
Fast Clustering
using MapReduce
Alina Ene, Sungjin Im, Benjamin Moseley

UIUC

KDD 2011

Clustering Massive Data
• Group web pages based on their content

• Group users based on their online behavior

• Finding communities in social networks

• The web graph has a trillion edges
[Malewicz et al.]

• Sequential algorithms are unusable

MapReduce

• We work with the MapReduce model of
computation of Karloff-Suri-Vassilvitskii
(SODA 2010)

Introduction to MapReudce

• MapReduce runs in multiple rounds

• Each machine is `separate’

• Memory and number of machines are
typically much smaller than the input data

Running Time in MapReduce

• Time is constrained by the number of
rounds due to moving data

• Minimize the number of rounds

• Keep running time in each phase
polynomial

MapReduce Class [Karloff et al.]

• is the input size and is a constant

• Less than memory on each machine

• Less than machines

• Mappers/reducers are computable

• : algorithms that run in rounds

N ε

N1−ε

N1−ε

poly(N)

MRC0 O(1)

Algorithmic Design in MapReduce

• No one machine can see then entire input

• Machines are oblivious to the data on other
machines, i.e. no communication between
machines during a phase

• Total memory is N2−2ε

MapReduce vs. PRAM
• PRAM

• No limit on the number of processors

• Memory is uniformly accessible from any
processor

• No limit on the memory available in the
system

• Difficult to adapt PRAM algorithms to
MapReduce

Previous Work On MapReduce
• Previous work requires rounds to compute a BFS

where is the diameter of the graph [Lin and Dyer,
Kang et al.]

• rounds to compute a spanning tree or connected
components for dense graphs [Karloff et al.]

• approximate for max-cover in
 rounds [Chierichetti et al]

• round algorithms for maximal matching, minimum
cut, edge cover and vertex cover in dense graphs
[Lattanzi et al.]

O(d)
d

O(1)

(1− 1
e
− ε)

polylog(n)
O(1)

Our Contributions

• We give constant factor approximation
algorithms that are

• We consider kCenter and kMedian

• Empirical evaluation

• We focus on kMedian in this talk

MRC0

Clustering
• Input: points in a

metric space, together
with pairwise distances
between them

• Input size

• Output: a subset of
points, and an
assignment

• This talk: is a const.

n

k

f : V → C

C

N = Θ̃(n2)

k

kMedian Clustering
• Minimize the total distance to the centers

• Weighted version

• Sequential algorithms

• in time [AryaGKMMP 01]

• MAX SNP-hard [GuhaK 98]

3 + 2/c O(nc)

min
C

∑

v∈V

d(v, C)

min
C

∑

v∈V

w(v)· d(v, C)

Algorithms

• Two algorithms

• Partition-based algorithm

• Sampling-based algorithm

Partition Algorithm

• Partition the points into
blocks of the same size

• Find k centers from each
block

• Cluster the centers
3 3
3 3

4
2

√
n

Analysis
• Constant factor approximation

• approximation

• Constant number of rounds

• Memory:

• Machines:

• In

3α

MRC0

Θ(n) = Θ(
√
N)

Θ(
√
n) = Θ(N

1
4)

Memory/rounds
trade-off?

Sampling Algorithm

• Construct a subset S of the points

• Points in S represent the input well

• Points in S fit on a single machine

• Use sampling to construct S

Sampling [also Thorup04]
• Sample points

• Add sample to S

• Remove an fraction
of the points

• Points removed are
closest to the sample

• Apply procedure on
remaining points

nε

Θ̃(nε) sample

sample

removed

remaining

Sampling + kMedian

• Sample a subset S of the points

• Construct a weighted kMedian instance

• Put S and the weights on a single machine

• Run a sequential kMedian algorithm on S

Analysis
• Constant factor approximation

• approximation

• Number of rounds is

• Memory:

• Machines:

• In

O(1/ε)

10α+ 3

MRC0

Θ̃(N ε)

Θ(N
1
2−ε)

Approximation Intuition
• Only need to show that the sampled points

approximate the optimal solution

• Large clusters in the optimal solution have a point
sampled from them (points)

• Small Clusters:

• If a sampled point is close to the cluster then the
contribution is small

• If the whole cluster is far, then all of the cluster
was never removed

Ω(nδ)

Sampling vs Partitioning
• Partitioning

• memory, machines

• Number of rounds is a small constant

• Approximation is for kMedian

• Sampling

• memory, machines

• Number of rounds is

• Approximation is for kMedian

O(1/ε)

3α

10α + 3

Θ(
√
N) Θ(N

1
4)

Θ(N ε) Θ(N
1
2−ε)

Concluding Remarks

• Sparse input

• Distances can be represented implicitly
using space

• Ex: shortest path dist in a sparse graphs

• Experiments on real-world data

o(n2)

Thank You!
Questions?

