Large-Scale Parallel Best-First
Search for Optimal Planning

Akihiro Kishimoto

Department of Mathematical and Computing
Sciences, Tokyo Institute of Technology, Japan

Kishimoto@is.titech.ac.|p
Joint work with Alex Fukunaga and Adi Botea

——




Overview

Research Motivations

Overview of Sequential Planning System
Issues on Parallel Search

Hash Distributed A*

Experimental Results

Conclusions and Future Work




What Is Planning?

Represent problem and goal
— STRIPS, PDDL, etc

Returns plan to achieve goal
Representative subject of Al research

Can be used for many applications

— Spacecraft, autonomous robots,
manufacturability analysis, games
[Ghallab:2004]




Example of Optimal Planning:
Transportation Planning Task

1. Move-Car B->A
3. Move-Car A->B
5. Move-Truck C->B
7. Move-Truck B->C

2. Load-Car-with-Parcel @A

4. Unload-Parcel-from-Car@B
6. Load-Truck-with-Parcel@B

8. Unload-Parcel-from-Truck@C




SAS+ Representation
[Backstrom:1992]

A
1
[
|

e State S=<Parcel, Car,Truck>

o Parcel [{@A, @B, @C, in-Car, in-Truck}

e Car {@A,@B}

« Truck| [{@B,@C}

Initial State: <Parcel=@A, Car=@B, Truck=@C>
Goal: <Parcel=@C>




Example of Operators in SAS+

Move-Car B->A e e e

PRE=<Car=@B>
EFF=<Car=@A>

Example of applying Move Car B->A
State = <Parcel=@A, Truck=@C>
New State = <Parcel=@A,Car=@A,Truck=@C>




Optimal Planning and Search

Optimal planning is simpler but still difficult

Planning problems can be solved by conducting
search

— State = search node, operator = branch

Search Is incorporated into high-performance
planning systems (planners)

Search requires intensive computation
— Combinatorial complexity of search space
— Necessity of real-time response




Marriage of Parallel Computing
and Optimal Planning

« Parallel search is an important way to
scale up planners

— Search requires intensive computation

— Parallel computing becomes ubiguitous

— Parallel computing provides CPU and
memory resources to solve hard problems

— Speed of individual CPU core doesn’t
Increase as rapidly as in past decades




Overview of the Fast Downward
Planner [Helmert:2007]

One of the best sequential planners
Use SAS+ to represent problem
— states, operators, initial state, and goal

Generate heuristics automatically
— Admissible and consistent heuristic

Perform A* search and return optimal solution




A* Search

o Best-first search using OPEN and CLOSED lists
— OPEN maintains nodes not expanded yet

— CLOSED maintains nodes already expanded
» Used to find a path from root to goal
* Detect DAG to avoid duplicate search effort

— Dequeue and expand best node n in OPEN
— Save n’s successors to OPEN and nto CLOSED
— Continue until finding an optimal solution

 Requires a large amount of memory




Obstacles to Parallel A* Search

How to distribute work by avoiding overhead?
e Search overhead

— Extra states explored by parallel search
e Synchronization overhead

— Idle time wasted at synchronization points
« Communication overhead

— Extra cost caused by information exchange
These overheads depend on one another




Work-Stealing — Traditional
Approach to Balance Workload

e Each processor places work on its local
work queue

 |dle processor randomly selects a “victim”

processor to steal work from
* \Work-stealing tries to evenly allocate work

» \Work-stealing Is most popular in shared-
memory environments




Issues on Parallel A* Search In
Directed Graph

e Search space of many planning problems is not
tree, but DAG/DCG

Distributed closed list

Processor P : Processor @

-~~.§ E
P l
. S

,ommuplcatlo

: E

Synchronization
\\ C A i I’
~.Communicatiorn--

~ -
~~._——_“




Hash Distributed A* (HDAY*)
[Kishimoto, Fukunaga & Botea:ICAPS2009]

 Move work where data is located
[Romein et al..AAAI1999] [Kishimoto & Schaeffer:ICPP2002]

Distributed closed list

Processor P : Processor Q




Advantages of HDA* (1/2)

Duplicate search can be detected

More memory Is available for OPEN and
CLOSED lists
Work distribution Is almost uniform

— Zobrist function [Zobrist:1970]

 Hash key computed by using pre-computed
random table

Communication overhead Is not an iIssue

— Several states can be packed into one
message to send




Advantages of HDA* (2/2)

* Asynchronous communication is key
feature

e Can work on next node immediately after
sending out work to destination

« PRA*[Evett:1995] Is also parallel A* search
distributing work based on hash keys

— Synchronous

— Can be slower than sequential search
[Burns:1JCAI2009]




Experimental Results

 Hardware: TSUBAME
— Each node: CPU Sun Fire X4600
e 16 CPU cores with 32GB memory per node
— Up to 64 nodes (= 1024 CPU cores)
* Implementation

— Fast Downward + merge-and-shrink abstraction
[Helmert et al..ICAPS2007]

o Test suites
— Problems in ICAPS Planning Competitions




Speedups in Planning

Linear
Freecell -7 ——
Rover-12 ---—#--
Pepzol 28 —&—
Pepaol 29

Sokoban-12 - --

400

Murober of Procezzors




Search Overhead in Planning

Mo overhead
Freecell -7 ——
Rowver-12 -4
Pepanl-28 —&—

Pepanl-29
Sokoban-12 --e---

2
g
&
=
%]
H
T
1

Muraber of Procezzors




Actual Efficiency of HDA* In
Planning

Efficiency =tn / tmin tn=runtime for n cores
tmin=runtime for smallest number of cores required to solve

—PipNoTk24
Pegsol28
Pegsol29
Pegsol30
Sokoban24

Runtime (Relative)

Sokoban26
Sokoban27

512




Evaluating Impact of
Communication Delay

Vary # of processing nodes on a set of 64 CPU cores (4
— 64 nodes)

16 CPU cores per node

Satellite7 n/a

Sokoban24 2635.37

Increasing communications between
processing nodes increases speedups




Performance Degradation
Caused by Memory Contention

Normal Execution of HDA*

Satellite7 n/a
Sokohan24 2635.37

HDA* with dummy processes on cores unused by HDA*

64 cores 64 cores 64 cores
4 nodes 16 nodes 64 nodes

Satellite7 n/a 502.51 535.86

Sokoban24 2635.37 57.29 56.07




Miscellaneous

 There are problems solved only by 512
CPU cores with 1TB memory

* Load balancing LB ranges between 1.03
and 1.13 (128 cores)

maximum # of states searched by one processor
average # of states searched by one processor
_ . (14 Hf)

Existence of “hot spots™ N N
s\l N N

i e -
r P




Conclusions and Future Work

e Conclusions
— Parallel A* search applied to optimal planning
— 55x-650x speedup on 1024 cores

e Future work
— Invent new techniques for Grid environments

— Utilize features of multi-core CPUs
[Burns et al:2009]




Hash Distributed A* (HDAY*)

 Apply TDS idea to A* search

* Prepare distributed OPEN/CLOSED lists
maintained locally at each processor
e Select S inlocal OPEN

— Check local CLOSED list for avoiding
duplicate search effort

— Generate successor T of S
— Send T to processor that must expand
— Routinely check if new states arrive




Other Implementation Issues

e Solution optimality

— First solution S found by HDA* may not be optimal but
IS upper bound of optimal solution

— Broadcast cost(S) to all processors
— Search until best cost in OPEN >= cost(S)

e Termination detection

— Prove that each processor has no states to expand
and no work is currently on the way

— Can be detected by time algorithm [Mattern:1987]




