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What Is Planning?What Is Planning?

• Represent problem and goal
– STRIPS, PDDL, etc

• Returns plan to achieve goal
• Representative subject of AI research• Representative subject of AI research
• Can be used for many applications

– Spacecraft, autonomous robots, 
manufacturability analysis, games 
[Ghallab:2004]



Example of Optimal Planning:Example of Optimal Planning:
Transportation Planning TaskTransportation Planning Task

A B C

Parcel Car Truck

Highway

1. Move-Car B->A       2. Load-Car-with-Parcel@A
3. Move-Car A->B       4. Unload-Parcel-from-Car@B
5. Move-Truck C->B   6. Load-Truck-with-Parcel@B
7. Move-Truck B->C   8. Unload-Parcel-from-Truck@C



SAS+ Representation SAS+ Representation 
[Bäckström:1992][Bäckström:1992]

A B C

Parcel Car Truck

∈
• State S=<Parcel, Car,Truck>
• Parcel {@A, @B, @C, in-Car, in-Truck}
• Car         {@A,@B}
• Truck      {@B,@C}
Initial State: <Parcel=@A, Car=@B, Truck=@C>
Goal： <Parcel=@C>

∈∈



Example of Operators in SAS+Example of Operators in SAS+

• Move-Car B->A
PRE=<Car=@B> 
EFF=<Car=@A>

• …

A B C

Parcel Car Truck

Example of applying Move Car B->A
State = <Parcel=@A, Car=@B, Truck=@C>  
New State = <Parcel=@A,Car=@A,Truck=@C>



Optimal Planning and SearchOptimal Planning and Search

• Optimal planning is simpler but still difficult
• Planning problems can be solved by conducting 

search
– State = search node, operator = branch

• Search is incorporated into high-performance 
planning systems (planners)

• Search requires intensive computation
– Combinatorial complexity of search space
– Necessity of real-time response



Marriage of Parallel Computing Marriage of Parallel Computing 
and Optimal Planningand Optimal Planning

• Parallel search is an important way to 
scale up planners
– Search requires intensive computation
– Parallel computing becomes ubiquitous – Parallel computing becomes ubiquitous 
– Parallel computing provides CPU and 

memory resources to solve hard problems
– Speed of individual CPU core doesn’t 

increase as rapidly as in past decades



Overview of the Fast Downward Overview of the Fast Downward 
Planner [Helmert:2007]Planner [Helmert:2007]

• One of the best sequential planners
• Use SAS+ to represent problem

– states, operators, initial state, and goal
• Generate heuristics automatically• Generate heuristics automatically

– Admissible and consistent heuristic

• Perform A* search and return optimal solution



A* SearchA* Search

• Best-first search using OPEN and CLOSED lists
– OPEN maintains nodes not expanded yet
– CLOSED maintains nodes already expanded

• Used to find a path from root to goal• Used to find a path from root to goal
• Detect DAG to avoid duplicate search effort

– Dequeue and expand best node n in OPEN
– Save n’s successors to OPEN and n to CLOSED
– Continue until finding an optimal solution

• Requires a large amount of memory



Obstacles to Parallel A* SearchObstacles to Parallel A* Search

How to distribute work by avoiding overhead?
• Search overhead

– Extra states explored by parallel search
• Synchronization overhead• Synchronization overhead

– Idle time wasted at synchronization points
• Communication overhead

– Extra cost caused by information exchange
These overheads depend on one another



WorkWork--Stealing Stealing –– Traditional Traditional 
Approach to Balance WorkloadApproach to Balance Workload

• Each processor places work on its local 
work queue

• Idle processor randomly selects a “victim” 
processor to steal work fromprocessor to steal work from

• Work-stealing tries to evenly allocate work
• Work-stealing is most popular in shared-

memory environments



Issues on Parallel A* Search in Issues on Parallel A* Search in 
Directed GraphDirected Graph

• Search space of many planning problems is not 
tree, but DAG/DCG
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Hash Distributed A* (HDA*)Hash Distributed A* (HDA*)
[Kishimoto, Fukunaga & Botea:ICAPS2009][Kishimoto, Fukunaga & Botea:ICAPS2009]

• Move work where data is located
[Romein et al.:AAAI1999] [Kishimoto & Schaeffer:ICPP2002]

Distributed closed list
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Advantages of HDA* (1/2)Advantages of HDA* (1/2)

• Duplicate search can be detected
• More memory is available for OPEN and 

CLOSED lists
• Work distribution is almost uniform • Work distribution is almost uniform 

– Zobrist function [Zobrist:1970]
• Hash key computed by using pre-computed 

random table

• Communication overhead is not an issue
– Several states can be packed into one 

message to send



Advantages of HDA* (2/2)Advantages of HDA* (2/2)

• Asynchronous communication is key 
feature
• Can work on next node immediately after 

sending out work to destination
• PRA*[Evett:1995] is also parallel A* search 

distributing work based on hash keys
– Synchronous
– Can be slower than sequential search

[Burns:IJCAI2009]



Experimental ResultsExperimental Results

• Hardware: TSUBAME
– Each node: CPU Sun Fire X4600

• 16 CPU cores with ３２GB memory per node
– Up to 64 nodes (= 1024 CPU cores)

• Implementation• Implementation
– Fast Downward + merge-and-shrink abstraction 

[Helmert et al.:ICAPS2007]

• Test suites
– Problems in ICAPS Planning Competitions 



Speedups in PlanningSpeedups in Planning



Search Overhead in PlanningSearch Overhead in Planning



Actual Efficiency of HDA* in Actual Efficiency of HDA* in 
PlanningPlanning
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Evaluating Impact of Evaluating Impact of 
Communication DelayCommunication Delay

• Vary # of processing nodes on a set of 64 CPU cores (4 
– 64 nodes)

• 16 CPU cores per node

1 core 64 cores
4 nodes

64 cores 
16 nodes

64 cores
64 nodes

Increasing communications between 
processing nodes increases speedups

4 nodes 16 nodes 64 nodes

Satellite7 n/a 502.51 370.43 351.69

Sokoban24 2635.37 57.29 50.99 46.51



Performance Degradation Performance Degradation 
Caused by Memory ContentionCaused by Memory Contention

1 core 64 cores
4 nodes

64 cores 
16 nodes

64 cores
64 nodes

Satellite7 n/a 502.51 370.43 351.69

Sokoban24 2635.37 57.29 50.99 46.51

Normal Execution of HDA*

Sokoban24 2635.37 57.29 50.99 46.51

1 core 64 cores
4 nodes

64 cores 
16 nodes

64 cores
64 nodes

Satellite7 n/a 502.51 535.86 462.2

Sokoban24 2635.37 57.29 56.07 57.16

HDA* with dummy processes on cores unused by HDA*



MiscellaneousMiscellaneous

• There are problems solved only by 512 
CPU cores with 1TB memory

• Load balancing LB ranges between 1.03 
and 1.13 (128 cores)and 1.13 (128 cores)

maximum # of states searched by one processor

average # of states searched by one processor 

– Existence of “hot spots”?

LB=   



Conclusions and Future WorkConclusions and Future Work

• Conclusions
– Parallel A* search applied to optimal planning
– 55x-650x speedup on 1024 cores

• Future work• Future work
– Invent new techniques for Grid environments
– Utilize features of multi-core CPUs

[Burns et al:2009]



Hash Distributed A* (HDA*)Hash Distributed A* (HDA*)

• Apply TDS idea to A* search
• Prepare distributed OPEN/CLOSED lists 

maintained locally at each processor
• Select S in local OPEN• Select S in local OPEN

– Check local CLOSED list for avoiding 
duplicate search effort

– Generate successor T of S
– Send T to processor that must expand
– Routinely check if new states arrive



Other Implementation IssuesOther Implementation Issues

• Solution optimality
– First solution S found by HDA* may not be optimal but 

is upper bound of optimal solution
– Broadcast cost(S) to all processors
– Search until best cost in OPEN >= cost(S)– Search until best cost in OPEN >= cost(S)

• Termination detection
– Prove that each processor has no states to expand 

and no work is currently on the way
– Can be detected by time algorithm [Mattern:1987]


