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Clustering Massive Data
• Group web pages based on their content

• Group users based on their online behavior

• Finding communities in social networks

• The web graph has a trillion edges 
[Malewicz et al.]

• Sequential algorithms are unusable



MapReduce

• We work with the MapReduce model of 
computation of Karloff-Suri-Vassilvitskii 
(SODA 2010)



Introduction to MapReudce

• MapReduce runs in multiple rounds

• Each machine is `separate’

• Memory and number of machines are 
typically much smaller than the input data



Running Time in MapReduce

• Time is constrained by the number of 
rounds due to moving data

• Minimize the number of rounds

• Keep running time in each phase 
polynomial



MapReduce Class [Karloff et al.]

•    is the input size and    is a constant

• Less than         memory on each machine

• Less than         machines 

• Mappers/reducers are             computable

•          :  algorithms that run in        rounds
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Algorithmic Design in MapReduce

• No one machine can see then entire input

• Machines are oblivious to the data on other 
machines, i.e. no communication between 
machines during a phase

• Total memory is N2−2ε



MapReduce vs. PRAM
• PRAM

• No limit on the number of processors

• Memory is uniformly accessible from any 
processor

• No limit on the memory available in the 
system

• Difficult to adapt PRAM algorithms to 
MapReduce



Previous Work On MapReduce
• Previous work requires        rounds to compute a BFS 

where     is the diameter of the graph [Lin and Dyer, 
Kang et al.]

•        rounds to compute a spanning tree or connected 
components for dense graphs [Karloff et al.]        

•                approximate for max-cover in
                   rounds [Chierichetti et al]

•       round algorithms for maximal matching, minimum 
cut, edge cover and vertex cover in dense graphs 
[Lattanzi et al.]
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Our Contributions

• We give constant factor approximation 
algorithms that are  

• We consider kCenter and kMedian

• Empirical evaluation

• We focus on kMedian in this talk

MRC0



Clustering
• Input:     points in a 

metric space, together 
with pairwise distances 
between them

• Input size 

• Output: a subset    of   
points, and an 
assignment 

• This talk:     is a const.
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kMedian Clustering
• Minimize the total distance to the centers

• Weighted version

• Sequential algorithms

•            in          time [AryaGKMMP 01]

• MAX SNP-hard [GuhaK 98]
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Algorithms

• Two algorithms

• Partition-based algorithm

• Sampling-based algorithm



Partition Algorithm

• Partition the points into             
blocks of the same size

• Find k centers from each 
block

• Cluster the centers
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Analysis
• Constant factor approximation

•      approximation

• Constant number of rounds

•  Memory:                    

•  Machines:                    

• In 
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Memory/rounds
trade-off?



Sampling Algorithm

• Construct a subset S of the points

• Points in S represent the input well

• Points in S fit on a single machine

• Use sampling to construct S



Sampling [also Thorup04]
• Sample            points 

• Add sample to S

• Remove an      fraction 
of the points

• Points removed are 
closest to the sample

• Apply procedure on 
remaining points 
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Sampling + kMedian

• Sample a subset S of the points

• Construct a weighted kMedian instance

• Put S and the weights on a single machine

• Run a sequential kMedian algorithm on S



Analysis
• Constant factor approximation

•            approximation

• Number of rounds is 

• Memory:

• Machines: 

• In
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Approximation Intuition
• Only need to show that the sampled points 

approximate the optimal solution

• Large clusters in the optimal solution have a point 
sampled from them (           points)

• Small Clusters:

• If a sampled point is close to the cluster then the 
contribution is small

• If the whole cluster is far, then all of the cluster 
was never removed

Ω(nδ)



Sampling vs Partitioning
• Partitioning

•               memory,               machines

• Number of rounds is a small constant

• Approximation is       for kMedian

• Sampling

•             memory,                   machines

• Number of rounds is 

• Approximation is                for kMedian
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Concluding Remarks

• Sparse input

• Distances can be represented implicitly 
using          space

• Ex: shortest path dist in a sparse graphs

• Experiments on real-world data

o(n2)



Thank You!
Questions?


