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Outline

Is there any memory efficient constant round algorithm for
connected components in sparse graphs?

Remember yesterday talks by S. Vassilvitskii and S. Lattanzi

I Let us start from computation of MST of Large-Scale graphs

I Map Reduce programming paradigm

I Semi-External and External Approaches

I Work in Progress and Open Problems . . .
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Notation Details

Given a weighted undirected graph G = (V ,E )

I n is the number of vertices

I N is the number of edges
(size of the input in many MapReduce works)

I all of the edge weights are unique

I G is connected
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Sparse Graphs, Dense Graphs and Machine Memory I

(1) Semi-External MapReduce graph algorithm.
Working memory requirement of any map or reduce computation

O(N1−ε), for some ε > 0

(2) External MapReduce graph algorithm.
Working memory requirement of any map or reduce computation

O(n1−ε), for some ε > 0

Similar definitions for streaming and external memory graph
algorithms

O(N) not allowed!
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Sparse Graphs, Dense Graphs and Machine Memory II

(1) G is dense, i.e., N = n1+c

The design of a semi-external algorithm:

I makes sense for some c
1+c ≥ ε > 0

(otherwise it is an external algorithm, O(N1−ε) = O(n1−ε))

I allows to store G vertices

(2) G is sparse, i.e., N = O(n)

I no difference between semi-external and external algorithms

I storing G vertices is never allowed
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Karloff et al. algorithm (SODA ’10) I

H. J. Karloff, S. Suri, and S. Vassilvitskii. “A Model of Computation for
MapReduce”. In: SODA. 2010, pp. 938–948

(1) Map Step 1.
Given a number k, randomly partition the set of vertices into k

equally sized subsets: Gi,j is the subgraph given by (Vi ∪ Vj ,Ei,j).
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Karloff et al. algorithm (SODA ’10) II

(2) Reduce Step 1.
For each of the

(
k
2

)
subgraphs Gi,j , compute the MST (forest) Mi,j .

(3) Map Step 2.
Let H be the graph consisting of all of the edges present in some

Mi,j : H = (V ,
⋃

i,j Mi,j): map H to a single reducer $.

(4) Reduce Step 2.
Compute the MST of H.
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Karloff et al. algorithm (SODA ’10) III

The algorithm is semi-external, for dense graphs.

I if G is c-dense and if k = n
c′
2 , for some c ≥ c ′ > 0:

with high probability, the memory requirement of any map or
reduce computation is

O(N1−ε) (1)

I it works in 2 = O(1) rounds

7/29



Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Lattanzi et al. algorithm (SPAA ’11) I

S. Lattanzi et al. “Filtering: a method for solving graph problems in
MapReduce”. In: SPAA. 2011, pp. 85–94

(yesterday talk by S. Lattanzi)

(1) Map Step i .
Given a number k , randomly partition the set of edges into |E |k
equally sized subsets: Gi is the subgraph given by (Vi ,Ei )
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Lattanzi et al. algorithm (SPAA ’11) II

(2) Reduce Step i .
For each of the |E |k subgraphs Gi , computes the graph G ′i , obtained

by removing from Gi any edge that is guaranteed not to be a part of

any MST because it is the heaviest edge on some cycle in Gi .

Let H be the graph consisting of all of the edges present in some G ′i

I if |E | ≤ k → the algorithm ends
(H is the MST of the input graph G )

I otherwise → start a new round with H as input
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Lattanzi et al. algorithm (SPAA ’11) III

The algorithm is semi-external, for dense graphs.

I if G is c-dense and if k = n1+c ′ , for some c ≥ c ′ > 0:
the memory requirement of any map or reduce computation is

O(n1+c ′) = O(N1−ε) (2)

for some
c ′

1 + c ′
≥ ε > 0 (3)

I it works in d cc ′ e = O(1) rounds
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Summary

[KSV10] [Lat+11]
G is c-dense, and c ≥ c ′ > 0

if k = n
c′
2 , whp if k = n1+c′

Memory O(N1−ε) O(n1+c′) = O(N1−ε)
Rounds 2 d c

c′ e = O(1)

Table: Space and Time complexity of algorithms discussed so far.
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Experimental Settings (thanks to A. Paolacci)

I Data Set.
Web Graphs, from hundreds of thousand to 7 millions vertices
http://webgraph.dsi.unimi.it/

I Map Reduce framework.
Hadoop 0.20.2 (pseudo-distributed mode)

I Machine.
CPU Intel i3-370M (3M cache, 2.40 Ghz), RAM 4GB, Ubuntu
Linux.

I Time Measures.
Average of 10 rounds of the algorithm on the same instance
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Preliminary Experimental Evaluation I

Memory Requirement in [KSV10]

Mb c n1+c k = n1+c′ round 11 round 21

cnr-2000 43.4 0.18 3.14 3 7.83 4.82
in-2004 233.3 0.18 3.58 3 50.65 21.84

indochina-2004 2800 0.21 5.26 5 386.25 126.17

Using smaller values of k (decreasing parallelism)

I decreases round 1 output size → round 2 time ¨̂

I increases memory and time requirement of
round 1 reduce step _̈

[1] output size in Mb
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Preliminary Experimental Evaluation II

Impact of Number of Machines in Performances of [KSV10]

machines map time (sec) reduce time (sec)
cnr-2000 1 49 29
cnr-2000 2 44 29
cnr-2000 3 59 29

in-2004 1 210 47
in-2004 2 194 47
in-2004 3 209 52

Implications of changes in the number of machines, with k = 3:
increasing the number of machines might increase overall
computation time (w.r.t. running more map or reduce instances on
the same machine)
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Preliminary Experimental Evaluation III

Number of Rounds in [Lat+11]

Let us assume, in the r -th round:

I |E | > k ;

I each of the subgraphs Gi is a tree or a forest.
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input graph = output graph, and the r -th is a “void” round.
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Preliminary Experimental Evaluation IV

Number of Rounds in [Lat+11]

(Graph instances having same c value 0.18)

c’ expected rounds average rounds1

cnr-2000 0.03 8 8.00
cnr-2000 0.05 5 7.33
cnr-2000 0.15 2 3.00

in-2004 0.03 6 6.00
in-2004 0.05 4 4.00
in-2004 0.15 2 2.00

We noticed some few “void” round occurrences.
(Partitioning using a random hash function)
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Simulation of PRAMs via MapReduce I

H. J. Karloff, S. Suri, and S. Vassilvitskii. “A Model of Computation for
MapReduce”. In: SODA. 2010, pp. 938–948; Jon Feldman, S. Muthukrishnan,
Anastasios Sidiropoulos, Cliff Stein, and Zoya Svitkina. “On distributing
symmetric streaming computations”. In: ACM Trans. Algorithms 6 (4 2010),
66:1–66:19; Michael T. Goodrich. “Simulating Parallel Algorithms in the
MapReduce Framework with Applications to Parallel Computational
Geometry”. In: CoRR abs/1004.4708 (2010)

(1) CRCW PRAM. via memory-bound MapReduce framework.

(2) CREW PRAM. via DMRC:

(PRAM) O(S2−2ε) total memory, O(S2−2ε) processors and T time.

(MapReduce) O(T ) rounds, O(S2−2ε) reducer instances.

(3) EREW PRAM. via MUD model of computation.
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PRAM Algorithms for the MST

I CRCW PRAM algorithm [Cole, Klein, and Tarjan [CKT96]]

(randomized)
O(log n) time, O(N) work → work-optimal

I CREW PRAM algorithm [JáJá [JáJ92]]

O(log2 n) time, O(n2) work → work-optimal if N = O(n2).

I EREW PRAM algorithm [Johnson and Metaxas [JM92]]

O(log
3
2 n) time,O(N log

3
2 n) work.

I EREW PRAM algorithm [Pettie and Ramachandran [PR02]]

(randomized)
O(N) total memory, O( N

log n ) processors.

O(log n) time, O(N) work → work-time optimal.

Simulation of CRCW PRAM with CREW PRAM: Ω(log S) steps.
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Simulation of [PR02] via MapReduce I

The algorithm is external (for dense and sparse graphs).

Simulate the algorithm in [PR02] using CREW→MapReduce.

I the memory requirement of any map or reduce computation is

O(log n) = O(n1−ε) (4)

for some

1− log log n ≥ ε > 0 (5)

I the algorithm works in O(log n) rounds.
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Summary

[KSV10] [Lat+11] Simulation
G is c-dense, and c ≥ c ′ > 0

if k = n
c′
2 , whp if k = n1+c′

Memory O(N1−ε) O(n1+c′) = O(N1−ε) O(log n) = O(n1−ε)
Rounds 2 d c

c′ e = O(1) O(log n)

Table: Space and Time complexity of algorithms discussed so far.
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Bor̊uvka MST algorithm I

O. Bor̊uvka. “O jistém problému minimálńım (About a Certain Minimal
Problem)”. In: III (1926), 37–58

Classical model of computation algorithm

procedure Borůvka MST(G(V ,E)):
T → V
while |T | < n − 1 do

for all connected component C in T do
e → the smallest-weight edge from C to another component in T
if e /∈ T then

T → T ∪ {e}
end if

end for
end while
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Bor̊uvka MST algorithm II

Figure: An example of Bor̊uvka algorithm execution.
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Random Mate CC algorithm I

Hillel Gazit. “An Optimal Randomized Parallel Algorithm for Finding
Connected Components in a Graph”. In: SIAM Journal on Computing 20.6
(1991), pp. 1046–1067

CRCW PRAM model of computation algorithm

procedure Random Mate CC(G(V ,E)):
for all v ∈ V do cc(v)→ v end for
while there are edges connecting two CC in G (live) do

for all v ∈ V do gender[v] → rand({M, F}) end for
for all live (u, v) ∈ V do

cc(u) is M ∧ cc(v) is F ? cc(cc(u))→ cc(v) : cc(cc(v))→ cc(u)
end for
for all v ∈ E do cc(v)→ cc(cc(v)) end for

end while
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Random Mate CC algorithm II

u v

M F

parent[u]

parent[v]

u v

parent[v]
parent[u]

u v

parent[v]

Figure 6: Details of the merging step of Algorithm 8. Graph edges are undirected and shown as dashed lines. Super-
vertex edges are directed and are shown as solid lines.

Algorithm 8 (Random-mate algorithm for connected components)
Input: An undirected graphG = (V, E).
Output: The connected components of G, numbered in the array P [1..|V |].

1 forall v ∈ V do
2 parent[v] ← v
3 enddo
4 while there are live edges in G do
5 forall v ∈ V do
6 gender[v] = rand({M, F})
7 enddo
8 forall (u, v) ∈ E | live(u, v) do
9 if gender[parent[u]] = M and gender[parent[v]] = F then
10 parent[parent[u]] ← parent[v]
11 endif
12 if gender[parent[v]] = M and gender[parent[u]] = F then
13 parent[parent[v]] ← parent[u]
14 endif
15 enddo
16 forall v ∈ V do
17 parent[v] ← parent[parent[v]]
18 enddo
19 endwhile

Figure 6 shows the details of the merging step of Algorithm 8. We establish the complexity of this algorithm by
proving a succession of lemmas about its behavior.

Lemma 1 After each iteration of the outer while-loop, each supervertex is a star (a tree of height zero or one).
Proof: The proof is by induction on the number of iterations executed. Before any iterations of the loop have been
executed, each vertex is a supervertex with height zero by the initialization in line 2. Now assume that the claim holds
after k iterations, and consider what happens in the (k + 1)st iteration. Refer to Figure 6. After the forall loop in
line 8, the height of a supervertex can increase by one, so it is at most two. After the compression step in line 16, the
height goes back to one from two. !

Lemma 2 Each iteration of the while-loop takes Θ(1) steps and O(V + E) work.

17

Figure: An example of Random Mate algorithm step.

24/29



Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka + Random Mate I

Let us consider again the labeling function cc : V → V

(1) Map Step i (Bor̊uvka).
Given an edge (u, v) ∈ E , the result of the mapping consists in two

key : value pairs cc(u) : (u, v) and cc(v) : (u, v).
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Bor̊uvka + Random Mate II

(2) Reduce Step i (Bor̊uvka).
For each subgraph Gi , execute one iteration of the Bor̊uvka

algorithm.

Let T be the output of i-th Bor̊uvka iteration.

Execute ri Random Mate rounds, feeding the first one with T .

(3) Round i + j (Random Mate).
Use a MapReduce implementation [Piccolboni [Pic10]] of Random

Mate algorithm and update the function cc .

I if there are no more live edges, the algorithm ends
(T is the MST of the input graph G )

I otherwise → start a new Bor̊uvka round
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Bor̊uvka + Random Mate III

Two extremal cases:

I output of first Bor̊uvka round is connected
→ O(log n) Random Mate rounds, and algorithm ends.

I output of each Bor̊uvka round is a matching
→ ∀i , ri = 1 Random Mate round
→ O(log n) Bor̊uvka rounds, and algorithm ends.

Therefore

I it works in O(log2 n) rounds;

I example working in ≈ 1
4 log2 n

27/29



Introduction Map Reduce Algorithms Simulating PRAM Algorithms Bor̊uvka + Random Mate

Bor̊uvka + Random Mate IV
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Conclusions

Work in progress for an external implementation of the algorithm
(for dense and sparse graphs).

I the worst case seems to rely on a certain kind of structure in
the graph, difficult to appear in realistic graphs

I need of more experimental work to confirm it

Is there any external constant round algorithm for connected
components and MST in sparse graphs?

Maybe under certain (and hopefully realistic) assumptions.
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THANK YOU
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