed Count-Based Trigger
Approach 1

• Use a continuous monitoring algorithm to
monitor function f at all times (Algo f-Monitor)

• Use a continuous count monitoring algorithm to
monitor count at all times (Algo count-Monitor)

• When count-Monitor triggers, return the result
maintained by f-Monitor

Distributed Random Sampling 51

Distributed Count-Based Trigger
Problems with Approach 1

• Algo f-Monitor result needed only
occasionally, yet it is working at all times

Distributed Random Sampling 52

Distributed Count-Based Trigger:
Approach 2

• Run count-Monitor continuously

– Cost: O(k log τ) messages per trigger

• When count-Monitor triggers, contact all sites
for updates

– Coordinator refreshes the value of the function
only at this point

Distributed Random Sampling 53

Distributed Count-Based Trigger

• Approach 2 works reasonably well

• Observations:
1 Performance of count-Monitor very important

2 Performance of f-Monitor does not matter as long as
it is better than count-Monitor

3 Algorithm f-Monitor should be able to handle
multiple elements arriving in same instant

 Distributed Random Sampling 54

Research Problem

• Protocols and Lower Bounds for Distributed
Stream Monitoring Under

– Time-based triggers

– Count-based triggers

Distributed Random Sampling 55

Distributed Random Sampling 56

Questions

