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Overview

• Introduction to MapReduce model

• Our settings

• Our results

• Open questions
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XXL Data

• Huge amount of data

• Main problem is to analyze information quickly

• New tools

• Suitable efficient algorithms
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MapReduce

• MapReduce is the platform of choice for processing 
massive data
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MapReduce

• MapReduce is the platform of choice for processing 
massive data

• Data are represented as tuple
            < key, value >
 

• Mapper decides how data is 
distributed

• Reducer performs non-trivial 
computation locally

INPUT

MAP
PHASE

REDUCE
PHASE
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How can we model MapReduce?

PRAM

•No limit on the number of processors

•Memory is uniformly accessible from any 
processor

•No limit on the memory available

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

How can we model MapReduce?

STREAMING

•Just one processor

•There is a limited amount of memory

•No parallelization
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[Karloff, Suri and Vassilvitskii]

•       is the input size and            is some fixed 
constant
N � > 0

MapReduce model

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

[Karloff, Suri and Vassilvitskii]

•       is the input size and            is some fixed 
constant

•Less than             machines

N � > 0

N1−�

MapReduce model

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

[Karloff, Suri and Vassilvitskii]

•       is the input size and            is some fixed 
constant

•Less than             machines
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[Karloff, Suri and Vassilvitskii]

•       is the input size and            is some fixed 
constant

•Less than             machines

•Less than             memory on each machine

N � > 0

N1−�

N1−�

               : problem that can be solved in                       
               rounds
MRCi

O(logi
N)

MapReduce model
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Combining map and reduce phase

•Mapper and Reducer work only on a subgraph

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

Combining map and reduce phase

•Mapper and Reducer work only on a subgraph

•Keep time in each round polynomial 
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Combining map and reduce phase

•Mapper and Reducer work only on a subgraph

•Keep time in each round polynomial 

•Time is constrained by the number of rounds
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Algorithmic challenges

•No machine can see the entire input
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Algorithmic challenges

•No machine can see the entire input

•No communication between machines during each 
phase
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Algorithmic challenges

•No machine can see the entire input

•No communication between machines during each 
phase

•Total memory is N2−2�
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MapReduce vs MUD algorithms

• In MUD framework each reducer operates on a 
stream of data. 

• In MUD, each reducer is restricted to only using 
polylogarithmic space.
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Our settings
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Our settings

•We study the Karloff, Suri and Vassilvitskii model
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Our settings

•We study the Karloff, Suri and Vassilvitskii model

•We focus on class  MRC0
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Our settings

•We assume to work with dense graph               , 
for some constant 

m = n1+c

c > 0
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Our settings

•We assume to work with dense graph               , 
for some constant 

•Empirical evidences that social networks are dense 
graphs
[Leskovec, Kleinberg and Faloutsos]

m = n1+c

c > 0
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Dense graph motivation

•They study 9 different social networks

[Leskovec, Kleinberg and Faloutsos]
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Dense graph motivation

•They study 9 different social networks

•They show that several graphs from different 
domains have          edges

[Leskovec, Kleinberg and Faloutsos]

n1+c
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Dense graph motivation

•They study 9 different social networks

•They show that several graphs from different 
domains have          edges

•Lowest value of     founded       and four graphs 
have 

[Leskovec, Kleinberg and Faloutsos]

n1+c

c .08
c > .5
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Our results
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Results

Constant rounds algorithms for

•Maximal matching

•Minimum cut

•8-approx for maximum weighted matching

•2-approx for vertex cover

•3/2-approx for edge cover
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Notation

•                     : Input graph

•     : number of nodes

•       : number of edges

•     : memory available on each machine

•       : input size

G = (V,E)

n

m

η

N
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Filtering

•Part of the input is dropped or filtered on the first 
stage in parallel
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Filtering

•Part of the input is dropped or filtered on the first 
stage in parallel

•Next some computation is performed on the filtered 
input
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Filtering

•Part of the input is dropped or filtered on the first 
stage in parallel

•Next some computation is performed on the filtered 
input

•Finally some patchwork is done to ensure a proper 
solution
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Filtering
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Filtering

FILTER
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Filtering

FILTER

COMPUTE
SOLUTION
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Warm-up: Compute the minimum 
spanning tree

m = n1+c
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Warm-up: Compute the minimum 
spanning tree
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EDGES

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

Warm-up: Compute the minimum 
spanning tree

m = n1+c

nc/2PARTITION
EDGES

n1+c/2 edges
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Warm-up: Compute the minimum 
spanning tree

nc/2

n1+c/2 edges

COMPUTE
MST
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Warm-up: Compute the minimum 
spanning tree

nc/2

n1+c/2 edges

COMPUTE
MST

nc/2SECOND
ROUND

n1+c/2edges

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

Show that the algorithm is in  MRC0

•The algorithm is correct
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•The algorithm is correct

•No edge in the final solution is discarded in partial 
solution

•The algorithm runs in two rounds

•No more than                machines are usedO
�
n

c
2
�
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Show that the algorithm is in  MRC0

•The algorithm is correct

•No edge in the final solution is discarded in partial 
solution

•The algorithm runs in two rounds

•No more than                machines are used

•No machine uses memory greater than   O(n1+c/2)

O
�
n

c
2
�

Tuesday, January 17, 2012
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Maximal matching

•Algorithmic difficulty is that each machine can only 
see edges assigned to the machine
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Maximal matching

•Algorithmic difficulty is that each machine can only 
see edges assigned to the machine

• Is a partitioning based algorithm feasible?  
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Partitioning algorithm
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Partitioning algorithm

PARTITIONING
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Partitioning algorithm

PARTITIONING

COMBINE
MATCHINGS
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Partitioning algorithm

PARTITIONING

COMBINE
MATCHINGS

It is impossible to build a maximal matching using only 
red edges!!
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Algorithmic insight

•Consider any subset of the edges E�
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Algorithmic insight

•Consider any subset of the edges 

•Let        be a maximal matching on 

E�

M �

G[E�]
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Algorithmic insight

•Consider any subset of the edges 

•Let        be a maximal matching on 

•The unmatched vertices form a 
independent set

E�

M �

G[E�]
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Algorithmic insight

•We pick each edge with probability p
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Algorithmic insight

•We pick each edge with probability 

•Find a matching on a sample and then find a 
matching on unmatched vertices

p
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Algorithmic insight

•We pick each edge with probability 

•Find a matching on a sample and then find a 
matching on unmatched vertices

•For dense portions of the graph, many
edges should be sampled

p
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Algorithmic insight

•We pick each edge with probability 

•Find a matching on a sample and then find a 
matching on unmatched vertices

•For dense portions of the graph, many
edges should be sampled

•Sparse portions of the graph are small 
and can be placed on a single machine

p
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Algorithm

•Sample each edge independently with probability 
p =

10 log n

nc/2
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Algorithm

•Sample each edge independently with probability 

•Find a matching on the sample

p =
10 log n

nc/2
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Algorithm

•Sample each edge independently with probability 

•Find a matching on the sample

•Consider the induced subgraph on unmatched 
vertices

p =
10 log n

nc/2
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Algorithm

•Sample each edge independently with probability 

•Find a matching on the sample

•Consider the induced subgraph on unmatched 
vertices

•Find a matching on this graph and output the union

p =
10 log n

nc/2
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Algorithm
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Algorithm

SAMPLE
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Algorithm

SAMPLE

FIRST
MATCHING
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Algorithm

SAMPLE

FIRST
MATCHING

MATCHING ON
UNMATCHED NODES
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Algorithm

SAMPLE

FIRST
MATCHING

UNION

MATCHING ON
UNMATCHED NODES
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Correctness

•Consider the last step of the algorithm
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Correctness

•Consider the last step of the algorithm

•All unmatched vertices are placed on a machine
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Correctness

•Consider the last step of the algorithm

•All unmatched vertices are placed on a machine

•All unmatched vertices or are matched at the last 
step or have only matched neighbors
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Bounding the rounds

Three rounds:

•Sampling the edges
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Bounding the rounds

Three rounds:

•Sampling the edges

•Find a matching on a single machine for the sampled 
edges
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Bounding the rounds

Three rounds:

•Sampling the edges

•Find a matching on a single machine for the sampled 
edges

•Find a matching for the unmatched vertices
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Bounding the memory

•Each edge was sampled with probability p =
10 log n

nc/2
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Bounding the memory

•Each edge was sampled with probability

•Using Chernoff the sampled graph has size
with high probability

p =
10 log n

nc/2

Õ(n1+c/2)

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

Bounding the memory

•Each edge was sampled with probability

•Using Chernoff the sampled graph has size
with high probability

•Can we bound the size of the induced subgraph on 
the unmatched vertices?

p =
10 log n

nc/2

Õ(n1+c/2)
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Bounding the memory

•For a fixed induced subgraph with at least     
edges the probability an edge is not sampled is:

n1+c/2

�
1− 10 log n

nc/2

�n1+c/2

≤ exp(−10n log n)
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Bounding the memory

•For a fixed induced subgraph with at least     
edges the probability an edge is not sampled is:

•Union bounding over all    induced subgraphs shows 
that at least one edge is sampled from every dense 
subgraph with probability

n1+c/2

�
1− 10 log n

nc/2

�n1+c/2

≤ exp(−10n log n)

2n

1− exp(−10 log n) ≥ 1− 1

n10
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Using less memory

•Can we run the algorithm with less then               
memory?

Õ(n1+c/2)
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Using less memory

•Can we run the algorithm with less then               
memory?

•We can amplify our sampling technique!

Õ(n1+c/2)
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Using less memory

•Sample as many edges as possible that fits in memory 
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Using less memory

•Sample as many edges as possible that fits in memory 

•Find a matching
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Using less memory

•Sample as many edges as possible that fits in memory 

•Find a matching

• If the edges between unmatched vertices fit onto a 
single machine, find a matching on those vertices
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Using less memory

•Sample as many edges as possible that fits in memory 

•Find a matching

• If the edges between unmatched vertices fit onto a 
single machine, find a matching on those vertices

•Otherwise, recurse on the unmatched nodes
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Using less memory

•Sample as many edges as possible that fits in memory 

•Find a matching

• If the edges between unmatched vertices fit onto a 
single machine, find a matching on those vertices

•Otherwise, recurse on the unmatched nodes

•With          memory each iteration a factor of     edges 
are removed resulting in               rounds

n1+� n�

O(c/�)
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Parallel computation power

•Maximal matching algorithm does not use 
parallelization
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Parallel computation power

•Maximal matching algorithm does not use 
parallelization

•We use a single machine in every step
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Parallel computation power

•Maximal matching algorithm does not use 
parallelization

•We use a single machine in every step

•When parallelization is used?
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Maximum weighted matching

2

2

2

2
4

4

8

7

3

1

Tuesday, January 17, 2012



Large Scale Distributed Computation, Jan 2012

Maximum weighted matching
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Maximum weighted matching
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Maximum weighted matching
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Maximum weighted matching
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Maximum weighted matching

SCAN THE EDGE 
SEQUENTIALLY
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Bounding the rounds and memory

Four rounds:

•Splitting the graph and running the maximal 
matching:
3 rounds and                   memory

•Compute the final solution:
1 round and                    memory             

Õ(n1+c/2)

O(n log n)
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Approximation guarantee (sketch)

•An edge in the solution can block at most 2 edges in
each subgraph of smaller weight
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Approximation guarantee (sketch)

•An edge in the solution can block at most 2 edges in
each subgraph of smaller weight

•We loose a factor or 2 because we do not consider 
the weight

2

2
2

4
3

7

8
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Other algorithms

Based on the same intuition:

•2-approx for vertex cover

•3/2-approx for edge cover
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Minimum cut

•Partition does not work, because we loose structural 
informations 
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Minimum cut

•Partition does not work, because we loose structural 
informations 

•Sampling does not seem to work either
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Minimum cut

•Partition does not work, because we loose structural 
informations 

•Sampling does not seem to work either

•We can use the first steps of Karger algorithm as a 
filtering technique
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Minimum cut

•Partition does not work, because we loose structural 
informations 

•Sampling does not seem to work either

•We can use the first steps of Karger algorithm as a 
filtering technique

•The random choices made in the early rounds 
succeed with high probability, whereas the later rounds 
have a much lower probability of success
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Minimum cut

1
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Minimum cut
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Minimum cut

nδ1
RANDOM
WEIGHT

COMPRESS
EDGES WITH

SMALL WEIGTH
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Minimum cut

nδ1
RANDOM
WEIGHT

COMPRESS
EDGES WITH

SMALL WEIGTH
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From Karger at least one graph will contain a min cut w.h.p.
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Minimum cut
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Minimum cut

COMPUTE
MINIMUM

CUT

2 2

2
2

2

2

2

2 2

2
2

2

2

2

We will find the minimum cut w.h.p.
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Empirical result (matching)
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Open problems
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Open problems 1

•Maximum matching

•Shortest path

•Dynamic programming
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Open problems 2

•Algorithms for sparse graph

•Does connected components require more than 2 
rounds?

•Lower bounds
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Thank you!
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