
LargeLarge--Scale Parallel BestScale Parallel Best--First First
Search for Optimal PlanningSearch for Optimal Planning

Akihiro KishimotoAkihiro Kishimoto
Department of Mathematical and Computing Department of Mathematical and Computing

Sciences, Tokyo Institute of Technology, JapanSciences, Tokyo Institute of Technology, Japan
kishimoto@is.titech.ac.jpkishimoto@is.titech.ac.jp

Joint work with Alex Fukunaga and Adi BoteaJoint work with Alex Fukunaga and Adi Botea

OverviewOverview

• Research Motivations
• Overview of Sequential Planning System
• Issues on Parallel Search
• Hash Distributed A*• Hash Distributed A*
• Experimental Results
• Conclusions and Future Work

What Is Planning?What Is Planning?

• Represent problem and goal
– STRIPS, PDDL, etc

• Returns plan to achieve goal
• Representative subject of AI research• Representative subject of AI research
• Can be used for many applications

– Spacecraft, autonomous robots,
manufacturability analysis, games
[Ghallab:2004]

Example of Optimal Planning:Example of Optimal Planning:
Transportation Planning TaskTransportation Planning Task

A B C

Parcel Car Truck

Highway

1. Move-Car B->A 2. Load-Car-with-Parcel@A
3. Move-Car A->B 4. Unload-Parcel-from-Car@B
5. Move-Truck C->B 6. Load-Truck-with-Parcel@B
7. Move-Truck B->C 8. Unload-Parcel-from-Truck@C

SAS+ Representation SAS+ Representation
[Bäckström:1992][Bäckström:1992]

A B C

Parcel Car Truck

∈
• State S=<Parcel, Car,Truck>
• Parcel {@A, @B, @C, in-Car, in-Truck}
• Car {@A,@B}
• Truck {@B,@C}
Initial State: <Parcel=@A, Car=@B, Truck=@C>
Goal： <Parcel=@C>

∈∈

Example of Operators in SAS+Example of Operators in SAS+

• Move-Car B->A
PRE=<Car=@B>
EFF=<Car=@A>

• …

A B C

Parcel Car Truck

Example of applying Move Car B->A
State = <Parcel=@A, Car=@B, Truck=@C>
New State = <Parcel=@A,Car=@A,Truck=@C>

Optimal Planning and SearchOptimal Planning and Search

• Optimal planning is simpler but still difficult
• Planning problems can be solved by conducting

search
– State = search node, operator = branch

• Search is incorporated into high-performance
planning systems (planners)

• Search requires intensive computation
– Combinatorial complexity of search space
– Necessity of real-time response

Marriage of Parallel Computing Marriage of Parallel Computing
and Optimal Planningand Optimal Planning

• Parallel search is an important way to
scale up planners
– Search requires intensive computation
– Parallel computing becomes ubiquitous – Parallel computing becomes ubiquitous
– Parallel computing provides CPU and

memory resources to solve hard problems
– Speed of individual CPU core doesn’t

increase as rapidly as in past decades

Overview of the Fast Downward Overview of the Fast Downward
Planner [Helmert:2007]Planner [Helmert:2007]

• One of the best sequential planners
• Use SAS+ to represent problem

– states, operators, initial state, and goal
• Generate heuristics automatically• Generate heuristics automatically

– Admissible and consistent heuristic

• Perform A* search and return optimal solution

A* SearchA* Search

• Best-first search using OPEN and CLOSED lists
– OPEN maintains nodes not expanded yet
– CLOSED maintains nodes already expanded

• Used to find a path from root to goal• Used to find a path from root to goal
• Detect DAG to avoid duplicate search effort

– Dequeue and expand best node n in OPEN
– Save n’s successors to OPEN and n to CLOSED
– Continue until finding an optimal solution

• Requires a large amount of memory

Obstacles to Parallel A* SearchObstacles to Parallel A* Search

How to distribute work by avoiding overhead?
• Search overhead

– Extra states explored by parallel search
• Synchronization overhead• Synchronization overhead

– Idle time wasted at synchronization points
• Communication overhead

– Extra cost caused by information exchange
These overheads depend on one another

WorkWork--Stealing Stealing –– Traditional Traditional
Approach to Balance WorkloadApproach to Balance Workload

• Each processor places work on its local
work queue

• Idle processor randomly selects a “victim”
processor to steal work fromprocessor to steal work from

• Work-stealing tries to evenly allocate work
• Work-stealing is most popular in shared-

memory environments

Issues on Parallel A* Search in Issues on Parallel A* Search in
Directed GraphDirected Graph

• Search space of many planning problems is not
tree, but DAG/DCG

A

Distributed closed list

A

C

E

B

D

F

Processor P Processor Q
A

D
Q

P

Q

B C E
P

D

P

Communication
Synchronization

Communication

Hash Distributed A* (HDA*)Hash Distributed A* (HDA*)
[Kishimoto, Fukunaga & Botea:ICAPS2009][Kishimoto, Fukunaga & Botea:ICAPS2009]

• Move work where data is located
[Romein et al.:AAAI1999] [Kishimoto & Schaeffer:ICPP2002]

Distributed closed list

A

C

E

B

D

F

Processor P Processor Q
A P

D Q

P
P

Q

B C E

Distributed closed list

Advantages of HDA* (1/2)Advantages of HDA* (1/2)

• Duplicate search can be detected
• More memory is available for OPEN and

CLOSED lists
• Work distribution is almost uniform • Work distribution is almost uniform

– Zobrist function [Zobrist:1970]
• Hash key computed by using pre-computed

random table

• Communication overhead is not an issue
– Several states can be packed into one

message to send

Advantages of HDA* (2/2)Advantages of HDA* (2/2)

• Asynchronous communication is key
feature
• Can work on next node immediately after

sending out work to destination
• PRA*[Evett:1995] is also parallel A* search

distributing work based on hash keys
– Synchronous
– Can be slower than sequential search

[Burns:IJCAI2009]

Experimental ResultsExperimental Results

• Hardware: TSUBAME
– Each node: CPU Sun Fire X4600

• 16 CPU cores with ３２GB memory per node
– Up to 64 nodes (= 1024 CPU cores)

• Implementation• Implementation
– Fast Downward + merge-and-shrink abstraction

[Helmert et al.:ICAPS2007]

• Test suites
– Problems in ICAPS Planning Competitions

Speedups in PlanningSpeedups in Planning

Search Overhead in PlanningSearch Overhead in Planning

Actual Efficiency of HDA* in Actual Efficiency of HDA* in
PlanningPlanning

0.8

0.9

1

Driverlog13

Freecell6

Freecell7

Efficiency = tn / tmin tn= runtime for n cores
tmin= runtime for smallest number of cores required to solve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 16 64 128 512 1024

R
u
n
ti
m

e
 (
R

e
la

ti
v
e
)

Num. Cores

Rover12

Satellite7

ZenoTrav11

ZenoTrav12

PipNoTk24

Pegsol28

Pegsol29

Pegsol30

Sokoban24

Sokoban26

Sokoban27

Evaluating Impact of Evaluating Impact of
Communication DelayCommunication Delay

• Vary # of processing nodes on a set of 64 CPU cores (4
– 64 nodes)

• 16 CPU cores per node

1 core 64 cores
4 nodes

64 cores
16 nodes

64 cores
64 nodes

Increasing communications between
processing nodes increases speedups

4 nodes 16 nodes 64 nodes

Satellite7 n/a 502.51 370.43 351.69

Sokoban24 2635.37 57.29 50.99 46.51

Performance Degradation Performance Degradation
Caused by Memory ContentionCaused by Memory Contention

1 core 64 cores
4 nodes

64 cores
16 nodes

64 cores
64 nodes

Satellite7 n/a 502.51 370.43 351.69

Sokoban24 2635.37 57.29 50.99 46.51

Normal Execution of HDA*

Sokoban24 2635.37 57.29 50.99 46.51

1 core 64 cores
4 nodes

64 cores
16 nodes

64 cores
64 nodes

Satellite7 n/a 502.51 535.86 462.2

Sokoban24 2635.37 57.29 56.07 57.16

HDA* with dummy processes on cores unused by HDA*

MiscellaneousMiscellaneous

• There are problems solved only by 512
CPU cores with 1TB memory

• Load balancing LB ranges between 1.03
and 1.13 (128 cores)and 1.13 (128 cores)

maximum # of states searched by one processor

average # of states searched by one processor

– Existence of “hot spots”?

LB=

Conclusions and Future WorkConclusions and Future Work

• Conclusions
– Parallel A* search applied to optimal planning
– 55x-650x speedup on 1024 cores

• Future work• Future work
– Invent new techniques for Grid environments
– Utilize features of multi-core CPUs

[Burns et al:2009]

Hash Distributed A* (HDA*)Hash Distributed A* (HDA*)

• Apply TDS idea to A* search
• Prepare distributed OPEN/CLOSED lists

maintained locally at each processor
• Select S in local OPEN• Select S in local OPEN

– Check local CLOSED list for avoiding
duplicate search effort

– Generate successor T of S
– Send T to processor that must expand
– Routinely check if new states arrive

Other Implementation IssuesOther Implementation Issues

• Solution optimality
– First solution S found by HDA* may not be optimal but

is upper bound of optimal solution
– Broadcast cost(S) to all processors
– Search until best cost in OPEN >= cost(S)– Search until best cost in OPEN >= cost(S)

• Termination detection
– Prove that each processor has no states to expand

and no work is currently on the way
– Can be detected by time algorithm [Mattern:1987]

