
Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Minimum Spanning Tree and Connectivity of
Large Scale Graphs in MapReduce

Shonan Meeting Seminar
“Large-Scale Distributed Computation”

Donatella Firmani◦

joint work with G. Cormode, L. Laura, H. Karloff, S. Muthukrishnan

◦ Sapienza, University of Rome
Dipartimento di Ingegneria Informatica, Automatica e Gestionale

13 January 2012

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Outline

Is there any memory efficient constant round algorithm for
connected components in sparse graphs?

Remember yesterday talks by S. Vassilvitskii and S. Lattanzi

I Let us start from computation of MST of Large-Scale graphs

I Map Reduce programming paradigm

I Semi-External and External Approaches

I Work in Progress and Open Problems . . .

1/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Notation Details

Given a weighted undirected graph G = (V ,E)

I n is the number of vertices

I N is the number of edges
(size of the input in many MapReduce works)

I all of the edge weights are unique

I G is connected

2/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Sparse Graphs, Dense Graphs and Machine Memory I

(1) Semi-External MapReduce graph algorithm.
Working memory requirement of any map or reduce computation

O(N1−ε), for some ε > 0

(2) External MapReduce graph algorithm.
Working memory requirement of any map or reduce computation

O(n1−ε), for some ε > 0

Similar definitions for streaming and external memory graph
algorithms

O(N) not allowed!

3/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Sparse Graphs, Dense Graphs and Machine Memory II

(1) G is dense, i.e., N = n1+c

The design of a semi-external algorithm:

I makes sense for some c
1+c ≥ ε > 0

(otherwise it is an external algorithm, O(N1−ε) = O(n1−ε))

I allows to store G vertices

(2) G is sparse, i.e., N = O(n)

I no difference between semi-external and external algorithms

I storing G vertices is never allowed

4/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Introduction

Map Reduce Algorithms

Simulating PRAM Algorithms

Bor̊uvka + Random Mate

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Karloff et al. algorithm (SODA ’10) I

H. J. Karloff, S. Suri, and S. Vassilvitskii. “A Model of Computation for
MapReduce”. In: SODA. 2010, pp. 938–948

(1) Map Step 1.
Given a number k, randomly partition the set of vertices into k

equally sized subsets: Gi,j is the subgraph given by (Vi ∪ Vj ,Ei,j).

a b

c

d

e

f

G

a b

c

d

G12

a b

e

f

G13

c

d

e

f

G23

5/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Karloff et al. algorithm (SODA ’10) II

(2) Reduce Step 1.
For each of the

(
k
2

)
subgraphs Gi,j , compute the MST (forest) Mi,j .

(3) Map Step 2.
Let H be the graph consisting of all of the edges present in some

Mi,j : H = (V ,
⋃

i,j Mi,j): map H to a single reducer $.

(4) Reduce Step 2.
Compute the MST of H.

6/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Karloff et al. algorithm (SODA ’10) III

The algorithm is semi-external, for dense graphs.

I if G is c-dense and if k = n
c′
2 , for some c ≥ c ′ > 0:

with high probability, the memory requirement of any map or
reduce computation is

O(N1−ε) (1)

I it works in 2 = O(1) rounds

7/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Lattanzi et al. algorithm (SPAA ’11) I

S. Lattanzi et al. “Filtering: a method for solving graph problems in
MapReduce”. In: SPAA. 2011, pp. 85–94

(yesterday talk by S. Lattanzi)

(1) Map Step i .
Given a number k , randomly partition the set of edges into |E |k
equally sized subsets: Gi is the subgraph given by (Vi ,Ei)

a b

c

d

e

f

G

a b

G1

b

c

d

G2

c

d

e

f

G3

8/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Lattanzi et al. algorithm (SPAA ’11) II

(2) Reduce Step i .
For each of the |E |k subgraphs Gi , computes the graph G ′i , obtained

by removing from Gi any edge that is guaranteed not to be a part of

any MST because it is the heaviest edge on some cycle in Gi .

Let H be the graph consisting of all of the edges present in some G ′i

I if |E | ≤ k → the algorithm ends
(H is the MST of the input graph G)

I otherwise → start a new round with H as input

9/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Lattanzi et al. algorithm (SPAA ’11) III

The algorithm is semi-external, for dense graphs.

I if G is c-dense and if k = n1+c ′ , for some c ≥ c ′ > 0:
the memory requirement of any map or reduce computation is

O(n1+c ′) = O(N1−ε) (2)

for some
c ′

1 + c ′
≥ ε > 0 (3)

I it works in d cc ′ e = O(1) rounds

10/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Summary

[KSV10] [Lat+11]
G is c-dense, and c ≥ c ′ > 0

if k = n
c′
2 , whp if k = n1+c′

Memory O(N1−ε) O(n1+c′) = O(N1−ε)
Rounds 2 d c

c′ e = O(1)

Table: Space and Time complexity of algorithms discussed so far.

11/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Experimental Settings (thanks to A. Paolacci)

I Data Set.
Web Graphs, from hundreds of thousand to 7 millions vertices
http://webgraph.dsi.unimi.it/

I Map Reduce framework.
Hadoop 0.20.2 (pseudo-distributed mode)

I Machine.
CPU Intel i3-370M (3M cache, 2.40 Ghz), RAM 4GB, Ubuntu
Linux.

I Time Measures.
Average of 10 rounds of the algorithm on the same instance

12/29

http://webgraph.dsi.unimi.it/

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Preliminary Experimental Evaluation I

Memory Requirement in [KSV10]

Mb c n1+c k = n1+c′ round 11 round 21

cnr-2000 43.4 0.18 3.14 3 7.83 4.82
in-2004 233.3 0.18 3.58 3 50.65 21.84

indochina-2004 2800 0.21 5.26 5 386.25 126.17

Using smaller values of k (decreasing parallelism)

I decreases round 1 output size → round 2 time ¨̂

I increases memory and time requirement of
round 1 reduce step _̈

[1] output size in Mb

13/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Preliminary Experimental Evaluation II

Impact of Number of Machines in Performances of [KSV10]

machines map time (sec) reduce time (sec)
cnr-2000 1 49 29
cnr-2000 2 44 29
cnr-2000 3 59 29

in-2004 1 210 47
in-2004 2 194 47
in-2004 3 209 52

Implications of changes in the number of machines, with k = 3:
increasing the number of machines might increase overall
computation time (w.r.t. running more map or reduce instances on
the same machine)

14/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Preliminary Experimental Evaluation III

Number of Rounds in [Lat+11]

Let us assume, in the r -th round:

I |E | > k ;

I each of the subgraphs Gi is a tree or a forest.

a b

c

d

e

f

G

a b

c

d

G1

c

d

G2

c

d

e

f

G3

input graph = output graph, and the r -th is a “void” round.

15/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Preliminary Experimental Evaluation IV

Number of Rounds in [Lat+11]

(Graph instances having same c value 0.18)

c’ expected rounds average rounds1

cnr-2000 0.03 8 8.00
cnr-2000 0.05 5 7.33
cnr-2000 0.15 2 3.00

in-2004 0.03 6 6.00
in-2004 0.05 4 4.00
in-2004 0.15 2 2.00

We noticed some few “void” round occurrences.
(Partitioning using a random hash function)

16/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Introduction

Map Reduce Algorithms

Simulating PRAM Algorithms

Bor̊uvka + Random Mate

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Simulation of PRAMs via MapReduce I

H. J. Karloff, S. Suri, and S. Vassilvitskii. “A Model of Computation for
MapReduce”. In: SODA. 2010, pp. 938–948; Jon Feldman, S. Muthukrishnan,
Anastasios Sidiropoulos, Cliff Stein, and Zoya Svitkina. “On distributing
symmetric streaming computations”. In: ACM Trans. Algorithms 6 (4 2010),
66:1–66:19; Michael T. Goodrich. “Simulating Parallel Algorithms in the
MapReduce Framework with Applications to Parallel Computational
Geometry”. In: CoRR abs/1004.4708 (2010)

(1) CRCW PRAM. via memory-bound MapReduce framework.

(2) CREW PRAM. via DMRC:

(PRAM) O(S2−2ε) total memory, O(S2−2ε) processors and T time.

(MapReduce) O(T) rounds, O(S2−2ε) reducer instances.

(3) EREW PRAM. via MUD model of computation.

17/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

PRAM Algorithms for the MST

I CRCW PRAM algorithm [Cole, Klein, and Tarjan [CKT96]]

(randomized)
O(log n) time, O(N) work → work-optimal

I CREW PRAM algorithm [JáJá [JáJ92]]

O(log2 n) time, O(n2) work → work-optimal if N = O(n2).

I EREW PRAM algorithm [Johnson and Metaxas [JM92]]

O(log
3
2 n) time,O(N log

3
2 n) work.

I EREW PRAM algorithm [Pettie and Ramachandran [PR02]]

(randomized)
O(N) total memory, O(N

log n) processors.

O(log n) time, O(N) work → work-time optimal.

Simulation of CRCW PRAM with CREW PRAM: Ω(log S) steps.

18/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Simulation of [PR02] via MapReduce I

The algorithm is external (for dense and sparse graphs).

Simulate the algorithm in [PR02] using CREW→MapReduce.

I the memory requirement of any map or reduce computation is

O(log n) = O(n1−ε) (4)

for some

1− log log n ≥ ε > 0 (5)

I the algorithm works in O(log n) rounds.

19/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Summary

[KSV10] [Lat+11] Simulation
G is c-dense, and c ≥ c ′ > 0

if k = n
c′
2 , whp if k = n1+c′

Memory O(N1−ε) O(n1+c′) = O(N1−ε) O(log n) = O(n1−ε)
Rounds 2 d c

c′ e = O(1) O(log n)

Table: Space and Time complexity of algorithms discussed so far.

20/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Introduction

Map Reduce Algorithms

Simulating PRAM Algorithms

Bor̊uvka + Random Mate

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka MST algorithm I

O. Bor̊uvka. “O jistém problému minimálńım (About a Certain Minimal
Problem)”. In: III (1926), 37–58

Classical model of computation algorithm

procedure Borůvka MST(G(V ,E)):
T → V
while |T | < n − 1 do

for all connected component C in T do
e → the smallest-weight edge from C to another component in T
if e /∈ T then

T → T ∪ {e}
end if

end for
end while

21/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka MST algorithm II

Figure: An example of Bor̊uvka algorithm execution.

22/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Random Mate CC algorithm I

Hillel Gazit. “An Optimal Randomized Parallel Algorithm for Finding
Connected Components in a Graph”. In: SIAM Journal on Computing 20.6
(1991), pp. 1046–1067

CRCW PRAM model of computation algorithm

procedure Random Mate CC(G(V ,E)):
for all v ∈ V do cc(v)→ v end for
while there are edges connecting two CC in G (live) do

for all v ∈ V do gender[v] → rand({M, F}) end for
for all live (u, v) ∈ V do

cc(u) is M ∧ cc(v) is F ? cc(cc(u))→ cc(v) : cc(cc(v))→ cc(u)
end for
for all v ∈ E do cc(v)→ cc(cc(v)) end for

end while

23/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Random Mate CC algorithm II

u v

M F

parent[u]

parent[v]

u v

parent[v]
parent[u]

u v

parent[v]

Figure 6: Details of the merging step of Algorithm 8. Graph edges are undirected and shown as dashed lines. Super-
vertex edges are directed and are shown as solid lines.

Algorithm 8 (Random-mate algorithm for connected components)
Input: An undirected graphG = (V, E).
Output: The connected components of G, numbered in the array P [1..|V |].

1 forall v ∈ V do
2 parent[v] ← v
3 enddo
4 while there are live edges in G do
5 forall v ∈ V do
6 gender[v] = rand({M, F})
7 enddo
8 forall (u, v) ∈ E | live(u, v) do
9 if gender[parent[u]] = M and gender[parent[v]] = F then
10 parent[parent[u]] ← parent[v]
11 endif
12 if gender[parent[v]] = M and gender[parent[u]] = F then
13 parent[parent[v]] ← parent[u]
14 endif
15 enddo
16 forall v ∈ V do
17 parent[v] ← parent[parent[v]]
18 enddo
19 endwhile

Figure 6 shows the details of the merging step of Algorithm 8. We establish the complexity of this algorithm by
proving a succession of lemmas about its behavior.

Lemma 1 After each iteration of the outer while-loop, each supervertex is a star (a tree of height zero or one).
Proof: The proof is by induction on the number of iterations executed. Before any iterations of the loop have been
executed, each vertex is a supervertex with height zero by the initialization in line 2. Now assume that the claim holds
after k iterations, and consider what happens in the (k + 1)st iteration. Refer to Figure 6. After the forall loop in
line 8, the height of a supervertex can increase by one, so it is at most two. After the compression step in line 16, the
height goes back to one from two. !

Lemma 2 Each iteration of the while-loop takes Θ(1) steps and O(V + E) work.

17

Figure: An example of Random Mate algorithm step.

24/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka + Random Mate I

Let us consider again the labeling function cc : V → V

(1) Map Step i (Bor̊uvka).
Given an edge (u, v) ∈ E , the result of the mapping consists in two

key : value pairs cc(u) : (u, v) and cc(v) : (u, v).

a b

c

d

e

f

G

a b

G1

a b

c

d

G2

b

c

d

e

G3

b

c

d f

G4

c e

f

G5

d

e

f

G6

25/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka + Random Mate II

(2) Reduce Step i (Bor̊uvka).
For each subgraph Gi , execute one iteration of the Bor̊uvka

algorithm.

Let T be the output of i-th Bor̊uvka iteration.

Execute ri Random Mate rounds, feeding the first one with T .

(3) Round i + j (Random Mate).
Use a MapReduce implementation [Piccolboni [Pic10]] of Random

Mate algorithm and update the function cc .

I if there are no more live edges, the algorithm ends
(T is the MST of the input graph G)

I otherwise → start a new Bor̊uvka round

26/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka + Random Mate III

Two extremal cases:

I output of first Bor̊uvka round is connected
→ O(log n) Random Mate rounds, and algorithm ends.

I output of each Bor̊uvka round is a matching
→ ∀i , ri = 1 Random Mate round
→ O(log n) Bor̊uvka rounds, and algorithm ends.

Therefore

I it works in O(log2 n) rounds;

I example working in ≈ 1
4 log2 n

27/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka + Random Mate IV

a

b

c

d

e

f

g

h1

2

1 1

2

2

1

2

2

2

1

a

b

c

d

e

f

g

h1

1 1

1

1

28/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Conclusions

Work in progress for an external implementation of the algorithm
(for dense and sparse graphs).

I the worst case seems to rely on a certain kind of structure in
the graph, difficult to appear in realistic graphs

I need of more experimental work to confirm it

Is there any external constant round algorithm for connected
components and MST in sparse graphs?

Maybe under certain (and hopefully realistic) assumptions.

29/29

Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

THANK YOU

¨̂

	Introduction
	Map Reduce Algorithms
	Simulating PRAM Algorithms
	Boruvka + Random Mate

